植物生态学报 ›› 2021, Vol. 45 ›› Issue (8): 880-890.DOI: 10.17521/cjpe.2021.0025
薛峰, 江源*(), 董满宇, 王明昌, 丁新原, 杨显基, 崔明皓, 康慕谊
收稿日期:
2021-01-19
修回日期:
2021-05-07
出版日期:
2021-08-20
发布日期:
2021-06-04
通讯作者:
江源
作者简介:
* jiangy@bnu.edu.cn基金资助:
XUE Feng, JIANG Yuan*(), DONG Man-Yu, WANG Ming-Chang, DING Xin-Yuan, YANG Xian-Ji, CUI Ming-Hao, KANG Mu-Yi
Received:
2021-01-19
Revised:
2021-05-07
Online:
2021-08-20
Published:
2021-06-04
Contact:
JIANG Yuan
Supported by:
摘要:
树木茎干半径变化记录仪(Dendrometer)监测的高精度数据不仅包括木质部的年内径向生长过程, 还包含由茎干水分的消耗和补充引起的可逆变化。然而, 不同的年内生长去趋势方法获得的茎干水分波动之间的差异性仍缺乏对比研究。基于芦芽山北坡针叶林下限白扦(Picea meyeri) 2015年生长季的茎干半径变化和环境因子的实时监测数据, 使用Gompertz生长模型(GPZ)、线性生长模型(LG)、零生长模型(ZG)、日值法(D)和茎干循环法(SC)模拟并去除茎干年内的生长趋势, 然后提取5种不同类型树木水分缺乏引起的茎干收缩(TWDGPZ、TWDLG、TWDZG、TWDD和TWDSC)以表征茎干水分亏缺, 并进一步对比分析了不同茎干水分亏缺序列对环境中水分状况的响应特征。研究发现: (1)不同去趋势方法计算的茎干水分亏缺的趋势和幅度有所差异, 可聚类为3组: TWDLG和TWDZG、TWDGPZ以及TWDD和TWDSC。同组或聚类距离接近的序列在生长季内每个月份都展现出显著的相关性。然而, TWDLG、TWDZG和TWDGPZ与TWDD和TWDSC在8月份相关性较弱。(2) TWDD和TWDSC与空气饱和水汽压差(VPD)的正相关关系比TWDGPZ、TWDLG和TWDZG更加稳定, 且具有更大的相关系数。5种茎干水分亏缺序列和土壤含水量(SWC)的关系在生长季内变化很大。(3)不同去趋势方法的茎干水分亏缺都随着水分胁迫程度(VPD/SWC)升高而显著增长。当胁迫程度较低时, TWDSC对VPD/SWC的变化最为敏感(R2 = 0.39, p < 0.001), 但是与TWDZG差别不大(R 2 = 0.37, p < 0.001); 当胁迫程度较高时, TWDZG对VPD/SWC的敏感性最高(R 2 = 0.59, p < 0.001)。综合对比来看, 零生长模型是比较适合研究区白扦生长季内茎干水分波动的去趋势方法, 其可为干旱胁迫条件下预测研究区树木的茎干水分动态及特征提供科学 依据。
薛峰, 江源, 董满宇, 王明昌, 丁新原, 杨显基, 崔明皓, 康慕谊. 不同去趋势方法对基于Dendrometer数据的茎干水分动态分析的影响——以白扦为例. 植物生态学报, 2021, 45(8): 880-890. DOI: 10.17521/cjpe.2021.0025
XUE Feng, JIANG Yuan, DONG Man-Yu, WANG Ming-Chang, DING Xin-Yuan, YANG Xian-Ji, CUI Ming-Hao, KANG Mu-Yi. Influence of different de-trending methods on stem water relations of Picea meyeri derived from Dendrometer measurements. Chinese Journal of Plant Ecology, 2021, 45(8): 880-890. DOI: 10.17521/cjpe.2021.0025
图1 气象站记录的山西芦芽山地区2015年月平均气温和月降水量变化与多年平均值(1957-2016年)的对比。
Fig. 1 Comparison of the mean monthly air temperatures and the monthly precipitation for the year 2015 and the 60 a average (1957-2016) of Luya Mountain, Shanxi Province, China.
编号 Tree number | 树高 Tree height (m) | 胸径 Dimeter at breast height (cm) | 冠幅 Crown dimeter (m) |
---|---|---|---|
1 | 8.0 | 14.7 | 2.0 |
2 | 9.0 | 16.9 | 2.7 |
3 | 12.0 | 20.1 | 3.5 |
4 | 9.0 | 18.8 | 2.5 |
表1 山西芦芽山白扦监测样树的基本信息
Table 1 Characteristics of four Picea meyeri sample trees of Luya Mountain, Shanxi Province, China
编号 Tree number | 树高 Tree height (m) | 胸径 Dimeter at breast height (cm) | 冠幅 Crown dimeter (m) |
---|---|---|---|
1 | 8.0 | 14.7 | 2.0 |
2 | 9.0 | 16.9 | 2.7 |
3 | 12.0 | 20.1 | 3.5 |
4 | 9.0 | 18.8 | 2.5 |
图2 山西芦芽山2015年生长季白扦茎干半径变化和不同方法模拟的生长过程。
Fig. 2 Hourly time series of stem radial variations (SRV) and growth process calculated by different detrending approaches for Picea meyeri of Luya Mountain, Shanxi Province, China in the growing season of 2015. DOY, day of the year.
TWDGPZ | TWDLG | TWDZG | TWDD | TWDSC | |
---|---|---|---|---|---|
平均值 Mean (μm) | 100.2 | 328.2 | 262.0 | 126.8 | 144.6 |
标准差 SD (μm) | 108.0 | 155.3 | 159.9 | 82.4 | 90.3 |
最大值 Maximum (μm) | 388.8 | 685.9 | 630.1 | 367.8 | 398.2 |
最大值出现时间 Date of maximum occurrence (DOY) | 241 | 241 | 241 | 133 | 133 |
表2 山西芦芽山白扦不同去趋势的茎干水分亏缺(TWD)的特征参数
Table 2 Main parameters of tree water deficit-induced stem shrinkage (TWD) calculated by different detrending methods of Picea meyeri on Luya Mountain, Shanxi Province, China
TWDGPZ | TWDLG | TWDZG | TWDD | TWDSC | |
---|---|---|---|---|---|
平均值 Mean (μm) | 100.2 | 328.2 | 262.0 | 126.8 | 144.6 |
标准差 SD (μm) | 108.0 | 155.3 | 159.9 | 82.4 | 90.3 |
最大值 Maximum (μm) | 388.8 | 685.9 | 630.1 | 367.8 | 398.2 |
最大值出现时间 Date of maximum occurrence (DOY) | 241 | 241 | 241 | 133 | 133 |
图3 不同去趋势方法计算的山西芦芽山白扦茎干水分亏缺(TWD)。D, 日值法; GPZ, Gompertz生长模型; LG, 线性生长模型; SC, 茎干循环法; ZG, 零生长模型。虚线为平均值。
Fig. 3 Tree water deficit-induced stem shrinkage (TWD) of Picea meyeri on Luya Mountain, Shanxi Province, China, calculated by different detrending approaches. D, daily approach; GPZ, Gompertz model; LG, linear growth model; SC, stem cycle approach; ZG, zero growth model. Dashed lines indicate the average. DOY, day of the year.
图4 山西芦芽山白扦不同去趋势茎干水分亏缺(TWD)序列的聚类分析。D, 日值法; GPZ, Gompertz生长模型; LG, 线性生长模型; SC, 茎干循环法; ZG, 零生长模型。
Fig. 4 Cluster analysis of tree water deficit-induced stem shrinkage (TWD) of Picea meyeri on Luya Mountain, Shanxi Province, China, with different detrending methods. D, daily approach; GPZ, Gompertz model; LG, linear growth model; SC, stem cycle approach; ZG, zero growth model.
图5 山西芦芽山白扦不同去趋势茎干水分亏缺(TWD)在不同月份的相关系数矩阵。D, 日值法; GPZ, Gompertz生长模型; LG, 线性生长模型; SC, 茎干循环法; ZG, 零生长模型。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 5 Correlation matrix of tree water deficit-induced stem shrinkage (TWD) relations of Picea meyeri on Luya Mountain, Shanxi Province, China, developed from different detrending approaches in different months. D, daily approach; GPZ, Gompertz model; LG, linear growth model; SC, stem cycle approach; ZG, zero growth model. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图6 山西芦芽山白扦不同去趋势茎干水分亏缺(TWD)与饱和水汽压差和土壤含水量的滑动相关(31天)。D, 日值法; GPZ, Gompertz生长模型; LG, 线性生长模型; SC, 茎干循环法; ZG, 零生长模型。虚线表示p < 0.05.
Fig. 6 Moving window correlation (31 days) between tree water deficit-induced stem shrinkage (TWD) of Picea meyeri on Luya Mountain, Shanxi Province, China, and vapor pressure (VPD) and soil water content (SWC). D, daily approach; GPZ, Gompertz model; LG, linear growth model; SC, stem cycle approach; ZG, zero growth model. DOY, day of the year. Dotted lines indicate p < 0.05.
图7 山西芦芽山样点环境中水分胁迫因子的季节变化。SWC, 土壤含水量; VPD, 饱和水汽压差。虚线为平均值。
Fig. 7 Seasonal variations of water stress factor at monitoring site on Luya Mountain, Shanxi Province, China. SWC, soil water content; VPD, vapor pressure deficit. DOY, day of the year. The dashed line represents the average.
图8 山西芦芽山白扦不同去趋势茎干水分亏缺(TWD)对环境中水分胁迫因子(VPD/SWC)的敏感性。D, 日值法; GPZ, Gompertz生长模型; LG, 线性生长模型; SC, 茎干循环法; ZG, 零生长模型。SWC, 土壤含水量; VPD, 饱和水汽压差。虚线为VPD/SWC的平均值(2.7 kPa·m3·m-3)。
Fig. 8 Sensitivity of tree water dificit-induced stem shrinkage (TWD) relations of Picea meyeri on Luya Mountain, Shanxi Province, China, with different de-trending methods to water stress factors. D, daily approach; GPZ, Gompertz model; LG, linear growth model; SC, stem cycle approach; ZG, zero growth model. SWC, soil water content; VPD, vapor pressure deficit. The dashed line represents the average of VPD/SWC = 2.7 kPa·m3·m-3.
[1] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics. Springer,New York. |
[2] | De Swaef T, De Schepper V, Vandegehuchte MW, Steppe K (2015). Stem diameter variations as a versatile research tool in ecophysiology. Tree Physiology, 35, 1047-1061. |
[3] | Deslauriers A, Morin H, Urbinati C, Carrer M (2003). Daily weather response of balsam fir (Abies balsamea(L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada). Trees, 17, 477-484. |
[4] | Deslauriers A, Rossi S, Anfodillo T (2007). Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia, 25, 113-124. |
[5] | Deslauriers A, Rossi S, Turcotte A, Morin H, Krause C (2011). A three-step procedure in SAS to analyze the time series from automatic dendrometers. Dendrochronologia, 29, 151-161. |
[6] | Devine WD, Harrington CA (2011). Factors affecting diurnal stem contraction in young Douglas-fir. Agricultural and Forest Meteorology, 151, 414-419. |
[7] | Dong MY, Jiang Y, Yang HC, Wang MC, Zhang WT, Guo YY (2012). Dynamics of stem radial growth of Picea meyeri during the growing season at the treeline of Luya Mountain, China. Chinese Journal of Plant Ecology, 36, 956-964. |
[ 董满宇, 江源, 杨浩春, 王明昌, 张文涛, 郭媛媛 (2012). 芦芽山林线白杄生长季径向生长动态. 植物生态学报, 36, 956-964.] | |
[8] |
Dong MY, Wang BQ, Jiang Y, Ding XY (2019). Environmental controls of diurnal and seasonal variations in the stem radius of Platycladus orientalis in Northern China. Forests, 10, 784. DOI: 10.3390/f10090784.
DOI |
[9] | Fernández JE, Cuevas MV (2010). Irrigation scheduling from stem diameter variations: a review. Agricultural and Forest Meteorology, 150, 135-151. |
[10] | Gao JN, Yang B, He MH, Shishov V (2019). Intra-annual stem radial increment patterns of Chinese pine, Helan Mountains, Northern Central China. Trees, 33, 751-763. |
[11] | Ji QW, Zheng CY, Zhang L, Zeng FX (2020). Stem radial growth dynamics of Pinus sylvestris var. mongolica and their relationship with meteorological factor in Saihanba, Hebei, China. Chinese Journal of Plant Ecology, 44, 257-265. |
[ 季倩雯, 郑成洋, 张磊, 曾发旭 (2020). 河北塞罕坝樟子松径向生长动态变化及其与气象因子的关系. 植物生态学报, 44, 257-265.] | |
[12] | King G, Fonti P, Nievergelt D, Büntgen U, Frank D (2013). Climatic drivers of hourly to yearly tree radius variations along a 6 °C natural warming gradient. Agricultural and Forest Meteorology, 168, 36-46. |
[13] | Li XH, Liu RP, Mao ZJ, Song Y, Liu LX, Sun T (2014). Dailystem radial variation of Pinus koraiensis and its responseto meteorological parameters in Xiaoxing’an Mountain. Acta Ecologica Sinica, 34, 1635-1644. |
[ 李兴欢, 刘瑞鹏, 毛子军, 宋媛, 刘林馨, 孙涛 (2014). 小兴安岭红松日径向变化及其对气象因子的响应. 生态学报, 34, 1635-1644.] | |
[14] | Liu XS, Nie YQ, Qiu XW, Wen F, Zhang L, Luo TX (2015). A review on tree growth and its water use in cold environments based on Dendrometer. World Forestry Research, 28, 19-25. |
[ 刘新圣, 聂玉琴, 邱秀文, 文锋, 张林, 罗天祥 (2015). 基于树木径向生长仪监测高寒地区树木生长和水分利用的研究进展. 世界林业研究, 28, 19-25.] | |
[15] | Ma J, Guo JB, Wang YH, Liu ZB, Gao D, Hong L, Zhang ZY (2020). Variations in stem radii of Larix principis- rupprechtii to environmental factors at two slope locations in the Liupan Mountains, northwest China. Journal of Forestry Research, 32, 513-527. |
[16] | Melvin TM, Briffa KR (2008). A “signal-free” approach to dendroclimatic standardisation. Dendrochronologia, 26, 71-86. |
[17] | Niu HG, Zhang F, Yu AL, Wang F, Zhang JZ, Gou XH (2018). Intra-annual stem radial growth dynamics of Picea wilsorii in response to climate in the eastern Qilian Mountains. Acta Ecologica Sinica, 38, 7412-7420. |
[ 牛豪阁, 张芬, 于爱灵, 王放, 张军周, 勾晓华 (2018). 祁连山东部青杄年内径向生长动态对气候的响应. 生态学报, 38, 7412-7420.] | |
[18] | Oberhuber W (2017). Soil water availability and evaporative demand affect seasonal growth dynamics and use of stored water in co-occurring saplings and mature conifers under drought. Trees, 31, 467-478. |
[19] |
Oberhuber W, Hammerle A, Kofler W (2015). Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Frontiers in Plant Science, 6, 703. DOI: 10.3389/fpls.2015.00703.
DOI |
[20] | Oki T, Kanae S (2006). Global hydrological cycles and world water resources. Science, 313, 1068-1072. |
[21] | Sallo FdS, Sanches L, de Morais Dias VR, Palacios RdS, Nogueira JdS (2017). Stem water storage dynamics of Vochysia divergens in a seasonally flooded environment. Agricultural and Forest Meteorology, 232, 566-575. |
[22] | Schlesinger WH, Jasechko S (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189- 190, 115-117. |
[23] | Sun SJ, Meng P, Zhang JS, Jia CR, Ren YF (2012). Diurnal variation of Quercus variabilis trunk diameter in response to environmental factors at south aspect of Taihang Mountains. Chinese Journal of Applied Ecology, 23, 2141-2148. |
[ 孙守家, 孟平, 张劲松, 贾长荣, 任迎丰 (2012). 太行山南麓低山丘陵区栓皮栎直径变化及其与环境因子的关系. 应用生态学报, 23, 2141-2148.] | |
[24] | Tian QY, He ZB, Xiao SC, Peng XM, Ding AJ, Lin PF (2017). Response of stem radial growth of Qinghai spruce (Picea crassifolia) to environmental factors in the Qilian Mountains of China. Dendrochronologia, 44, 76-83. |
[25] |
Turcotte A, Rossi S, Deslauriers A, Krause C, Morin H (2011). Dynamics of depletion and replenishment of water storage in stem and roots of black spruce measured by Dendrometers. Frontiers in Plant Science, 2, 21. DOI: 10.3389/fpls.2011.00021.
DOI |
[26] | van der Maaten E, Pape J, van der Maaten-Theunissen M, Scharnweber T, Smiljanić M, Cruz-García R, Wilmking M (2018). Distinct growth phenology but similar daily stem dynamics in three co-occurring broadleaved tree species. Tree Physiology, 38, 1820-1828. |
[27] | Wang ZY, Yang B, Deslauriers A, Bräuning A (2015). Intra- annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees, 29, 25-34. |
[28] |
Zhang YP, Jiang Y, Wen Y, Ding XY, Wang B, Xu JL (2019). Comparing primary and secondary growth of co-occurring deciduous and evergreen conifers in an alpine habitat. Forests, 10, 574. DOI: 10.3390/f10070574.
DOI |
[29] | Zhao YD, Gao C, Zhang X, Cai X (2016). Review of real-time detecting methods of water stress for plants. Transactions of the Chinese Society for Agricultural Machiner, 47, 290-300. |
[ 赵燕东, 高超, 张新, 蔡祥 (2016). 植物水分胁迫实时在线检测方法研究进展. 农业机械学报, 47, 290-300.] | |
[30] | Zweifel R (2016). Radial stem variations—A source of tree physiological information not fully exploited yet. Plant, Cell, & Environment, 39, 231-232. |
[31] | Zweifel R, Haeni M, Buchmann N, Eugster W (2016). Are trees able to grow in periods of stem shrinkage? New Phytologist, 211, 839-849. |
[32] | Zweifel R, Zimmermann L, Newbery DM (2005). Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology, 25, 147-156. |
[1] | 王晓悦 许艺馨 李春环 余海龙 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性及其影响因素研究[J]. 植物生态学报, 2023, 47(1): 0-0. |
[2] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[3] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[4] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[5] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[6] | 王俐爽 同小娟 孟平 张劲松 刘沛荣 李俊 张静茹 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[7] | 臧永新 马剑英 周晓兵 陶冶 尹本丰 沙亚古丽·及格尔 张元明. 极端干旱和降水对沙垄不同坡位、坡向短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[8] | 杨萌, 于贵瑞. 中国干旱半干旱区土壤呼吸与CH4通量的耦联解耦及其对温度的响应[J]. 植物生态学报, 2022, 46(12): 1497-1507. |
[9] | 林雍 陈智 杨萌 陈世苹 高艳红 刘冉 郝彦宾 辛晓平 周莉 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[10] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[11] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[12] | 方欧娅, 张永, 张启, 贾恒锋. 黄河上游甘蒙柽柳生长对极端旱涝的响应[J]. 植物生态学报, 2021, 45(6): 641-649. |
[13] | 朱湾湾, 王攀, 许艺馨, 李春环, 余海龙, 黄菊莹. 降水量变化与氮添加下荒漠草原土壤酶活性及其影响因素[J]. 植物生态学报, 2021, 45(3): 309-320. |
[14] | 范琳杰, 李成道, 李向义, Henry J. SUN, 林丽莎, 刘波. 极端干旱区沙土掩埋对凋落物分解速率及盐分含量动态的影响[J]. 植物生态学报, 2021, 45(2): 144-153. |
[15] | 嘎玛达尔基, 杨泽, 谭星儒, 王珊珊, 李伟晶, 游翠海, 王彦兵, 张兵伟, 任婷婷, 陈世苹. 凋落物输入变化和氮添加对半干旱草原群落生产力及功能群组成的影响[J]. 植物生态学报, 2020, 44(8): 791-806. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19