植物生态学报 ›› 2009, Vol. 33 ›› Issue (2): 387-396.DOI: 10.3773/j.issn.1005-264x.2009.02.017
所属专题: 稳定同位素生态学
龚吉蕊1, 黄永梅1, 葛之葳1, 段庆伟1, 尤鑫1, 安然1, 张新时1,2,*()
收稿日期:
2008-03-24
接受日期:
2008-10-09
出版日期:
2009-03-24
发布日期:
2009-03-31
通讯作者:
张新时
作者简介:
* E-mail: xinshiz@yahoo.com基金资助:
GONG Ji-Rui1, HUANG Yong-Mei1, GE Zhi-Wei1, DUAN Qing-Wei1, YOU Xin1, AN Ran1, ZHANG Xin-Shi1,2,*()
Received:
2008-03-24
Accepted:
2008-10-09
Online:
2009-03-24
Published:
2009-03-31
Contact:
ZHANG Xin-Shi
摘要:
以田间持水量的100% (T1, 对照)、70% (T2)、50% (T3)和30% (T4)为4个水分处理梯度, 比较研究了4种不同品系的杂交杨(Populus)——15-29 (P. trichocarpa × P. deltoids)、DN-2 (P. deltoids × P. nigra)、DN-14274 (P. deltoids × P. nigra)和R-270 (P. deltoids × P. nigra)在不同水分处理和不同处理阶段对水分亏缺的反应。结果表明, 4种杂交杨品系对水分亏缺较敏感, 都通过关闭气孔、降低叶面积以有效地调节水分的散失, 降低光合速率、蒸腾、水势, 增加水分利用效率, 改变生物量的分配等一系列生理适应机制以及形态策略, 来应对不同程度的水分亏缺, 只是不同品系的适应程度不同。在生物量分配上, R-270主要降低叶干重, 而其它3个品系的叶、茎和根干重全部降低; 随着水分亏缺的加重, 15-29和R-270的根冠比增加, 根部获得更多的同化物分配, 从而有利于水分的吸收, 增加其抗旱性。DN-2的碳同位素组成δ13与水分利用效率呈显著正相关(r= 0.631, p<0.01)。而R-270的δ13与水分利用效率呈负相关, 但不显著, 只有在处理T4下呈显著负相关(r= -0.732, p<0.01), 表明土壤水分影响了碳同位素的分馏, 不同品系相反的结果表明同位素分馏的遗传变异。与T3和T4相比, T1和T2处理的苗木具有较高的生物量、叶面积、光合速率、蒸腾、水势以及气孔导度, 说明4个杂交杨品系在充足或适当的灌溉条件下具有较高的生产力。在T3和T4处理下, 4个品系表现出不同的生存策略, 但生产力均较低, 因此在干旱胁迫下很难形成高生产力。与DN-2和DN-14274相比, 15-29和R-270对水分胁迫表现出更强的适应性反应, 具有较强的抗旱性, 可用作防护林品种。
龚吉蕊, 黄永梅, 葛之葳, 段庆伟, 尤鑫, 安然, 张新时. 4种杂交杨对土壤水分变化的生态学响应. 植物生态学报, 2009, 33(2): 387-396. DOI: 10.3773/j.issn.1005-264x.2009.02.017
GONG Ji-Rui, HUANG Yong-Mei, GE Zhi-Wei, DUAN Qing-Wei, YOU Xin, AN Ran, ZHANG Xin-Shi. ECOLOGICAL RESPONSES TO SOIL WATER CONTENT IN FOUR HYBRID POPULUS CLONES. Chinese Journal of Plant Ecology, 2009, 33(2): 387-396. DOI: 10.3773/j.issn.1005-264x.2009.02.017
图2 不同土壤含水量下, 4种杂交杨的总生物量、叶面积、叶茎生物量比、冠层下降率、根/冠生物量比 误差棒代表平均值的标准误(SE) Vertical bars on the data points represent ±SE of mean values T1、T2、T3、T4: 分别是田间持水量的100% (对照)、70%、50%和30% 100% (T1), 70% (T2), 50% (T3) and 30% (T4) of soil field water capacity 15-29: Populus trichocarpa×P. deltoids DN-2: P. deltoids×P. nigra DN-14274: P. deltoides×P. nigra R-270: P. deltoides×P. nigra
Fig. 2 The total biomass, leaf area, the biomass ratio of leaf to stem, the rate of canopy decline and the biomass ratio of root to shoot of 4 poplar clones under different soil water contents
图3 4种杂交杨在不同水分处理以及不同处理时间(0、15、36和13 d的恢复)的净光合速率(Pn)、气孔导度(Gs)、清晨水势(Ψpd) 和蒸腾速率(Tr)的变化过程 图注见图2 Notes see Fig.2
Fig. 3 Time course of net photosynthesis rate (Pn), stomatal conductance (Gs), predawn water potential (Ψpd) and transpiration rate (Tr) in the leaves of 4 poplar clones in different water deficit duration (0, 15, 36 and 13 days’ recovery)
图4 4种杂交杨在不同水分处理以及不同处理时间(0、15、36和13 d的恢复)的碳同位素组成(δ13)和水分利用效率(WUE)的变化过程 图注同图2
Fig. 4 Time courses of carbon isotope composition (δ13) and water use efficiency (WUE) in the leaves of 4 poplar clones in different water deficit duration (0, 15, 36 and 13 days’ recovery) Notes see Fig.2
[1] | Aussenac G (2000). Interactions between forest stands and microclimate: eco-physiological aspects and consequences for silviculture. Annals of Forest Science, 57,287-301. |
[2] | Becker M, Nieminen TM, Geremia F (1994). Short-term variations and long-term changes in oak productivity in northeastern France: the role of climate and atmospheric CO2. Annals of Forest Science, 51,477-492. |
[3] | Bray EA (2004). Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. Journal of Experimental Botany, 5,2331-2341. |
[4] | Caldwell M, Chabot BF, Mooney HA (1985). Physiological Ecology of North American Plant Communities. Chapman & Hall, New York, 198-212. |
[5] | Cowan IK (1982). Stomatal physiology and gas exchange in the field. In: Steffen WL ed. Flow and Transport in the Natural Environment: Advances and Applications. Springer-Verlag, Berlin, 160-172. |
[6] | Deng X (邓雄), Li XM (李小明), Zhang XM (张希明) (2002). A study of the gas exchange characteristics of four desert plants. Acta Phytoecologica Sinica (植物生态学报), 26,605-612. (in Chinese with English abstract) |
[7] | Donvan LA, Ehleringer JR (1994). Potential for selection on plants for water-use efficiency as estimated by carbon isotope discrimination. American Journal of Botany, 81,927-935. |
[8] | Farquhar GD, Ehleringer JR, Hubick KT (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40,503-537. |
[9] | Feng YL (冯玉龙), Ju GS (巨关升), Zhu CQ (朱春全) (2003). Responses of photosynthesis and PV parameters to water stress in poplar clone seedling. Scientia Silvae Sinicae(林业科学), 39(3),30-36. (in Chinese with English abstract) |
[10] |
Flexas J, Medrano H (2002). Drought-inhibition of photosynthesis in C3 plants: stomatal and non-stomatal limitations revisited. Annals of Botany, 89,183-189.
URL PMID |
[11] | Gower ST, Vogt KA, Grier CC (1992). Carbon dynamics of Rocky Mountain Douglas-fir: influence of water and nutrient availability. Ecological Monographs, 62,43-65. |
[12] | Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Salekdeh GH (2005). Proteome analysis of sugar beet leaves under drought stress. Proteomics, 5,950-960. |
[13] | Hasiao TC, Acevedo E, Fereres E (1976). Water stress, growth and osmotic adjustment. Philosophical Transactions of the Royal Society of London, 273,479. |
[14] | Hu XS (胡新生), Wang SJ (王世绩) (1997). A possible index for drought tolerance-response lag. Journal of Northeast Forestry University (东北林业大学学报), 25,1-9. (in Chinese with English abstract) |
[15] | Jain SK, Singh P (2000). Economic analysis of industrial agroforestry: poplar ( Populus deltoides) in Uttar Pradesh (India). Agroforestry Systems, 49,255-273. |
[16] | Jia LM (贾黎明), Xing CS (刑场山), Wei YK (韦艳葵), Li YA (李延安), Yang L (杨丽) (2004). The growth and photosynthesis of poplar trees in fast-growing and high yield plantations with subterranean drip irrigation. Journal of Beijing Forestry University(北京林业大学学报), 40,61-67. (in Chinese with English abstract) |
[17] | Ju GS (巨关生), Wu XC (吴晓春) (2000). Comparison oil the transpiration values measured with steady state porometer and other three methods. Forest Research (林业科学研究), 13,360-365. (in Chinese with English abstract) |
[18] |
Kawaguchi R, Girke T, Bray EA, Bailey-Serres J (2004). Differential mRNA translation contributes to gene regulation under non-stress and dehydration stress conditions in Arabidopsis thaliana. The Plant Journal, 38,823-839.
URL PMID |
[19] |
Kreps JA, Wu YJ, Chang HS, Zhu T, Wang X, Harper JF (2002). Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiology, 130,2129-2141.
DOI URL PMID |
[20] | Li CY (1999). Carbon isotope composition, water-use efficiency and biomass productivity of Eucalyptus micritheca populations under different water supplies. Plant and Soil, 214,165-171. |
[21] | Li HJ (李洪建), Chai BF (柴宝峰), Wang MB (王孟本) (2000). Study on the water physio-ecological characteristics of Populus beijingensis. Acta Ecologica Sinica (生态学报), 20,417-422. (in Chinese with English abstract) |
[22] | Liu FJ (刘奉觉), Zheng SK (郑世锴), Ju GS (巨关升) (1991). A study on comparison of measuring water consumption for transpiration in poplar. Scientia Silvae Sinicae(林业科学), 33,117-126. (in Chinese with English abstract) |
[23] | Liu JW (刘建伟), Liu YR (刘雅荣), Wang SJ (王世绩) (1994). Relations between the net photosynthesis and their drought tolerance in six poplar clones. Scientia Silvae Sinicae(林业科学), 30,53-87. (in Chinese with English abstract) |
[24] | Macfarlane C, Adams MA, White DA (2004). Productivity, carbon isotope discrimination and leaf traits of tree of Eucalyptus globules Labill. in relation to water availability. Plant, Cell and Environment, 27,1515-1524. |
[25] | Meinzer FC, Saliendra NZ, Crisosto CH (1992). Carbon isotope discrimination and gas exchange in Coffea arabica during adjustment to different soil moisture regimes. Australian Journal of Plant Physiology, 19,171-184. |
[26] | Pallardy SG, Rhoads JL (1993). Morphological adaptations to drought in seedling of deciduous angiosperms. Canadian Journal of Forest Research, 23,1766-1774. |
[27] | Passioura JB (1996). Drought and drought tolerance. Plant Growth Regulation, 20,79-83. |
[28] | Polle A, Altman A, Jiang XN (2006). Towards genetic engineering for drought tolerance in trees. In: Fladung M, Ewald D eds. Tree Transgenesis: Recent Developments. Springer-Verlag, Berlin, 275-297. |
[29] | Rouhi V, Samson R, Lemeur R, Damme PV (2007). Photosynthetic gas exchange characteristics in three different almond species during drought stress and subsequent recovery. Environmental and Experimental Botany, 59,117-129. |
[30] |
Ruiz-Sa´nchez MC, Domingo R, Torrecillas A (2000). Water stress preconditioning to improve drought resistance in young apricot plants. Plant Science, 156,245-251.
URL PMID |
[31] |
Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002). Proteomic analysis of rice leaves during drought stress and recovery. Proteomics, 2,1131-1145.
URL PMID |
[32] | Sa´nchez-Blanco MJ, Rodrı´guez P, Morales MA, Ortun MF (2002). Comparative growth and water relations of Cistus albidus and Cistus monspeliensis plants during water deficit conditions and recovery. Plant Science, 162,107-113. |
[33] | Singh B, Singh D (2003). Biomass partitioning and gas exchange in Dalbergia sissoo seedlings under water stress. Photosynthetica, 41,407-414. |
[34] | Torrecillas A, Guillaume C, Alarcon JJ (1995). Water stress of two tomato species under water stress and recovery. Plant Science, 105,169-176. |
[35] |
Vera-Estrella R, Barkla BJ, Bohnert HJ, Pantoja O (2004). Novel regulation of aquaporins during osmotic stress. Plant Physiology, 135,2318-2329.
DOI URL PMID |
[36] |
Vinocur B, Altman A (2005). Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology, 16,123-132.
DOI URL PMID |
[37] | Vogel JC (1993). Variability of carbon isotope fractionation during photosynthesis. In: Ehleringer JR, Hall AE, Farpuar GD eds. Stable Isotopes and Plant Carbon Water Relations. Academic Press, San Diego, 29-46. |
[38] | White EH, Abrahamson LP, Gambles P (1988). Experiences with willow as a wood biomass species. In: Klass DL ed. Energy from Biomass and Wastes XII.Institute of Gas Technology, New Orleans, 2,27-44. |
[39] | Xue S (薛崧), Wang PH (汪沛洪), Xu DQ (许大全), Li LR (李立人) (1992). Effects of water stress on CO2 assimilation of two winter wheat cultivars with different drought resistance. Acta Phytophysiologica Sinica (植物生理学报), 8,1-7. (in Chinese with English abstract) |
[40] | Yang JW (杨建伟), Han RL (韩蕊莲), Wei YK (魏宇昆), Sun Q (孙群), Liang ZS (梁宗锁) (2002). Water relation and growth of seabuckthorn and poplar under different soil water content. Acta Botanica Boreali-Occidentalia Sinica(西北植物学报), 22,579-586. (in Chinese with English abstract) |
[41] | Yang JW (杨建伟), Liang ZS (梁宗锁), Han RL (韩蕊莲), Sun Q (孙群), Cui LJ (崔浪军) (2004). Water use efficiency and water consumption characteristics of poplar under soil drought conditions. Acta Phytoecologica Sinica(植物生态学报), 28,630-636. (in Chinese with English abstract) |
[42] | Yin CY (尹春英), Li CY (李春阳) (2003). Advance in reseach on drought resistance of Populus. Chinese Journal of Applied and Environmental Biology (应用与环境生态学报), 9,662-668. (in Chinese with English abstract) |
[43] | Zeng FJ(曾凡江), Song X(宋轩) (2000). Study on characteristics of eco-physiology of four poplars in the Cele Oasis. Journal of Liaoning Forestry Science and Technology (辽宁林业科技), (5),29-31. (in Chinese with English abstract) |
[44] |
Zhang J, Marshall J, Jacquish B (1992). Genetic differentiation in carbon isotope discrimination and gas exchange in Pseudotuga menziesii: a common garden experiment. Oecologia, 93,80-87.
DOI URL PMID |
[45] | Zhang XL, Zhang RG, Li CY (2004). Population difference in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress. Plant Science, 166,791-797. |
[46] | Zhao BZ, Kondo M, Maeda M (2004). Water use efficiency and carbon isotope discrimination in two cultivars of upland rice during different developmental stages under three water regimes. Plant and Soil, 261,61-75. |
[47] | Chu ZW (褚作旺), Sun Y (孙勇), Guo HY (郭洪印), Guo Q (郭全), Yuan HW (袁洪伟) (2003). Investigations of regeneration of lower yield stand poplar. Protection Forest Science and Technology (防护林科技), (3),31-32. (in Chinese with English abstract) |
[1] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[2] | 耿雪琪, 唐亚坤, 王丽娜, 邓旭, 张泽凌, 周莹. 氮添加增加中国陆生植物生物量并降低其氮利用效率[J]. 植物生态学报, 2024, 48(2): 147-157. |
[3] | 杜英东, 袁相洋, 冯兆忠. 不同形态氮对杨树光合特性及生长的影响[J]. 植物生态学报, 2023, 47(3): 348-360. |
[4] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[5] | 薛峰, 江源, 董满宇, 王明昌, 丁新原, 杨显基, 崔明皓, 康慕谊. 不同去趋势方法对基于Dendrometer数据的茎干水分动态分析的影响——以白扦为例[J]. 植物生态学报, 2021, 45(8): 880-890. |
[6] | 王娇, 关欣, 张伟东, 黄苛, 朱睦楠, 杨庆朋. 杉木幼苗生物量分配格局对氮添加的响应[J]. 植物生态学报, 2021, 45(11): 1231-1240. |
[7] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[8] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[9] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[10] | 陈青青, 李德志. 根系隔离条件下的谷子亲缘识别[J]. 植物生态学报, 2015, 39(12): 1188-1197. |
[11] | 潘少安, 彭国全, 杨冬梅. 从叶内生物量分配策略的角度理解叶大小的优化[J]. 植物生态学报, 2015, 39(10): 971-979. |
[12] | 肖遥,陶冶,张元明. 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征[J]. 植物生态学报, 2014, 38(9): 929-940. |
[13] | 张翠萍,孟平,张劲松,万贤崇. 固氮植物绿豆对核桃幼苗生长、叶片气孔气体交换及水力特征的作用[J]. 植物生态学报, 2014, 38(5): 499-506. |
[14] | 毛伟, 李玉霖, 崔夺, 赵学勇, 张铜会, 李玉强. 沙质草地不同生活史植物的生物量分配对氮素和水分添加的响应[J]. 植物生态学报, 2014, 38(2): 125-133. |
[15] | 夏江宝, 张淑勇, 赵自国, 赵艳云, 高源, 谷广义, 孙景宽. 贝壳堤岛旱柳光合效率的土壤水分临界效应及其阈值分级[J]. 植物生态学报, 2013, 37(9): 851-860. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19