植物生态学报 ›› 2009, Vol. 33 ›› Issue (2): 397-404.DOI: 10.3773/j.issn.1005-264x.2009.02.018
刘晓梅1, 方建2, 张婧1, 林吴颖1, 樊廷录3, 冯虎元1,*()
收稿日期:
2008-01-21
接受日期:
2008-09-26
出版日期:
2009-01-21
发布日期:
2009-03-31
通讯作者:
冯虎元
作者简介:
* E-mail: fhy891@163.com基金资助:
LIU Xiao-Mei1, FANG Jian2, ZHANG Jing1, LIN Wu-Ying1, FAN Ting-Lu3, FENG Hu-Yuan1,*()
Received:
2008-01-21
Accepted:
2008-09-26
Online:
2009-01-21
Published:
2009-03-31
Contact:
FENG Hu-Yuan
摘要:
应用微量热法研究了长期轮作下麦田不同土层中的微生物活性, 以及施肥对微生物垂直分布的影响。结果表明, 微生物活性基本随深度的增加而下降; 随着土层加深, 可培养细菌菌落数减少, 且可培养细菌菌落数目与最大时间(Peak time)Pt值(表示从微生物生长开始到达到峰值的时间)呈负相关; 热功率(P)-时间(t)曲线由陡变缓, 由规则变得起伏不定, 侧翼变得更短, 峰高也降低; 不同土层的微生物生长速率常数(Microbial growth rate constant) µ、峰高(Peak height)Ph值变化明显, 基本随深度增加而减小。施肥土样和不施肥土样的曲线形状不同, 特别是上层土样施肥后的曲线明显比不施肥的曲线陡, 侧翼也明显变短; 施肥土样的µ和Ph值都大于不施肥土样, 且施肥土样的Pt都小于对照。这说明, 在不同的土壤深度有不同的微生物群落结构, 长期的施肥处理改变了土壤微生物的垂直分布特征。
刘晓梅, 方建, 张婧, 林吴颖, 樊廷录, 冯虎元. 长期施肥对麦田土壤微生物垂直分布的影响. 植物生态学报, 2009, 33(2): 397-404. DOI: 10.3773/j.issn.1005-264x.2009.02.018
LIU Xiao-Mei, FANG Jian, ZHANG Jing, LIN Wu-Ying, FAN Ting-Lu, FENG Hu-Yuan. EFFECTS OF LONG-TERM FERTILIZATION ON VERTICAL DISTRIBUTION OF MICROORGANISMS IN WHEAT FIELD SOIL. Chinese Journal of Plant Ecology, 2009, 33(2): 397-404. DOI: 10.3773/j.issn.1005-264x.2009.02.018
样品编号 Sample No. | 含水量 Water content (%) | 细菌数目 Bacteria number (×107)(cfu) | lgcfu |
---|---|---|---|
M1 | 14.76 | 3.03 ± 0.13 | 7.48 ± 0.02 a |
M2 | 10.67 | 2.73 ± 0.69 | 7.43 ± 0.12 a |
M3 | 10.29 | 0.85 ± 0.15 | 6.59 ± 0.65 b |
M4 | 8.14 | 2.15 ± 0.38 | 7.33 ± 0.08 a |
M5 | 9.48 | 2.55 ± 0.15 | 7.41 ± 0.03 a |
C1 | 13.11 | 1.75 ± 0.13 | 7.24 ± 0.03 ac |
C2 | 11.59 | 1.55 ± 0.40 | 7.18 ± 0.11 ac |
C3 | 10.83 | 0.83 ± 0.16 | 6.91 ± 0.09 bcd |
C4 | 9.88 | 1.52 ± 0.21 | 7.18 ± 0.06 ac |
C5 | 8.43 | 1.47 ± 0.16 | 7.16 ± 0.05 ac |
表1 土壤含水量和微生物计数
Table 1 Soil water content and the colony number of cultivated bacteria
样品编号 Sample No. | 含水量 Water content (%) | 细菌数目 Bacteria number (×107)(cfu) | lgcfu |
---|---|---|---|
M1 | 14.76 | 3.03 ± 0.13 | 7.48 ± 0.02 a |
M2 | 10.67 | 2.73 ± 0.69 | 7.43 ± 0.12 a |
M3 | 10.29 | 0.85 ± 0.15 | 6.59 ± 0.65 b |
M4 | 8.14 | 2.15 ± 0.38 | 7.33 ± 0.08 a |
M5 | 9.48 | 2.55 ± 0.15 | 7.41 ± 0.03 a |
C1 | 13.11 | 1.75 ± 0.13 | 7.24 ± 0.03 ac |
C2 | 11.59 | 1.55 ± 0.40 | 7.18 ± 0.11 ac |
C3 | 10.83 | 0.83 ± 0.16 | 6.91 ± 0.09 bcd |
C4 | 9.88 | 1.52 ± 0.21 | 7.18 ± 0.06 ac |
C5 | 8.43 | 1.47 ± 0.16 | 7.16 ± 0.05 ac |
图1 土样表层的微生物代谢热功率曲线(5~30 cm) M1、M2、M3、C1、C2、C3: 同表1 See Table 1 P: 测量中微生物生长过程中的热功率 Thermal power of microbial growth in measurement t: 微生物生长的时间 Time of microbial growth in measurement
Fig. 1 Thermal power curves of the microbial metabolism of surface layers of soil samples
图2 土样深层的微生物代谢热功率曲线(35~50 cm) M4、M5、C4、C5: 同表1 See Table 1 P、t: 同图1 See Fig. 1
Fig. 2 Thermal power curves of microbial metabolism of the late deep layers of soil samples (35-50 cm)
样品编号 Sample No. | μ ×10-3 (min-1) | Pt (min) | Ph (μW) | Qt (J·g-1) |
---|---|---|---|---|
M1 | 4.01±0.72a | 592.00±56.51a | 215.18±26.20a | 6.98±1.11a |
M2 | 3.11±0.06b | 647.25±36.42a | 176.86±4.51b | 7.04±0.06a |
M3 | 1.10±0.28c | 1161.33±112.51b | 77.14±4.70c | 8.19±0.08b |
M4 | 1.83±0.01d | 682.75±3.89a | 92.04±2.88cd | 9.00±0.04bc |
M5 | 2.05±0.08d | 680.25±3.18a | 108.97±1.37d | 8.28±0.34b |
C1 | 2.19±0.27d | 879.00±35.34c | 95.90±4.51cd | 7.12±0.32a |
C2 | 2.05±0.21d | 932.25±16.62c | 93.77±7.66cd | 7.83±0.54bd |
C3 | 1.05±0.07c | 1185.00±5.66bd | 79.14±0.71c | 8.21±0.10b |
C4 | 1.20±0.28c | 941.75±4.60c | 79.49±4.19c | 8.19±0.27b |
C5 | 1.00±0.14c | 893.50±4.95c | 76.05±1.48c | 8.53 ±0.37 b |
表2 微生物代谢特征
Table 2 The characteristics of microbial metabolism
样品编号 Sample No. | μ ×10-3 (min-1) | Pt (min) | Ph (μW) | Qt (J·g-1) |
---|---|---|---|---|
M1 | 4.01±0.72a | 592.00±56.51a | 215.18±26.20a | 6.98±1.11a |
M2 | 3.11±0.06b | 647.25±36.42a | 176.86±4.51b | 7.04±0.06a |
M3 | 1.10±0.28c | 1161.33±112.51b | 77.14±4.70c | 8.19±0.08b |
M4 | 1.83±0.01d | 682.75±3.89a | 92.04±2.88cd | 9.00±0.04bc |
M5 | 2.05±0.08d | 680.25±3.18a | 108.97±1.37d | 8.28±0.34b |
C1 | 2.19±0.27d | 879.00±35.34c | 95.90±4.51cd | 7.12±0.32a |
C2 | 2.05±0.21d | 932.25±16.62c | 93.77±7.66cd | 7.83±0.54bd |
C3 | 1.05±0.07c | 1185.00±5.66bd | 79.14±0.71c | 8.21±0.10b |
C4 | 1.20±0.28c | 941.75±4.60c | 79.49±4.19c | 8.19±0.27b |
C5 | 1.00±0.14c | 893.50±4.95c | 76.05±1.48c | 8.53 ±0.37 b |
图3 土壤深度对细菌菌落数(lgcfu)和土壤微生物Pt值的影响 M1、M2、M3、M4、M5、C1、C2、C3、C4、C5: 同表1 See Table 1 Pt: 同表2 See Table 2 lgcfu: 同表1 See Table 1
Fig. 3 Effects of soil depth on bacteria colonies (lgcfu) and soil microbial Pt values
[1] | Barros N, Feijoó S, Balsa R (1997). Comparative study of the microbial activity in different soils by the microcalorimetric method. Thermochimica Acta, 296,53-58. |
[2] | Barros N, Feijóo S, Fernández S (2003). Microcalorimetric determination of the cell specific heat rate in soils: relationship with the soil microbial population and biophysical significance. Thermochimica Acta, 406,161-170. |
[3] | Barros N, Feijoó SS, Simoni JA, Prado AGS, Barboza FD, Airoldi C (1999). Microcalorimetric study of some Amazonian soils. Thermochimica Acta, 328,99-103. |
[4] | Barros N, Airoldi C, Simoni JA, Ramajo B, Espina A, García JR (2006). Calorimetric determination of the effect of ammonium-iron (II) phosphate monohydrate on Rhodic Eutrudox Brazilian soil. Thermochimica Acta, 441,89-95. |
[5] | Bǒlter M (1994). Microcalorimetry and CO2-evolution of soils and lichens from Antarctica. Polar Biology, 7,209-220. |
[6] | Critter SAM, Freitas SS, Airoldi C (2001). Calorimetry versus respirometry for the monitoring of microbial activity in a tropical soil. Applied Soil Ecology, 18,217-227. |
[7] | Critter SAM, Freitas SS, Airoldi C (2002a). Comparison between microorganism counting and a calorimetric method applied to tropical soils. Thermochimica Acta, 394,133-144. |
[8] | Critter SAM, Freitas SS, Airoldi C (2002b). Microbial biomass and microcalorimetric methods in tropical soils. Thermochimica Acta, 394,145-154. |
[9] | Critter SAM, Freitas SS, Airoldi C (2004). Comparison of microbial activity in some Brazilian soils by microcalorimetric and respirometric methods. Thermochimica Acta, 410,35-46. |
[10] | Critter SAM, Simoni JA, Airoldi C (1994). Microcalorimetric study of glucose degradation in some Brazilian soils. Thermochimica Acta, 232,145-154. |
[11] | Degens BP, Schipper LA, Sparling GP, Vukovic MV (2000). Decreases in organic C reserves in soils can reduce the catabolic diversity of soil microbial communities. Soil Biology & Biochemistry, 32,189-196. |
[12] | Fan TL (樊廷录), Zhou GY (周广业), Wang Y (王勇), Ding NP (丁宁平), Gao YF (高育锋), Wang SY (王淑英) (2004). Long-term fertilization on yield increase of winter wheat-maize rotation system in Loess Plateau dryland of Gansu. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 10,127-131. (in Chinese with English abstract) |
[13] | Fan T, Stewart BA, Payne WA, Wang Y, Luo J, Gao Y (2005). Long-term fertilizer and water availability effects on cereal yield and soil chemical properties in Northwest China. Soil Science Society of America Journal, 69,842-855. |
[14] | Fan T, Xu M, Song S, Zhou G, Ding L (2008). Trends in grain yields and soil organic C in a long-term fertilization experiment in the China Loess Plateau. Journal of Plant Nutrition and Soil Science, 171,448-457. |
[15] | Hou XJ (侯晓杰), Wang JK (汪景宽), Li SP (李世朋) (2007). Effects of different fertilization and plastic-mulching on functional diversity of soil microbial community. Acta Ecologica Sinica (生态学报), 27,655-661. (in Chinese with English abstract) |
[16] | Jia ZH (贾志红), Yang ZP (杨珍平), Zhang YQ (张永清), Miao GY (苗果园) (2004). Study on the quantity of three main colony of soil microbe in wheat farmland. Journal of Triticeae Crops(麦类作物学报), 24,53-56. (in Chinese with English abstract) |
[17] |
Koga K, Suehiro Y, Matsuoka ST, Takahashi K (2003). Evaluation of growth activity of microbes in tea field soil using microbial calorimetry. Journal of Bioscience and Bioengineering, 95,429-434.
URL PMID |
[18] | Li XH (李絮花), Yang SX (杨守祥), Yu ZW (于振文), Yu SL (余松烈) (2005). Effects of organic manure application on growth and senescence of root in winter wheat. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 11,467-472. (in Chinese with English abstract) |
[19] | Liu EK (刘恩科), Zhao BQ (赵秉强), Li XY (李秀英), Jiang RB (姜瑞波), Li YT (李燕婷) (2008). Biological properties and enzymatic activity of arable soils affected by long-term different fertilization systems. Journal of Plant Ecology (Chinese Version)(植物生态学报), 32,176-182. (in Chinese with English abstract) |
[20] |
Núňez L, Núňez O, Rodríguez Aňón JA, Castiñeiras JP (2002). The influence of some physicochemical parameters on the microbial growth in soils. Thermochimica Acta, 394,123-131.
DOI URL |
[21] |
Núňez L, Rodríguez-Aňón JA, Proupín-Castiňeiras J, Fernández ON (2006). Microcalorimetric study of changes in the microbial activity in a humic Cambisol after reforestation with Eucalyptus in Galicia (NW Spain ). Soil Biology & Biochemistry, 38,115-124.
DOI URL |
[22] | Peng PQ (彭佩钦), Zhang WJ (张文菊), Tong CL (童成立), Wang XL (王小利), Cai CA (蔡长安) (2005). Vertical distribution of soil organic carbon, nitrogen and microbial biomass C, N at soil profiles in wetlands of Dongting lake flood plain. Journal of Soil and Water Conservation (水土保持学报), 19,49-53. (in Chinese with English abstract) |
[23] |
Prado AGS, Airoldi C (1999). The influence of moisture on microbial activity of soils. Thermochimica Acta, 332,71-74.
DOI URL |
[24] |
Prado AGS, Airoldi C (2000). Effect of the pesticide 2,4-D on microbial activity of the soil monitored by microcalorimetry. Thermochimica Acta, 349,17-22.
DOI URL |
[25] |
Prado AGS, Airoldi C (2002). The toxic effect on soil microbial activity caused by the free or immobilized pesticide diuron. Thermochimica Acta, 394,155-162.
DOI URL |
[26] |
Raubuch M, Beese F (1999). Comparison of microbial properties measured by O2 consumption and microcalorimetry as bioindicators in forest soils. Soil Biology & Biochemistry, 31,949-956.
DOI URL |
[27] |
Sakurai M, Suzuki K, Onodera M, Shinano T, Osaki M (2007). Analysis of bacterial communities in soil by PCR-DGGE targeting protease genes. Soil Biology & Biochemistry, 39,2777-2784.
DOI URL |
[28] | Shao YQ (邵玉琴), Zhao J (赵吉), Bao QH (包青海) (2001). Vertical distribution of soil microbial biomass in the stabilized sand dune of the Hobq desert. Journal of Desert Research (中国沙漠), 21,88-92. (in Chinese with English abstract) |
[29] | Shi GR (史刚荣) (2004). Ecological effects of plant root exudates. Chinese Journal of Ecology (生态学杂志), 23,97-101. (in Chinese with English abstract) |
[30] |
Sigstad EE, Maricel AB, Amoroso MJ, Celina IG (2002). Effect of deforestation on soil microbial activity a worm-composite can improve quality? A microcalorimetric analysis at 25 ℃. Thermochimica Acta, 394,171-178.
DOI URL |
[31] |
Song SY (宋尚有), Wang Y (王勇), Fan TL (樊廷录), Gao YF (高育锋), Tang XM (唐小明), Li SZ (李尚中) (2007). Effect of nitrogen fertilizer on grain yield, quality and water use efficiency of corn in dryland of Loess Plateau. Plant Nutrition and Fertilizer Science (植物营养与肥料学报), 13,387-392. (in Chinese with English abstract)
DOI URL |
[32] |
Yao J, Tian L, Wang YX, Djaha A, Wang F, Chen HL, Su CL, Zhuang RS, Zhou Y, Martin MFC, Bramanti E (2008). Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach. Ecotoxicology and Environmental Safety, 69,289-295.
DOI URL PMID |
[33] | Yi ZG (易志刚), Yi WM (蚁伟民), Ding MM (丁明懋), Zhou LX (周丽霞), Zhang DQ (张德强), Wang XM (王新明) (2006). Vertical distribution of soil organic carbon, soil microbial biomass and soil CO2 concentration in Dinghushan Biosphere Reserve. Ecology and Environment (生态环境), l5,611-615. (in Chinese with English abstract) |
[34] | Zhao J (赵吉), Liao YN (廖仰南), Zhang GZ (张桂枝), Shao YQ (邵玉琴) (1999). Microbial ecology on the grassland ecosystem. Grassland of China (中国草地), 116,57-67. (in Chinese with English abstract) |
[35] |
Zheng SX, Yao J, Zhao B, Yu ZN (2007). Influence of agricultural practices on soil microbial activity measured by microcalorimetry. European Journal of Soil Biology, 43,151-157.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[3] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[4] | 赵小祥, 朱彬彬, 田秋香, 林巧玲, 陈龙, 刘峰. 叶片凋落物分解的主场优势研究进展[J]. 植物生态学报, 2023, 47(5): 597-607. |
[5] | 郑炀, 孙学广, 熊洋阳, 袁贵云, 丁贵杰. 叶际微生物对马尾松凋落针叶分解的影响[J]. 植物生态学报, 2023, 47(5): 687-698. |
[6] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[7] | 李万年, 罗益敏, 黄则月, 杨梅. 望天树人工幼林混交对土壤微生物功能多样性与碳源利用的影响[J]. 植物生态学报, 2022, 46(9): 1109-1124. |
[8] | 吴赞, 彭云峰, 杨贵彪, 李秦鲁, 刘洋, 马黎华, 杨元合, 蒋先军. 青藏高原高寒草地退化对土壤及微生物化学计量特征的影响[J]. 植物生态学报, 2022, 46(4): 461-472. |
[9] | 毛瑾, 朵莹, 邓军, 程杰, 程积民, 彭长辉, 郭梁. 冬季增温和减雪对黄土高原典型草原土壤养分和细菌群落组成的影响[J]. 植物生态学报, 2021, 45(8): 891-902. |
[10] | 姜鑫, 牛克昌. 青藏高原禾草混播对土壤微生物多样性的影响[J]. 植物生态学报, 2021, 45(5): 539-551. |
[11] | 王毅, 孙建, 叶冲冲, 曾涛. 气候因子通过土壤微生物生物量氮促进青藏高原高寒草地地上生态系统功能[J]. 植物生态学报, 2021, 45(5): 434-443. |
[12] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[13] | 罗林, 黄艳, 梁进, 汪恩涛, 胡君, 贺合亮, 赵春章. 西南亚高山针叶林主要树种互作及增温对根区土壤微生物群落的影响[J]. 植物生态学报, 2020, 44(8): 875-884. |
[14] | 付伟, 武慧, 赵爱花, 郝志鹏, 陈保冬. 陆地生态系统氮沉降的生态效应: 研究进展与展望[J]. 植物生态学报, 2020, 44(5): 475-493. |
[15] | 冯兆忠, 李品, 张国友, 李征珍, 平琴, 彭金龙, 刘硕. 二氧化碳浓度升高对陆地生态系统的影响: 问题与展望[J]. 植物生态学报, 2020, 44(5): 461-474. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19