植物生态学报 ›› 2012, Vol. 36 ›› Issue (8): 849-858.DOI: 10.3724/SP.J.1258.2012.00849
收稿日期:
2011-11-08
接受日期:
2012-04-05
出版日期:
2012-11-08
发布日期:
2012-08-21
通讯作者:
张红香
作者简介:
* E-mail: zhanghongxiang@heigae.ac.cn
ZHANG Hong-Xiang*(), TIAN Yu, ZHOU Dao-Wei, ZHENG Wei, WANG Min-Ling
Received:
2011-11-08
Accepted:
2012-04-05
Online:
2012-11-08
Published:
2012-08-21
Contact:
ZHANG Hong-Xiang
摘要:
为了明确盐对种子发芽影响的渗透效应和离子效应共同作用方式以及量化种子发芽对盐的响应, 以两个大麦(Hordeum vulgare)品种‘Cask’和‘County’为研究对象, 设置4个恒定温度(5、12、20和27 ℃)、5个等渗的NaCl和聚乙二醇(PEG)浓度梯度(-0.45、-0.88、-1.32、-1.76和-2.20 MPa, 蒸馏水作对照), 做常规发芽实验。结果显示: (1)两个品种在NaCl溶液中比在等渗的PEG溶液中发芽率高且发芽速度快; (2) NaCl和PEG分别作为渗透剂计算出的水势模型参数值差异很大, 说明水势模型不能用来描述种子发芽对盐的响应; (3)大麦种子在盐溶液中的发芽速率与盐浓度成显著的负相关直线关系, 因此我们修订了水势模型, 将修订后的模型命名为盐度模型, 用来量化盐对大麦种子发芽的影响。与水势模型计算出的发芽时间相比, 盐度模型计算出的50%种子发芽时间与大麦种子实际发芽时间更接近; (4)大麦种子在等渗的NaCl和PEG溶液中发芽速率差异随着水势降低, 先增加后降低。据此我们提出盐的渗透效应和离子效应共同作用于种子发芽的3种情况: 第一种在低盐条件下, 主要是渗透效应起负作用; 第二种情况在中盐条件下, 渗透效应和离子效应共同起作用, 离子效用的正作用强于渗透效应的负作用; 第三种情况在高盐条件下, 离子效应逐渐开始起离子毒害的负作用。
张红香, 田雨, 周道玮, 郑伟, 王敏玲. 大麦种子对盐的发芽响应模型. 植物生态学报, 2012, 36(8): 849-858. DOI: 10.3724/SP.J.1258.2012.00849
ZHANG Hong-Xiang, TIAN Yu, ZHOU Dao-Wei, ZHENG Wei, WANG Min-Ling. Research on modeling germination response to salinity of barley seeds. Chinese Journal of Plant Ecology, 2012, 36(8): 849-858. DOI: 10.3724/SP.J.1258.2012.00849
图1 两个大麦品种‘Cask’和‘County’在4个温度下等渗的NaCl和聚乙二醇(PEG)溶液处理中的发芽时程。
Fig. 1 Germination courses for two varieties of barley ‘Cask’ and ‘County’ cultured in isotonic NaCl and polyethylene glycol (PEG) solutions at four temperatures.
品种 Variety | 温度 Temperature (℃) | 渗透调节物质 Osmotica | 水势常数 θH (MPa·h) | 最低水势 Ψb (50) (MPa) | 误差 σΨb (MPa) | R2 |
---|---|---|---|---|---|---|
‘Cask’ | 5 | NaCl | 428 | -2.51 | 0.63 | 0.83 |
PEG | 208 | -1.22 | 0.61 | 0.66 | ||
12 | NaCl | 115 | -1.70 | 0.71 | 0.85 | |
PEG | 65 | -0.77 | 0.22 | 0.89 | ||
20 | NaCl | 73 | -1.72 | 1.09 | 0.84 | |
PEG | 52 | -1.23 | 0.64 | 0.68 | ||
27 | NaCl | 36 | -0.56 | 1.21 | 0.73 | |
PEG | 34 | -0.65 | 0.87 | 0.67 | ||
‘County’ | 5 | NaCl | 355 | -2.55 | 0.83 | 0.58 |
PEG | 184 | -1.32 | 0.56 | 0.62 | ||
12 | NaCl | 115 | -1.93 | 1.18 | 0.65 | |
PEG | 63 | -0.86 | 0.55 | 0.57 | ||
20 | NaCl | 36 | -1.35 | 0.72 | 0.73 | |
PEG | 29 | -1.01 | 0.49 | 0.67 | ||
27 | NaCl | 20 | -0.80 | 0.65 | 0.70 | |
PEG | 30 | -1.16 | 0.74 | 0.51 |
表1 两个大麦品种在不同NaCl、聚乙二醇(PEG)及4个温度条件下种子发芽的水势模型参数评估
Table 1 Parameter estimate of hydrotime model for seed germination of two varieties of barley under different salinities, polyethylene glycol (PEG) solutions and four temperatures
品种 Variety | 温度 Temperature (℃) | 渗透调节物质 Osmotica | 水势常数 θH (MPa·h) | 最低水势 Ψb (50) (MPa) | 误差 σΨb (MPa) | R2 |
---|---|---|---|---|---|---|
‘Cask’ | 5 | NaCl | 428 | -2.51 | 0.63 | 0.83 |
PEG | 208 | -1.22 | 0.61 | 0.66 | ||
12 | NaCl | 115 | -1.70 | 0.71 | 0.85 | |
PEG | 65 | -0.77 | 0.22 | 0.89 | ||
20 | NaCl | 73 | -1.72 | 1.09 | 0.84 | |
PEG | 52 | -1.23 | 0.64 | 0.68 | ||
27 | NaCl | 36 | -0.56 | 1.21 | 0.73 | |
PEG | 34 | -0.65 | 0.87 | 0.67 | ||
‘County’ | 5 | NaCl | 355 | -2.55 | 0.83 | 0.58 |
PEG | 184 | -1.32 | 0.56 | 0.62 | ||
12 | NaCl | 115 | -1.93 | 1.18 | 0.65 | |
PEG | 63 | -0.86 | 0.55 | 0.57 | ||
20 | NaCl | 36 | -1.35 | 0.72 | 0.73 | |
PEG | 29 | -1.01 | 0.49 | 0.67 | ||
27 | NaCl | 20 | -0.80 | 0.65 | 0.70 | |
PEG | 30 | -1.16 | 0.74 | 0.51 |
图2 两个大麦品种‘Cask’和‘County’在4个温度下发芽速率与外界盐浓度之间的关系(平均值±标准误差)。
Fig. 2 Germination rate plotted against external salinity concentration for two varieties of barley ‘Cask’ and ‘County’ at four temperatures (mean ± SE).
品种 Cultivar | 温度 Temperature (℃) | 萌发率 Germination (%) | 盐度常数 θS (mmol·L-1·d-1) | 最高盐度 Sm (mmol·L-1) | R2 | p |
---|---|---|---|---|---|---|
‘Cask’ | 5 | 1 | 3 333.3 | 621.3 | 0.99 | 0.000 8 |
50 | 5 000.0 | 712.0 | 0.98 | 0.000 8 | ||
12 | 1 | 833.3 | 552.8 | 0.98 | 0.001 0 | |
50 | 909.1 | 392.6 | 0.98 | 0.093 4 | ||
20 | 1 | 500.0 | 612.4 | 0.99 | 0.000 6 | |
50 | 1 000.0 | 573.0 | 0.99 | 0.039 5 | ||
27 | 1 | 416.7 | 609.6 | 0.99 | 0.000 7 | |
50* | ||||||
‘County’ | 5 | 1 | 3 333.3 | 796.0 | 0.99 | 0.000 3 |
50 | 3 333.3 | 638.0 | 0.94 | 0.006 7 | ||
12 | 1 | 769.2 | 600.3 | 0.96 | 0.003 1 | |
50 | 1 000.0 | 558.5 | 0.89 | 0.015 6 | ||
20 | 1 | 357.1 | 528.9 | 0.96 | 0.003 5 | |
50 | 370.4 | 382.9 | 0.99 | 0.067 2 | ||
27 | 1 | 227.3 | 390.9 | 0.88 | 0.223 7 | |
50* |
表2 两个大麦品种在不同NaCl盐度及4个温度条件下种子发芽的盐度模型参数评估
Table 2 Parameter estimate of salinity model for seed germination of two varieties of barley under different salinities and four temperatures
品种 Cultivar | 温度 Temperature (℃) | 萌发率 Germination (%) | 盐度常数 θS (mmol·L-1·d-1) | 最高盐度 Sm (mmol·L-1) | R2 | p |
---|---|---|---|---|---|---|
‘Cask’ | 5 | 1 | 3 333.3 | 621.3 | 0.99 | 0.000 8 |
50 | 5 000.0 | 712.0 | 0.98 | 0.000 8 | ||
12 | 1 | 833.3 | 552.8 | 0.98 | 0.001 0 | |
50 | 909.1 | 392.6 | 0.98 | 0.093 4 | ||
20 | 1 | 500.0 | 612.4 | 0.99 | 0.000 6 | |
50 | 1 000.0 | 573.0 | 0.99 | 0.039 5 | ||
27 | 1 | 416.7 | 609.6 | 0.99 | 0.000 7 | |
50* | ||||||
‘County’ | 5 | 1 | 3 333.3 | 796.0 | 0.99 | 0.000 3 |
50 | 3 333.3 | 638.0 | 0.94 | 0.006 7 | ||
12 | 1 | 769.2 | 600.3 | 0.96 | 0.003 1 | |
50 | 1 000.0 | 558.5 | 0.89 | 0.015 6 | ||
20 | 1 | 357.1 | 528.9 | 0.96 | 0.003 5 | |
50 | 370.4 | 382.9 | 0.99 | 0.067 2 | ||
27 | 1 | 227.3 | 390.9 | 0.88 | 0.223 7 | |
50* |
图3 水势模型和盐度模型估计的两个大麦品种50%种子发芽时间与实际发芽时间的比较。
Fig. 3 Comparison of germination time between the real data (50% germination) and the data predicted by hydrotime model and salinity model for two varieties of barley.
图4 两个大麦品种‘Cask’和‘County’在4个温度下等渗的NaCl和聚乙二醇(PEG)处理中发芽速率差异与外界水势之间的关系。
Fig. 4 Difference of germination rate between binate iso-osmotic NaCl and polyethylene glycol (PEG) plotted against external water potential for two varieties of barley ‘Cask’ and ‘County’ at four temperatures.
图5 盐对种子发芽影响的3种情况(以品种‘Cask’在5 ℃下的发芽速率为例)。
Fig. 5 Three situations of salt effect on seed germination (germination rate of varieties ‘Cask’ at 5 °C, for example).
[1] | Bradford KJ (1990). A water relations analysis of seed germination rates. Plant Physiology, 94, 840-849. |
[2] | Cao MH (曹满航), Li J (李进), Zhang T (张婷), Zhuang WW (庄伟伟), Feng WJ (冯文娟), Li YP (李茵萍) (2011). Seed germination of Ammodendron argenteum under tem- perature, drought and salt stress. Acta Botanica Boreali- Occidentalia Sinica (西北植物学报), 31, 746-753. (in Chinese with English abstract) |
[3] | Cheng ZY, Bradford KJ (1999). Hydrothermal time analysis of tomato seed germination responses to priming treatments. Journal of Experimental Botany, 50, 89-99. |
[4] | Dodd GL, Donovan LA (1999). Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. American Journal of Botany, 86, 1146-1153. |
[5] | Duan DY (段德玉), Liu XJ (刘小京), Feng FL (冯凤莲), Li CZ (李存桢) (2003). Effect of salinities on seed germination of halophyte Suaeda salsa. Chinese Agricultural Science Bulletin (中国农学通报), 19(6), 168-172. (in Chinese with English abstract) |
[6] | Fricke W, Akhiyarova G, Wei WX, Alexandersson E, Miller A, Kjellbom PO, Richardson A, Wojciechowski T, Schreiber L, Veselov D, Kudoyarova G, Volkov V (2006). The short-term growth response to salt of the developing barley leaf. Journal of Experimental Botany, 57, 1079-1095. |
[7] | Gulzar S, Khan MA (2001). Seed germination of a halophytic grass Aeluropus lagopoides. Annals of Botany, 87, 319-324. |
[8] | Gummerson RJ (1986). The effect of constant temperatures and osmotic potentials on the germination of sugar beet. Journal of Experimental Botany, 37, 729-741. |
[9] | Hegarty TW (1976). Effects of fertilizer on the seedling emergence of vegetable crops. Journal of the Science of Food and Agriculture, 27, 962-968. |
[10] | Kebreab E, Murdoch AJ (1999). Modelling the effects of water stress and temperature on germination rate of Orobanche aegyptiaca seeds. Journal of Experimental Botany, 50, 655-664. |
[11] | Larsen SU, Bailly C, Côme D, Corbineau F (2004). Use of the hydrothermal time model to analyse interacting effects of water and temperature on germination of three grass species. Seed Science Research, 14, 35-50. |
[12] | Li Y (李彦), Zhang YP (张英鹏), Sun M (孙明), Gao BM (高弼模) (2008). Research advance in the effects of salt stress on plant and the mechanism of plant resistance. Chinese Agricultural Science Bulletin (中国农学通报), 24, 258-265. (in Chinese with English abstract) |
[13] | Masuda M, Maki M, Yahara T (1999). Effects of salinity and temperature on seed germination in a Japanese endangered halophyte Triglochin maritimum (Juncaginaceae). Journal of Plant Research, 112, 457-461. |
[14] |
Meyer SE, Allen PS (2009). Predicting seed dormancy loss and germination timing for Bromus tectorum in a semi-arid environment using hydrothermal time models. Seed Science Research, 19, 225-239.
DOI URL |
[15] | Munns R (1993). Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses. Plant, Cell & Environments, 16, 15-24. |
[16] | Neumann P (1997). Salinity resistance and plant growth revisited. Plant, Cell & Environment, 20, 1193-1198. |
[17] | Orozco-Segovia A, González-Zertuche L, Mendoza A, Orozco S (1996). A mathematical model that uses Gaussian distribution to analyze the germination of Manfreda brachystachya (Agavaceae) in a thermogradient. Physiologia Plantarum, 98, 431-438. |
[18] | Qu XX (渠晓霞), Huang ZY (黄振英) (2005). The adaptive strategies of halophyte seed germination. Acta Ecologica Sinica (生态学报), 25, 2389-2398. (in Chinese with English abstract) |
[19] | Rowse HR, Finch-Savage WE (2003). Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytologist, 158, 101-108. |
[20] | Su YQ (苏永全), Lü YC (吕迎春) (2007). Effects of salt stress on plants. Gansu Agricultural Science and Technology (甘肃农业科技), 5(3), 23-27. (in Chinese with English abstract) |
[21] | Tobe K, Zhang LP, Qiu GYY, Shimizu H, Omasa K (2001). Characteristics of seed germination in five non-halophytic Chinese desert shrub species. Journal of Arid Environments, 47, 192-201. |
[22] | Welbaum GE, Tissaoui T, Bradford KJ (1990). Water relations of seed development and germination in muskmelon (Cucumis melo L.). 3. Sensitivity of germination to water potential and abscisic acid during development. Plant Physiology, 92, 1029-1037. |
[23] | Xie DY (谢德意), Wang HP (王惠萍), Wang FX (王付欣), Feng FQ (冯复全) (2000). Effects of cotton seeds germination and seedling growth under salt stress. Seed (种子), ( 3), 10-12. (in Chinese with English abstract) |
[24] | Xu X (许兴), Li SH (李树华), Hui HX (惠红霞), Mi HL (米海莉) (2002). Effect of NaCl stress on growth, chlorophyll content and K+, Na+ absorption of spring wheat seedlings . Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 22, 278-284. (in Chinese with English abstract) |
[25] | Yan SG (阎顺国), Shen YY (沈禹颖) (1996). Effects of ecological factors on salt-tolerance of Puccinellia tenuiflora seeds during germination. Acta Phytoecologica Sinica (植物生态学报), 20, 414-422. (in Chinese with English abstract) |
[26] | Yang SH (杨少辉), Ji J (季静), Wang G (王罡), Song YJ (宋英今) (2006). Effects of salt stress on plants. Molecular Plant Breeding (分子植物育种), 4(S3), 139-142. (in Chinese with English abstract) |
[27] | Zhang HX, Irving LJ, McGill C, Matthew C, Zhou DW, Kemp P (2010). The effects of salinity and osmotic stress on barley germination rate: sodium as an osmotic regulator. Annals of Botany, 106, 1027-1035. |
[28] | Zhao TF (赵檀方), Yan XX (闫先喜), Hu YJ (胡延吉) (1994). Effect of salt stress on barley seed imbibition germination and structure of root tip cells. Barley Science (大麦科学), 41(4), 17-20. (in Chinese) |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 胡蝶 蒋欣琪 戴志聪 陈戴一 张雨 祁珊珊 杜道林. 丛枝菌根真菌提高入侵杂草南美蟛蜞菊对除草剂的耐受性[J]. 植物生态学报, 2024, 48(5): 651-659. |
[4] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[5] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[6] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[7] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[8] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[9] | 马常钦, 黄海龙, 彭政淋, 吴纯泽, 韦庆钰, 贾红涛, 卫星. 水曲柳雌雄株复叶类型及光合功能对不同生境的响应[J]. 植物生态学报, 2023, 47(9): 1287-1297. |
[10] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[11] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[12] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[13] | 李冠军, 陈珑, 余雯静, 苏亲桂, 吴承祯, 苏军, 李键. 固体培养内生真菌对土壤盐胁迫下木麻黄幼苗渗透调节和抗氧化系统的影响[J]. 植物生态学报, 2023, 47(6): 804-821. |
[14] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[15] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 3030
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 2298
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La