植物生态学报 ›› 2012, Vol. 36 ›› Issue (8): 841-848.DOI: 10.3724/SP.J.1258.2012.00841
所属专题: 青藏高原植物生态学:生理生态学
收稿日期:
2012-03-16
接受日期:
2012-06-27
出版日期:
2012-03-16
发布日期:
2012-08-21
通讯作者:
王彦荣
作者简介:
* (E-mail: yrwang@lzu.edu.cn)
HU Xiao-Wen, WANG Juan, WANG Yan-Rong*()
Received:
2012-03-16
Accepted:
2012-06-27
Online:
2012-03-16
Published:
2012-08-21
Contact:
WANG Yan-Rong
摘要:
以青藏高原野豌豆属窄叶野豌豆(Vicia angustifolia)、山野豌豆(V. amoena)、歪头菜(V. unijuga) 3种野生植物与一种当地栽培植物救荒野豌豆(箭筈豌豆) (V. sativa) ‘兰箭3号’种子为材料, 在5、10、15、20、25及30 ℃下进行萌发实验, 应用种子萌发的积温模型对上述4种植物萌发对温度的响应特征进行了比较分析。结果表明: 1)基于萌发速率(1/Tg)对种子萌发温度最低温Tb值的估计受萌发率(g)的影响较小; 与此不同, 除‘兰箭3号’种子外, 对萌发最高温Tc值的估计, 受到g的显著影响。 这表明种群内所有种子个体萌发的Tb值相对恒定, 但Tc值在有些物种中变异较大; 2)基于重复概率单位回归分析估计的种子萌发Tb值与基于萌发速率估计的值较为接近; 而由此方法估计的Tc值则与萌发率为50%时的估计值较为接近; 3)相比多年生豆科植物歪头菜和山野豌豆, 一年生豆科植物箭筈豌豆‘兰箭3号’与窄叶野豌豆具有相对较低的Tb与Tc值; 4)积温模型可准确地预测休眠破除后豆科植物种子在不同温度条件下的萌发进程。
胡小文, 王娟, 王彦荣. 野豌豆属4种植物种子萌发的积温模型分析. 植物生态学报, 2012, 36(8): 841-848. DOI: 10.3724/SP.J.1258.2012.00841
HU Xiao-Wen, WANG Juan, WANG Yan-Rong. Thermal time model analysis for seed germination of four Vicia species. Chinese Journal of Plant Ecology, 2012, 36(8): 841-848. DOI: 10.3724/SP.J.1258.2012.00841
种名 Species | 采收时间 Harvest time | 产地 Collection site | 生活型 Life form | 硬实率 Hardseededness (%) | 千粒重 1 000 seeds weight (g) |
---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 2010 | 甘肃夏河 Xiahe, Gansu | 一年或两年生 Annual or biennial | 91 | 20.5 |
山野豌豆 V. amoena | 2011 | 甘肃夏河 Xiahe, Gansu | 多年生 Perennial | 90 | 20.3 |
歪头菜 V. unijuga | 2010 | 甘肃夏河 Xiahe, Gansu | 多年生 Perennial | 90 | 10.3 |
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | 2010 | 甘肃夏河 Xiahe, Gansu | 一年或两年生 Annual or biennial | 0 | 68.5 |
表1 供试种子基本信息
Table 1 Basic information of testing seed
种名 Species | 采收时间 Harvest time | 产地 Collection site | 生活型 Life form | 硬实率 Hardseededness (%) | 千粒重 1 000 seeds weight (g) |
---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 2010 | 甘肃夏河 Xiahe, Gansu | 一年或两年生 Annual or biennial | 91 | 20.5 |
山野豌豆 V. amoena | 2011 | 甘肃夏河 Xiahe, Gansu | 多年生 Perennial | 90 | 20.3 |
歪头菜 V. unijuga | 2010 | 甘肃夏河 Xiahe, Gansu | 多年生 Perennial | 90 | 10.3 |
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | 2010 | 甘肃夏河 Xiahe, Gansu | 一年或两年生 Annual or biennial | 0 | 68.5 |
图1 种子萌发速率(1/tg)与萌发温度的线性关系。A, 窄叶野豌豆。B, 山野豌豆。C, 歪头菜。D, ‘兰箭3号’。
Fig. 1 Linear regression of germination rate (1/tg) as a function of temperature. A, Vicia angustifolia. B, V. amoena. C, V. unijuga. D, V. sativa cv. ‘Lanjian 3’.
种 Species | Tb (℃) | To (℃) | Tc (℃) | 回归方程 Regression equation | R2 | δ | θT (°C·d) |
---|---|---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 0.43 | 19.64 | 30.53 | y = 0.0315x - 0.0134(Tb) | 1.00 | 0.72 | 31.70 |
y = -0.0556x + 1.6975(Tc) | 0.95 | 6.95 | 16.30 | ||||
山野豌豆 V. amoena | 3.29 | 19.84 | 37.17 | y = 0.0287x - 0.0944(Tb) | 1.00 | 1.23 | 34.88 |
y = -0.0274x + 1.0184(Tc) | 0.99 | 0.95 | 35.62 | ||||
歪头菜 V. unijuga | 2.44 | 20.09 | 37.37 | y = 0.028x - 0.0684(Tb) | 0.99 | 1.26 | 35.88 |
y = -0.0286x + 1.0687(Tc) | 0.98 | 2.00 | 35.37 | ||||
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | -0.48 | 16.05 | 31.66 | y = 0.0281x + 0.0135(Tb) | 0.93 | 5.06 | 35.67 |
y = -0.0297x + 0.941(Tc) | 0.94 | 4.43 | 35.14 |
表2 基于T50与萌发温度回归分析估计的4种植物种子萌发的温度阈值
Table 2 Estimation of temperature threshold value with a linear regression of seed germination rate 1/t50 as a function of temperature in four Vicia species
种 Species | Tb (℃) | To (℃) | Tc (℃) | 回归方程 Regression equation | R2 | δ | θT (°C·d) |
---|---|---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 0.43 | 19.64 | 30.53 | y = 0.0315x - 0.0134(Tb) | 1.00 | 0.72 | 31.70 |
y = -0.0556x + 1.6975(Tc) | 0.95 | 6.95 | 16.30 | ||||
山野豌豆 V. amoena | 3.29 | 19.84 | 37.17 | y = 0.0287x - 0.0944(Tb) | 1.00 | 1.23 | 34.88 |
y = -0.0274x + 1.0184(Tc) | 0.99 | 0.95 | 35.62 | ||||
歪头菜 V. unijuga | 2.44 | 20.09 | 37.37 | y = 0.028x - 0.0684(Tb) | 0.99 | 1.26 | 35.88 |
y = -0.0286x + 1.0687(Tc) | 0.98 | 2.00 | 35.37 | ||||
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | -0.48 | 16.05 | 31.66 | y = 0.0281x + 0.0135(Tb) | 0.93 | 5.06 | 35.67 |
y = -0.0297x + 0.941(Tc) | 0.94 | 4.43 | 35.14 |
种 Species | Tb (℃) | Tc (℃) | 回归方程 Regression equation | R2 | δ | θT (°C·d) |
---|---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 0.0 | 32.5 | y = 2.2063lnx - 7.7004(Tb) | 0.84 | 0.45 | 32.8 |
y = 0.7734lnx - 2.4399(Tc) | 0.79 | 1.29 | 23.4 | |||
山野豌豆 V. amoena | 3.0 | 37.0 | y = 3.6854lnx - 13.428(Tb) | 0.89 | 0.27 | 38.2 |
y = 2.8209lnx - 10.105(Tc) | 0.91 | 0.35 | 35.0 | |||
歪头菜 V. unijuga | 2.0 | 37.0 | y = 4.3563lnx - 16.095(Tb) | 0.91 | 0.23 | 40.2 |
y = 3.2947lnx - 11.701(Tc) | 0.95 | 0.30 | 34.9 | |||
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | -2.0 | 31.0 | y = 1.2441lnx - 4.5295(Tb) | 0.93 | 0.80 | 38.1 |
y = 0.9857lnx - 3.2453(Tc) | 0.97 | 1.02 | 26.9 |
表3 基于Probit回归估计的萌发温度阈值
Table 3 Estimation of temperature threshold value with repeated Probit analysis in four Vicia species
种 Species | Tb (℃) | Tc (℃) | 回归方程 Regression equation | R2 | δ | θT (°C·d) |
---|---|---|---|---|---|---|
窄叶野豌豆 Vicia angustifolia | 0.0 | 32.5 | y = 2.2063lnx - 7.7004(Tb) | 0.84 | 0.45 | 32.8 |
y = 0.7734lnx - 2.4399(Tc) | 0.79 | 1.29 | 23.4 | |||
山野豌豆 V. amoena | 3.0 | 37.0 | y = 3.6854lnx - 13.428(Tb) | 0.89 | 0.27 | 38.2 |
y = 2.8209lnx - 10.105(Tc) | 0.91 | 0.35 | 35.0 | |||
歪头菜 V. unijuga | 2.0 | 37.0 | y = 4.3563lnx - 16.095(Tb) | 0.91 | 0.23 | 40.2 |
y = 3.2947lnx - 11.701(Tc) | 0.95 | 0.30 | 34.9 | |||
‘兰箭3号’ V. sativa cv. ‘Lanjian 3’ | -2.0 | 31.0 | y = 1.2441lnx - 4.5295(Tb) | 0.93 | 0.80 | 38.1 |
y = 0.9857lnx - 3.2453(Tc) | 0.97 | 1.02 | 26.9 |
图2 温度对4种野豌豆属植物种子萌发进程的影响。 A, 窄叶野豌豆。B, 山野豌豆。C, 歪头菜。D, ‘兰箭3号’。
Fig. 2 Effect of temperature on observed (symbols) and fitted (lines) for four Vicia species germination. A, Vicia angustifolia. B, V. amoena. C, V. unijuga. D, V. sativa cv. ‘Lanjian 3’.
[1] | Al-Ahmadi MJ, Kafi M (2007). Cardinal temperatures for germination of Kochia scoparia (L.). Journal of Arid Environments, 68, 308-314. |
[2] | Alvarado V, Bradford KJ (2002). A hydrothermal time model explains the cardinal temperatures for seed germination. Plant, Cell & Environment, 25, 1061-1069. |
[3] |
Angus JF, Cunningham RB, Moncur MW, Mackenzie DH (1981). Phasic development in field crops. I. Thermal response in the seedling phase. Field Crops Research, 3, 365-378.
DOI URL |
[4] | Baskin CC, Baskin JM (1998). Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. Academic Press, San Diego, USA. |
[5] | Bewley JD, Black M (1994). Seeds: Physiology of Development and Germination 2nd edn. Plenum Press, New York. |
[6] |
Bradford KJ (2002). Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Science, 50, 248-260.
DOI URL |
[7] |
Brown RF, Mayer DG (1988). Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Annals of Botany, 61, 127-138.
DOI URL |
[8] | Cheng ZY, Bradford KJ (1999). Hydrothermal time analysis of tomato seed germination responses to priming treatments. Journal of Experimental Botany, 50, 89-99. |
[9] | Colbach N, Chauvel B, Dürr C, Richard G (2002). Effect of environmental conditions on Alopecurus myosuroides germination. I. Effect of temperature and light. Weed Research, 42, 210-221. |
[10] | Covell S, Ellis RH, Roberts EH, Summerfield RJ (1986). The influence of temperature on seed germination rate in grain legumes. I. A comparison of chickpea, lentil, soybean and cowpea at constant temperatures. Journal of Experimental Botany, 37, 705-715. |
[11] |
Ellis RH, Butcher PD (1988). The effects of priming and ‘natural’ differences in quality amongst onion seed lots on the response of the rate of germination to temperature and the identification of the characteristics under genotypic control. Journal of Experimental Botany, 39, 935-950.
DOI URL |
[12] | Ellis RH, Covell S, Roberts EH, Summerfield RJ (1986). The influence of temperature on seed germination rate in grain legumes. II. Intraspecific variation in chickpea (Cicer arietinum L.) at constant temperatures. Journal of Experimental Botany, 37, 1503-1515. |
[13] | Ellis RH, Simon G, Covell S (1987). The influence of temperature on seed germination rate in grain legumes. III. A comparison of five faba bean genotypes at constant temperatures using a new screening method. Journal of Experimental Botany, 38, 1033-1043. |
[14] | Garcia-Huidobro J, Monteith JL, Squire GR (1982). Time, temperature and germination of Pearl Millet (Pennisetum typhoides S. & H.) I. Constant temperature. Journal of Experimental Botany, 33, 288-296. |
[15] | Hardegree SP (2006). Predicting germination response to temperature. I. Cardinal-temperature models and subpopulation-specific regression. Annals of Botany, 97, 1115-1125. |
[16] | Hardegree SP, Winstral AH (2006). Predicting germination response to temperature. II. Three-dimensional regression, statistical gridding and iterative-probit optimization using measured and interpolated-subpopulation data. Annals of Botany, 98, 403-410. |
[17] | Phelps K, Finch-Savage WE (1997). A statistical perspective on threshold type germination models. In: Ellis RH, Black M, Murdoch AJ, Hong TD eds. Basic and Applied Aspects of Seed Biology. Kluwer Academic Publishers, London. 361-368. |
[18] | Qiu J, Bai YG, Fu YB, Wilmshurst JF (2010). Spatial variation in temperature thresholds during seed germination of remnant Festuca hallii populations across the Canadian Prairie. Environmental and Experimental Botany, 67, 479-486. |
[19] |
Steadman KJ, Pritchard HW (2003). Germination of Aesculus hippocastanum seeds following cold-induced dormancy loss can be described in relation to a temperature-dependent reduction in base temperature (Tb) and thermal time. New Phytologist, 161, 415-425.
DOI URL |
[20] | Steinmaus SJ, Prather TS, Holt JS (2000). Estimation of base temperatures for nine weeds species. Journal of Experimental Botany, 51, 275-286. |
[21] | Trudgill DL, Squire GR, Thompson K (2000). A thermal time basis for comparing the germination requirements of some British herbaceous plant. New Phytologist, 145, 107-114. |
[22] | Wang MY (王梅英), Liu W (刘文), Liu K (刘坤), Bu HY (卜海燕) (2011). The base temperature and the thermal time requirement for seed germination of 10 grass species on the eastern Qinghai-Tibet Plateau. Pratacultural Science (草业科学), 28, 983-987. (in Chinese with English abstract) |
[23] | Wang YR, Hanson J (2008). The impact of temperature on seed germination in diverse accessions of 4 wild Vigna species. In: Organizing committee of 2008 IGC/IRC Conference eds. Proceedings of the XXI International Grassland Congress and the VIII International Rangeland Congress (VolumeⅡ). Guangdong People’s Publishing House, Guangzhou. 557. |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 袁涵 钟爱文 刘送平 徐磊 彭焱松. 水毛花种子萌发特性的差异及休眠解除方法[J]. 植物生态学报, 2024, 48(5): 638-650. |
[3] | 王袼, 胡姝娅, 李阳, 陈晓鹏, 李红玉, 董宽虎, 何念鹏, 王常慧. 不同类型草原土壤净氮矿化速率的温度敏感性[J]. 植物生态学报, 2024, 48(4): 523-533. |
[4] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[5] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[6] | 李卫英, 章正仁, 辛雅萱, 王飞, 辛培尧, 高洁. 云南松、思茅松和卡西亚松天然种群间的针叶表型变异[J]. 植物生态学报, 2023, 47(6): 833-846. |
[7] | 夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新. 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023, 47(2): 183-194. |
[8] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[9] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[10] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
[11] | 丛楠, 张扬建, 朱军涛. 北半球中高纬度地区近30年植被春季物候温度敏感性[J]. 植物生态学报, 2022, 46(2): 125-135. |
[12] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤CO2与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[13] | 李强, 黄迎新, 周道玮, 丛山. 土壤氮磷添加下豆科草本植物生物固氮与磷获取策略的权衡机制[J]. 植物生态学报, 2021, 45(3): 286-297. |
[14] | 张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 曹坤芳. 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传[J]. 植物生态学报, 2021, 45(11): 1241-1250. |
[15] | 李绍阳, 马红媛, 赵丹丹, 马梦谣, 亓雯雯. 火烧信号对种子萌发影响的研究进展[J]. 植物生态学报, 2021, 45(11): 1177-1190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19