植物生态学报 ›› 2011, Vol. 35 ›› Issue (3): 284-293.DOI: 10.3724/SP.J.1258.2011.00284
收稿日期:
2010-04-19
接受日期:
2010-12-10
出版日期:
2011-04-19
发布日期:
2011-03-02
通讯作者:
周道玮
作者简介:
*E-mail: zhoudaowei@neigae.ac.cnReceived:
2010-04-19
Accepted:
2010-12-10
Online:
2011-04-19
Published:
2011-03-02
Contact:
ZHOU Dao-Wei
摘要:
虽然个体大小和密度的关系是植物生态学研究的中心问题, 但是大多数基础研究只观测植株地上部分的生物量, 即地上部分大小-密度关系, 而对于地下构件大小-密度关系的研究十分薄弱。因为植物个体的生长是构件变化的过程, 所以个体大小和密度的关系不仅表现为种群水平和个体水平, 也表现为构件水平。该文研究了5个密度(36、49、64、121和225株·m-2)的红葱(Allium cepa var. proliferum)种群地下构件密度制约调节规律及其与地上构件密度制约调节规律的关系, 地下部分和全株(包括地上部分和地下部分)的密度制约调节规律, 及二者与地上部分密度制约调节规律的关系。结果表明: (1)不同密度环境下, 植物的表型可以通过各器官形态的可塑性反应发生调整; 植株地下构件和地上构件的各个特征(株高、叶片长、叶片数、鳞茎直径、分蘖重)均与密度呈显著的线性相关关系; (2)平均根、鳞茎、叶片和鞘生物量均与密度呈显著的幂函数负相关关系, 但异速指数不同: 鳞茎(-1.14)<叶片(-1.03)<根(-0.78)<鞘(-0.49), 表明地下构件的大小和地上构件的大小随密度的变化不一致; (3)平均地下、地上和个体生物量均与种群密度呈显著的幂函数负相关关系, 但异速指数不同, 分别为: -1.13、-0.95和-0.98, 表明地上部分大小和全株大小随种群密度的变化基本一致, 但与地下部分大小的变化不一致。总之, 密度制约对植株地下构件的调节作用大于地上构件, 对地下部分的调节作用大于地上部分, 红葱种群对地下资源的竞争占主导地位。
黎磊, 周道玮. 红葱种群地上和地下构件的密度制约调节. 植物生态学报, 2011, 35(3): 284-293. DOI: 10.3724/SP.J.1258.2011.00284
LI Lei, ZHOU Dao-Wei. Density-dependent regulation of above- and below-ground modules in Allium cepa var. proliferum populations. Chinese Journal of Plant Ecology, 2011, 35(3): 284-293. DOI: 10.3724/SP.J.1258.2011.00284
图1 植株密度对红葱构件形态特征的影响(平均值±标准误差)。不同小写字母表示不同密度处理间差异显著(p < 0.05)。
Fig. 1 Effects of plant density on morphological characteristics of Allium cepa var. proliferum modules (mean ± SE). Different lowercase letters indicate significant differences among density treatments (p < 0.05).
x | y | 方程 Equation | 参数 Parameter | r | p | |
---|---|---|---|---|---|---|
a | b | |||||
密度 Density | 株高 Plant height | L | 35.72 | 0.06 | 0.85 | <0.001 |
叶片长 Leaf blade length | L | 17.05 | 0.03 | 0.92 | <0.001 | |
叶片数 Number of leaves | L | 38.34 | -0.37 | -0.96 | <0.001 | |
鳞茎直径 Bulb diameter | L | 6.95 | -0.01 | -0.84 | <0.001 | |
分蘖数 Number of tillers | L | 11.67 | -0.01 | -0.24 | 0.40 | |
分蘖重 Weight per tiller | P | 70.65 | -0.98 | -0.99 | <0.001 | |
根生物量 Root biomass | P | 22.14 | -0.78 | -0.98 | <0.001 | |
鳞茎生物量 Bulb biomass | P | 1 766.50 | -1.14 | -0.98 | <0.001 | |
鞘生物量 Sheath biomass | P | 12.50 | -0.49 | -0.92 | <0.001 | |
叶片生物量 Leaf blade biomass | P | 642.22 | -1.03 | -0.99 | <0.001 | |
地下生物量 Below-ground biomass | P | 1 855.60 | -1.13 | -0.97 | <0.001 | |
个体生物量 Individual biomass | P | 1 517.60 | -0.98 | -0.99 | <0.001 | |
地上生物量 Above-ground biomass | P | 608.47 | -0.95 | -0.99 | <0.001 |
表1 红葱个体各数量性状与植株密度之间关系的拟合模型
Table 1 Simulated models on relationships between quantitative characters and plant density of Allium cepa var. proliferum
x | y | 方程 Equation | 参数 Parameter | r | p | |
---|---|---|---|---|---|---|
a | b | |||||
密度 Density | 株高 Plant height | L | 35.72 | 0.06 | 0.85 | <0.001 |
叶片长 Leaf blade length | L | 17.05 | 0.03 | 0.92 | <0.001 | |
叶片数 Number of leaves | L | 38.34 | -0.37 | -0.96 | <0.001 | |
鳞茎直径 Bulb diameter | L | 6.95 | -0.01 | -0.84 | <0.001 | |
分蘖数 Number of tillers | L | 11.67 | -0.01 | -0.24 | 0.40 | |
分蘖重 Weight per tiller | P | 70.65 | -0.98 | -0.99 | <0.001 | |
根生物量 Root biomass | P | 22.14 | -0.78 | -0.98 | <0.001 | |
鳞茎生物量 Bulb biomass | P | 1 766.50 | -1.14 | -0.98 | <0.001 | |
鞘生物量 Sheath biomass | P | 12.50 | -0.49 | -0.92 | <0.001 | |
叶片生物量 Leaf blade biomass | P | 642.22 | -1.03 | -0.99 | <0.001 | |
地下生物量 Below-ground biomass | P | 1 855.60 | -1.13 | -0.97 | <0.001 | |
个体生物量 Individual biomass | P | 1 517.60 | -0.98 | -0.99 | <0.001 | |
地上生物量 Above-ground biomass | P | 608.47 | -0.95 | -0.99 | <0.001 |
因变量 Dependent variable | 自变量 Independent variable | 分析类型 Analysis type | F | p | R2 |
---|---|---|---|---|---|
根生物量 Root biomass | 密度 Density | 方差分析 ANOVA | 19.4 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 4.4 | 0.031 | 0.86 | |
个体生物量 Individual biomass | 2.3 | 0.161 | |||
鳞茎生物量 Bulb biomass | 密度 Density | 方差分析 ANOVA | 2 651.7 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 82.8 | <0.001 | 1.000 | |
个体生物量 Individual biomass | 45.4 | <0.001 | |||
鞘生物量 Sheath biomass | 密度 Density | 方差分析 ANOVA | 18.3 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 0.6 | 0.696 | 0.833 | |
个体生物量 Individual biomass | 1.1 | 0.326 | |||
叶片生物量 Leaf blade biomass | 密度 Density | 方差分析 ANOVA | 302.3 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 16.8 | <0.001 | 0.989 | |
个体生物量 Individual biomass | 1.1 | 0.326 | |||
个体生物量 Individual biomass | 密度 Density | 方差分析 ANOVA | 3 241.3 | <0.001 | 0.996 |
地上生物量 Above-ground biomass | 密度 Density | 方差分析 ANOVA | 2 386.7 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 77.5 | <0.001 | 0.998 | |
个体生物量 Individual biomass | 0.1 | 0.725 | |||
地下生物量 Below-ground biomass | 密度 Density | 方差分析 ANOVA | 1 795.1 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 77.4 | <0.001 | 1.000 | |
个体生物量 Individual biomass | 95.7 | <0.001 |
表2 不同密度对红葱个体地上和地下各部分平均生物量影响的单因素方差分析与协方差分析
Table 2 One-way ANOVA and ANCOVA of mean biomass of above- and below-ground parts of Allium cepa var. proliferum under different densities
因变量 Dependent variable | 自变量 Independent variable | 分析类型 Analysis type | F | p | R2 |
---|---|---|---|---|---|
根生物量 Root biomass | 密度 Density | 方差分析 ANOVA | 19.4 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 4.4 | 0.031 | 0.86 | |
个体生物量 Individual biomass | 2.3 | 0.161 | |||
鳞茎生物量 Bulb biomass | 密度 Density | 方差分析 ANOVA | 2 651.7 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 82.8 | <0.001 | 1.000 | |
个体生物量 Individual biomass | 45.4 | <0.001 | |||
鞘生物量 Sheath biomass | 密度 Density | 方差分析 ANOVA | 18.3 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 0.6 | 0.696 | 0.833 | |
个体生物量 Individual biomass | 1.1 | 0.326 | |||
叶片生物量 Leaf blade biomass | 密度 Density | 方差分析 ANOVA | 302.3 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 16.8 | <0.001 | 0.989 | |
个体生物量 Individual biomass | 1.1 | 0.326 | |||
个体生物量 Individual biomass | 密度 Density | 方差分析 ANOVA | 3 241.3 | <0.001 | 0.996 |
地上生物量 Above-ground biomass | 密度 Density | 方差分析 ANOVA | 2 386.7 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 77.5 | <0.001 | 0.998 | |
个体生物量 Individual biomass | 0.1 | 0.725 | |||
地下生物量 Below-ground biomass | 密度 Density | 方差分析 ANOVA | 1 795.1 | <0.001 | |
密度 Density | 协方差分析 ANCOVA | 77.4 | <0.001 | 1.000 | |
个体生物量 Individual biomass | 95.7 | <0.001 |
图2 植株密度对红葱各构件(根、鳞茎、鞘和叶片)生物量的影响(平均值±标准误差)。不同小写字母表示相同构件在不同密度处理下差异显著(p < 0.05)。
Fig. 2 Effects of plant density on mean biomass of modules (root, bulb, sheath and leaf blade) for Allium cepa var. proliferum (mean ± SE). Different lowercase letters indicate significant differences of different density treatments for identical module (p < 0.05).
图3 植株密度对红葱各构件生物量分配的影响(平均值±标准误差)。不同小写字母表示相同构件在不同密度处理下差异显著(p < 0.05)。
Fig. 3 Effects of plant density on biomass allocation of Allium cepa var. proliferum modules (mean ± SE). Different lowercase letters indicate significant differences of different density treatments for identical module (p < 0.05).
[1] |
Antonovics J, Levin DA (1980). The ecological and genetic consequences of density-dependent regulation in plants. Annual Review of Ecology and Systematics, 11, 411-452.
DOI URL |
[2] |
Arenas F, Viejo RM, Fernández C (2002). Density-dependent regulation in an invasive seaweed: responses at plant and modular levels. Journal of Ecology, 90, 820-829.
DOI URL |
[3] |
Bonser SP, Aarssen LW (2003). Allometry and development in herbaceous plants: functional responses of meristem allocation to light and nutrient availability. American Journal of Botany, 90, 404-412.
DOI URL PMID |
[4] |
Cheplick GP (2006). A modular approach to biomass allocation in an invasive annual ( Microstegium vimineum; Poaceae). American Journal of Botany, 93, 539-545.
DOI URL PMID |
[5] |
Cipollini DF, Schultz JC (1999). Exploring cost constraints on stem elongation in plants using phenotypic manipulation. The American Naturalist, 153, 236-242.
DOI URL PMID |
[6] |
Damuth J (1981). Population density and body size in mammals. Nature, 290, 699-700.
DOI URL |
[7] |
Dudley SA, Schmitt J (1996). Testing the adaptive plasticity hypothesis: density-dependent selection on manipulated stem length in Impatiens capensis. The American Naturalist, 147, 445-456.
DOI URL |
[8] |
Enquist BJ, Brown JH, West GB (1999). Plant energetics and population density. Nature, 395, 163-165.
DOI URL |
[9] |
Enquist BJ, Niklas KJ (2001). Invariant scaling relations across tree-dominated communities. Nature, 410, 655-660.
DOI URL PMID |
[10] | Gaston KJ, Blackburn T (2000). Pattern and Process in Macroecology. lackwell Science, Oxford. |
[11] |
Gillis PR, Ratkowsky DA (1978). The behaviour of estimators of the parameters of various yield-density relationships. Biometrics, 34, 191-198.
DOI URL |
[12] |
Harper JL (1967). A Darwinian approach to plant ecology. Journal of Ecology, 55, 247-270.
DOI URL |
[13] | Harper JL (1977). Population Biology of Plants. Academic Press, London. |
[14] |
Hutchings MJ (1979). Weight-density relationships in ramet populations of clonal perennial herbs, with special reference to the -3/2 power law. Journal of Ecology, 67, 21-33.
DOI URL |
[15] | Hutchings MJ (1983). Ecology’s law in search of a theory. New Scientist, 98, 765-767. |
[16] |
Kays S, Harper JL (1974). The regulation of plant and tiller density in a grass sward. Journal of Ecology, 62, 97-105.
DOI URL |
[17] | Kira T, Ogawa H, Sakazaki N (1953). Intraspecific competition among higher plants. I. Competition-yield-density interrelationships in regularly dispersed populations. Journal of the Institute of Polytechnics Osaka City University, Series D, 7, 1-14. |
[18] |
Kerr G (2003). Effects of spacing on the early growth of planted Fraxinus excelsior L. Canadian Journal of Forest Research, 33, 1196-1207.
DOI URL |
[19] |
Lawton JH (1989). What is the relationship between population density and body size in animals? Oikos, 55, 429-534.
DOI URL |
[20] |
Li B, Watkinson AR, Hara T (1996). Dynamics of competition in populations of carrot ( Daucus carota). Annals of Botany, 78, 203-214.
DOI URL |
[21] | Li XL (李雪林), Zhang AF (张爱峰), Wu ZX (吴忠祥), Zhao YL (赵燕良) (2001). Characteristic investigation on community density restrain of Elymus sibiricus. Qinghai Prataculture (青海草业), 10(2), 9-12. (in Chinese with English abstract). |
[22] |
Lonsdale WM, Watkinson AR (1983). Plant geometry and self-thinning. Journal of Ecology, 71, 285-297.
DOI URL |
[23] | Niklas KJ, Midgley JJ, Enquist BJ (2003). A general model for mass-growth-density relations across tree-dominated communities. Evolutionary Ecology Research, 5, 459-468. |
[24] |
Ogawa K (2005). Relationships between mean shoot and root masses and density in an overcrowded population of hinoki (Chamaecyparis obtusa (Sieb. et Zucc.) Endl.) seedlings. Forest Ecology and Management, 213, 391-398.
DOI URL |
[25] | Preston KA, Ackerly DD (2004). The Evolution of Allometry in Modular Organisms. Oxford University Press, New York. |
[26] | Sachs T (1999). ‘Node counting’: an internal control of balanced vegetative and reproductive development. Plant, Cell & Environment, 22, 757-766. |
[27] |
Schmitt J, McCormac AC, Smith H (1995). A test of the adaptive plasticity hypothesis using transgenic and mutant plants disabled in phytochrome-mediated elongation responses to neighbors. The American Naturalist, 146, 937-953.
DOI URL |
[28] | Silvertown J, Charlesworth D (2001). Introduction to Plant Population Biology. Blackwell, London. |
[29] | Sun ZR (孙志蓉), Zhai MP (翟明普), Wang WQ (王文全) , Li YR (李玉蓉) (2007). Effects of density on seedling growth and glycyrrhizinic acid content in Glycyrrhiza uralensis. China Journal of Chinese Materia Medica (中国中药杂志), 32, 2222-2227. (in Chinese with English abstract) |
[30] | Vuorisalo T, Mutikainen P (1999). Modularity and Plant Life Histories. Kluwer, Dordrecht, The Netherlands. |
[31] |
Watkinson AR (1980). Density-dependence in single-species populations of plants. Journal of Theoretical Biology, 83, 345-357.
DOI URL |
[32] |
Watkinson AR (1984). Yield-density relationships: the influence of resource availability on growth and self-thinning in populations of Vulpia fasciculata. Annals of Botany, 53, 469-482.
DOI URL |
[33] |
Weiner J, Berntson GM, Thomas SC (1990). Competition and growth form in a woodland annual. Journal of Ecology, 78, 459-469.
DOI URL |
[34] |
Weiner J, Fishman L (1994). Competition and allometry in Kochia scoparia. Annals of Botany, 73, 263-271.
DOI URL |
[35] |
Weiner J, Thomas SC (1986). Size variability and competition in plant monocultures. Oikos, 47, 211-222.
DOI URL |
[36] |
Weiner J, Thomas SC (1992). Competition and allometry in three species of annual plants. Ecology, 73, 648-656.
DOI URL |
[37] | West-Eberhard MJ (2003). Developmental Plasticity and Evolution. Oxford University Press, New York. |
[38] | Westoby M (1984). The self-thinning rule. Advance in Ecological Research, 14, 167-225. |
[39] |
White J (1979). The plant as a metapopulation. Annual Review of Ecology and Systematics, 10, 109-145.
DOI URL |
[40] |
White J, Harper JL (1970). Correlated changes in plant size and number in plant populations. Journal of Ecology, 58, 467-485.
DOI URL |
[41] |
Xue L, Hagihara A (2008). Density effects on organs in self-thinning Pinus densiflora Sieb. et Zucc. stands. Ecological Research, 23, 689-695.
DOI URL |
[42] | Yang YF (杨允菲), Fu LQ (傅林谦) (1997). Density dependence of Phalaris aruandinacea clonal population on middel mountain region of subtropical zone of China. Chinese Journal of Applied Ecology (应用生态学报), 8, 77-82. (in Chinese with English abstract) |
[43] | Yoda K, Kira T, Ogawa H, Hozumi K (1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions. Journal of the Institute of Polytechnics, Osaka City University, Series D, 14, 107-129. |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[3] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[8] | 苏炜, 陈平, 吴婷, 刘岳, 宋雨婷, 刘旭军, 刘菊秀. 氮添加与干季延长对降香黄檀幼苗非结构性碳水化合物、养分与生物量的影响[J]. 植物生态学报, 2023, 47(8): 1094-1104. |
[9] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[10] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[11] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[12] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[13] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[14] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[15] | 郝晴, 黄昌. 森林地上生物量遥感估算研究综述[J]. 植物生态学报, 2023, 47(10): 1356-1374. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19