植物生态学报 ›› 2012, Vol. 36 ›› Issue (5): 372-381.DOI: 10.3724/SP.J.1258.2012.00372
发布日期:
2012-05-04
通讯作者:
王国宏
作者简介:
* E-mail: ghwangaq@ibcas.ac.cn
LI He1,2, ZHANG Wei-Kang1,3, WANG Guo-Hong1,*()
Published:
2012-05-04
Contact:
WANG Guo-Hong
摘要:
为了揭示中国云杉林的地理分布与气候因子间的关系, 在中国云杉林15个群系的地理分布范围内选取613个地理坐标点, 其中包括云杉各个种分布的海拔上限和下限坐标点各235和228个。通过数字地球系统确定每个点的海拔高程, 从中国气象插值数据库获取每个点的气候数据。数据分析分别采用线性回归、变异系数比较和主成分分析(PCA)法。结果显示, 中国云杉林分布范围内, 年平均气温、最冷月平均气温、最热月平均气温、≥5 ℃积温、≥0 ℃积温、年降水量、土壤水分含量和干燥指数α的平均值分别是3.38 ℃、-9.75 ℃、14.78 ℃、1 227.83 ℃·d、2 271.19 ℃·d、712.23 mm、80.02%和0.50; 各气候因子与中国云杉林垂直分布的上下限间均具有显著的回归关系; 除了年平均气温和最冷月平均气温变异系数较大外, 其他6个气候因子的变异系数均较小, 且彼此间无显著差异; 无论是云杉分布的上限还是下限, ≥5 ℃积温和≥0 ℃积温在PCA第一主分量具有较高的载荷, 而年降水量和土壤水分含量在第二、三主分量具有较高的载荷。影响中国云杉林分布的主要气候因子是生长季节积温, 其次是年降水量和土壤水分含量。
李贺, 张维康, 王国宏. 中国云杉林的地理分布与气候因子间的关系. 植物生态学报, 2012, 36(5): 372-381. DOI: 10.3724/SP.J.1258.2012.00372
LI He, ZHANG Wei-Kang, WANG Guo-Hong. Relationship between climatic factors and geographical distribution of spruce forests in China. Chinese Journal of Plant Ecology, 2012, 36(5): 372-381. DOI: 10.3724/SP.J.1258.2012.00372
海拔及其对应的气候因子 Altitude and corresponding climatic factors | 平均值 Mean | 标准误差 Standard error | 95%置信区间 95% confidence intervals | 最小值 Minimum | 最大值 Maximum | |
---|---|---|---|---|---|---|
下限 Lower limit | 上限 Upper limit | |||||
海拔 Altitude (m) | 2 444.09 | 42.20 | 2 361.21 | 2 526.96 | 300.00 | 4 347.00 |
年平均气温 Mean annual air temperature (℃) | 3.38 | 0.19 | 3.00 | 3.75 | -9.18 | 20.10 |
最冷月平均气温 Mean air temperature of the coldest month (℃) | -9.75 | 0.34 | -10.43 | -9.07 | -30.51 | 11.52 |
最热月平均气温 Mean air temperature of the warmest month (℃) | 14.78 | 0.20 | 14.38 | 15.17 | 1.69 | 27.27 |
≥5 ℃积温 Growing degree days on a 5 ℃ basis (℃·d) | 1 227.83 | 35.46 | 1 158.20 | 1 297.46 | 0.00 | 5 527.56 |
≥0 ℃积温 Growing degree days on a 0 ℃ basis (℃·d) | 2 271.19 | 46.72 | 2 179.44 | 2 362.94 | 69.76 | 7 352.57 |
年降水量 Mean annual precipitation (mm) | 712.23 | 14.52 | 683.71 | 740.75 | 103.65 | 2 050.37 |
土壤水分含量 Soil moisture (%) | 80.02 | 0.83 | 78.40 | 81.64 | 0.00 | 97.83 |
干燥指数 Aridity index | 0.50 | 0.01 | 0.49 | 0.52 | 0.00 | 0.90 |
表1 中国云杉林地理分布区海拔及其对应的气候因子描述性统计结果(n = 613)
Table 1 Descriptive statistics of altitude and corresponding climatic factors in the geographical distribution area of Chinese spruce forests (n = 613)
海拔及其对应的气候因子 Altitude and corresponding climatic factors | 平均值 Mean | 标准误差 Standard error | 95%置信区间 95% confidence intervals | 最小值 Minimum | 最大值 Maximum | |
---|---|---|---|---|---|---|
下限 Lower limit | 上限 Upper limit | |||||
海拔 Altitude (m) | 2 444.09 | 42.20 | 2 361.21 | 2 526.96 | 300.00 | 4 347.00 |
年平均气温 Mean annual air temperature (℃) | 3.38 | 0.19 | 3.00 | 3.75 | -9.18 | 20.10 |
最冷月平均气温 Mean air temperature of the coldest month (℃) | -9.75 | 0.34 | -10.43 | -9.07 | -30.51 | 11.52 |
最热月平均气温 Mean air temperature of the warmest month (℃) | 14.78 | 0.20 | 14.38 | 15.17 | 1.69 | 27.27 |
≥5 ℃积温 Growing degree days on a 5 ℃ basis (℃·d) | 1 227.83 | 35.46 | 1 158.20 | 1 297.46 | 0.00 | 5 527.56 |
≥0 ℃积温 Growing degree days on a 0 ℃ basis (℃·d) | 2 271.19 | 46.72 | 2 179.44 | 2 362.94 | 69.76 | 7 352.57 |
年降水量 Mean annual precipitation (mm) | 712.23 | 14.52 | 683.71 | 740.75 | 103.65 | 2 050.37 |
土壤水分含量 Soil moisture (%) | 80.02 | 0.83 | 78.40 | 81.64 | 0.00 | 97.83 |
干燥指数 Aridity index | 0.50 | 0.01 | 0.49 | 0.52 | 0.00 | 0.90 |
图2 中国云杉林垂直分布海拔上、下限与气候因子间的回归关系。R2Upper代表云杉上限分布点与海拔的决定系数; R2Lower代表云杉下限分布点与海拔的决定系数。**, p < 0.01; ***, p < 0.001; α, 干燥指数; MAP, 年降水量; MAT, 年平均气温; MTCM, 最冷月平均气温; MTWM, 最热月平均气温; SM, 土壤水分含量; GDD5, ≥5 ℃积温; GDD0, ≥0 ℃积温。
Fig. 2 Regression relationships between the lower and upper altitudinal limits of Chinese spruce forests and climatic factors. R2Upper represent determination coefficient of spruce upper distribution point with altitude; R2Lower represent determination coefficient of spruce lower distribution point with altitude. **, p < 0.01; ***, p < 0.001; α, aridity index; MAP, mean annual precipitation; MAT, mean annual air temperature; MTCM, mean air temperature of the coldest month; MTWM, mean air temperature of the warmest month; SM, soil moisture; GDD5, growing degree days on a 5 ℃ basis; GDD0, growing degree days on a 0 ℃ basis.
图3 中国云杉林地理分布范围内气候因子间变异系数比较。柱状图中同一个系列(上限或下限)气候因子间不含有相同字母表示二者存在显著差异(p < 0.05); NS表示该气候因子变异系数在海拔上下限间无显著差异(p > 0.05); α, 干燥指数; MAP, 年降水量; MAT, 年平均气温; MTCM, 最冷月平均气温; MTWM, 最热月平均气温; GDD5, ≥5 ℃积温; GDD0, ≥0 ℃积温; SM, 土壤水分含量。
Fig. 3 Comparison of coefficient of variation among climatic factors in the distribution range of Chinese spruce forests. Climatic factors sharing no letters of the same series (upper limit or lower limit) in the histogram indicates that the difference is significant (p < 0.05); NS shows no significant differences between upper and lower distribution limit (p > 0.05); α, aridity index; MAP, mean annual precipitation; MAT, mean annual air temperature; MTCM, mean air temperature of the coldest month; MTWM, mean air temperature of the warmest month; GDD5, growing degree days on a 5 ℃ basis; GDD0, growing degree days on a 0 ℃ basis; SM, soil moisture.
气候因子 Climatic factor | 主分量载荷 Principal component (PC) loading value | ||||||
---|---|---|---|---|---|---|---|
分布上限 Upper distribution limit | 分布下限 Lower distribution limit | ||||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||
年平均气温 Mean annual air temperature (℃) | 0.89 | 0.31 | -0.28 | 0.87 | 0.32 | -0.34 | |
最冷月平均气温 Mean temperature of the coldest month (℃) | 0.51 | 0.74 | -0.38 | 0.42 | 0.75 | -0.48 | |
最热月平均气温 Mean temperature of the warmest month (℃) | 0.79 | -0.56 | 0.12 | 0.79 | -0.57 | 0.14 | |
≥5 ℃积温 Growing degree days on a 5 ℃ basis (℃·d) | 0.93 | -0.33 | -0.06 | 0.96 | -0.25 | -0.05 | |
≥0 ℃积温 Growing degree days on a 0 ℃ basis (℃·d) | 0.96 | -0.20 | -0.12 | 0.98 | -0.12 | -0.09 | |
年降水量 Mean annual precipitation (mm) | 0.47 | 0.75 | 0.12 | 0.25 | 0.88 | 0.15 | |
土壤水分含量 Soil moisture (%) | 0.17 | 0.72 | 0.60 | 0.06 | 0.78 | 0.58 | |
干燥指数 Aridity index | 0.72 | -0.26 | 0.49 | 0.74 | -0.08 | 0.62 | |
特征值 Eigenvalue | 4.24 | 2.26 | 0.87 | 4.06 | 2.46 | 1.12 | |
信息量 Information amount (%) | 53.02 | 28.22 | 10.90 | 50.77 | 30.81 | 11.06 |
表2 中国云杉林垂直分布上下限气候因子的主成分分析
Table 2 The principal component analysis of climatic factors at upper and lower altitudinal limits of Chinese spruce forests
气候因子 Climatic factor | 主分量载荷 Principal component (PC) loading value | ||||||
---|---|---|---|---|---|---|---|
分布上限 Upper distribution limit | 分布下限 Lower distribution limit | ||||||
PC1 | PC2 | PC3 | PC1 | PC2 | PC3 | ||
年平均气温 Mean annual air temperature (℃) | 0.89 | 0.31 | -0.28 | 0.87 | 0.32 | -0.34 | |
最冷月平均气温 Mean temperature of the coldest month (℃) | 0.51 | 0.74 | -0.38 | 0.42 | 0.75 | -0.48 | |
最热月平均气温 Mean temperature of the warmest month (℃) | 0.79 | -0.56 | 0.12 | 0.79 | -0.57 | 0.14 | |
≥5 ℃积温 Growing degree days on a 5 ℃ basis (℃·d) | 0.93 | -0.33 | -0.06 | 0.96 | -0.25 | -0.05 | |
≥0 ℃积温 Growing degree days on a 0 ℃ basis (℃·d) | 0.96 | -0.20 | -0.12 | 0.98 | -0.12 | -0.09 | |
年降水量 Mean annual precipitation (mm) | 0.47 | 0.75 | 0.12 | 0.25 | 0.88 | 0.15 | |
土壤水分含量 Soil moisture (%) | 0.17 | 0.72 | 0.60 | 0.06 | 0.78 | 0.58 | |
干燥指数 Aridity index | 0.72 | -0.26 | 0.49 | 0.74 | -0.08 | 0.62 | |
特征值 Eigenvalue | 4.24 | 2.26 | 0.87 | 4.06 | 2.46 | 1.12 | |
信息量 Information amount (%) | 53.02 | 28.22 | 10.90 | 50.77 | 30.81 | 11.06 |
[1] |
Bergmann F (1978). The allelic distribution at an acid phosphatase locus in Norway spruce (Picea abies) along similar climatic gradients. Theoretical and Applied Genetics, 52, 57-64.
DOI URL PMID |
[2] | Cao YF (曹玉芳), Xu F (许方), Yao DY (姚敦义) (1995). Tsugae plants and the development of male and female gametophyte embryogenesis. Journal of Laiyang Agriculture College (莱阳农学院学报), ( 3), 206-212. (in Chinese with English abstract) |
[3] | Chinese Vegetation Editorial Committee (《中国植被》编辑委员会) (1980). Chinese Vegetation (中国植被). Science Press, Beijing. (in Chinese) |
[4] | Committee of China Forest Compiler (《中国森林》编辑委员会) (2000). China Forest (中国森林). China Forestry Publishing House, Beijing. (in Chinese) |
[5] |
Fall PL (1997). Timberline fluctuations and late Quaternary paleoclimates in the Southern Rocky Mountains, Colorado. Bulletin of the Geological Society of America, 109, 1306-1320.
DOI URL |
[6] |
Fang JY, Kyoji Y (1988). Climate and vegetation in China. I. Changes in the altitudinal lapse rate of temperature and distribution of sea level temperature. Ecological Research, 3, 37-51.
DOI URL |
[7] |
Fang JY, Kyoji Y (1991). Climate and vegetation in China V. Effect of climatic factors on the upper limit of distribution of evergreen broadleaf forest. Ecological Research, 6, 113-125.
DOI URL |
[8] |
Fang JY, Lechowicz MJ (2006). Climatic limits for the present distribution of beech (Fagus L.) species in the world. Journal of Biogeography, 33, 1804-1819.
DOI URL |
[9] | Fang JY (方精云), Li Y (李莹) (2002). Climatic factors for limiting northward distribution of eight temperate tree species in Eastern North America. Acta Botanica Sinica (植物学报), 44, 199-203. (in Chinese with English abstract) |
[10] |
Haxeltine A, Prentice IC (1996). BIOME3, an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types. Global Biogeochemical Cycles, 10, 693-709.
DOI URL |
[11] | Jiang XB (蒋雪彬), Li JM (李建民), Gao TY (高廷玉), Xu GS (徐桂生), She SQ (佘绍强) (2000). Spruce evolution and distribution. Forest Investigation Design (林业勘查设计), 113, 30-33. (in Chinese) |
[12] |
Jobbácy EG, Jackson RB (2000). Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography, 9, 253-268.
DOI URL |
[13] | Kira T (1945). A New Classification of Climate in Eastern Asia As the Basis for Agricultural Geography. Horticultural Institute, Kyoto University, Kyoto. (in Japanese) |
[14] | Kira T (1977). A climatological interpretation of Japanese vegetation zones. In: Miyawaki A, Tüxen R eds. Vegeta- tion Science and Environmental Protection. Maruzen, Tokyo. (in Japanese) |
[15] |
Kirkpatrick JB, Hassall DC (1985). The vegetation and flora along an altitudinal transect through tropical forest at Mount Korobaba, Fiji. New Zealand Journal of Botany, 23, 33-46.
DOI URL |
[16] |
Körner C (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
DOI URL PMID |
[17] | Li WH (李文华), Chou PC (周沛村) (1979). The geographical distribution of the dark coniferous forest in Eurasian continent and its modelling. Natural Resources (自然资源), ( 1), 21-34. (in Chinese) |
[18] |
Li WH, Chou PC (1984). The geographical distribution of the spruce-fir forest in China and its modelling. Mountain Research and Development, 4, 203-212.
DOI URL |
[19] |
Liu ZL (刘增力), Fang JY (方精云), Piao SL (朴世龙) (2002). Geographical distribution of species in genera Abies, Picea and Larix in China. Acta Geographica Sinica (地理学报), 57, 577-586. (in Chinese with English abstract)
DOI URL |
[20] | Mergen F, Burley J, Furnival GM (1965). Embryo and seedling development in Picea glauca (Moench) Voss after self-, cross-, and wind-pollination. Silvae Genetica, 14, 188-194. 26 |
[21] |
Millar CI, Robert DW (2010). Distribution and climatic relationships of the American pika (Ochotona princeps) in the Sierra Nevada and Western Great Basin, U.S.A.; Periglacial Landforms as Refugia in Warming Climates. Arctic, Antarctic, and Alpine Research, 42, 76-88.
DOI URL |
[22] | Ni J (倪健) (1996). Relationship between geographical distribution of Schima superba, its forest and climate in China. Journal of Plant Resources and Environment (植物资源与环境), 3, 28-34. (in Chinese with English abstract) |
[23] |
Ni J, Sykes MT, Prentice IC, Cramer W (2000). Modelling the vegetation of China using the process-based equilibrium terrestrial biosphere model BIOME3 . Global Ecology and Biogeography, 9, 463-479.
DOI URL |
[24] | Meunier C, Sirois L, Begin Y (2007). Climate and Picea mariana seed maturation relationships: a multi-scale perspective. Ecological Monographs, 77, 361-376. |
[25] |
Ohsawa M (1990). An interpretation of latitudinal patterns of forest limits in south and east Asian mountains. Journal of Ecology, 78, 326-339.
DOI URL |
[26] | Owens JN, Johnsen Ø, Dæhlen OG, Skrøppa T (2001). Potential effects of temperature on early reproductive development and progeny performance in Picea abies(L.) Karst. Scandinavian Journal of Forest Research, 16, 221-237. |
[27] | Peng JF, Gou XH, Chen FH, Li JB, Liu PX, Zhang Y (2008). Altitudinal variability of climate-tree growth relationships along a consistent slope of Anyemaqen Mountains, northeastern Tibetan Plateau. Dendrochronologia, 26, 87-96. |
[28] | Pollard DFW, Logan KT (1977). The effects of light intensity, photoperiod, soil moisture potential, and temperature on bud morphogenesis in Picea species. Canadian Journal of Forest Research, 7, 415-421. |
[29] | Takahashi K (2003). Effects of climatic conditions on shoot elongation of alpine dwarf pine (Pinus pumila) at its upper and lower altitudinal limits in central Japan. Arctic, Antarctic, and Alpine Research, 35, 1-7. |
[30] | Tchebakova NM, Parfenova EI, Soja AJ (2010). Potential climate-induced vegetation change in Siberia in the Twenty-First Century. Advances in Global Change Rese- arch, 40, 67-82. |
[31] | Толмачев AИ (1954). The History and Development of Dark Coniferous Taiga. Publishing House of USSR Academy of Sciences, Moscow, Russia. (in Russian) |
[32] | Tranquillini W (1979). Physiological Ecology of the Alpine Timberline: Tree Existence at High Altitudes with Special Reference to the European Alps. Springer-Verlag, New York. |
[33] | Wang J (王建) (1990). Statistical analysis of temperatures of both the upper and lower bounds of of sub-alpine dark conifer forests in China. Scientia Geographica Sinica (地理科学), 2, 142-149, 191. (in Chinese with English abstract) |
[34] | Woodward FI (1990). Climate and Plant Distribution. Cambridge University Press, Cambridge, UK. |
[35] | Wu XH (吴锡浩) (1983). Temperature research of dark coniferous forest zone. Chinese Science Bulletin (科学通报), 28, 1451-1454. (in Chinese) |
[36] | Wu Y, Liu Q, He H, Lin B, Yin HJ (2004). Effects of light and temperature on seed germination of Picea asperata and Betula albo-sinensis. The Journal of Applied Ecology, 15, 2229-2232. |
[37] | Xiong Y (熊毅), Li QK (李庆逵) (1987). Chinese Soil (中国土壤) 2nd edn. Science Press, Beijing. 1987. (in Chinese) |
[38] | Zhang Y (张芸), Kong ZC (孔昭宸), Yan S (阎顺), Yang ZJ (杨振京), Ni J (倪健) (2006). Late Holocene northern slope of Tianshan spruce forest line changes and paleo- environment. Chinese Science Bulletin (科学通报), 51, 1450-1458. (in Chinese) |
[1] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[2] | 冯珊珊, 黄春晖, 唐梦云, 蒋维昕, 白天道. 细叶云南松针叶形态和显微性状地理变异及其环境解释[J]. 植物生态学报, 2023, 47(8): 1116-1130. |
[3] | 陈心怡, 吴晨, 黄锦学, 熊德成. 增温对林木细根物候影响的研究进展[J]. 植物生态学报, 2023, 47(11): 1471-1482. |
[4] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[5] | 牟文博, 徐当会, 王谢军, 敬文茂, 张瑞英, 顾玉玲, 姚广前, 祁世华, 张龙, 苟亚飞. 排露沟流域不同海拔灌丛土壤碳氮磷化学计量特征[J]. 植物生态学报, 2022, 46(11): 1422-1431. |
[6] | 刘宁, 彭守璋, 陈云明. 气候因子对青藏高原植被生长的时间效应[J]. 植物生态学报, 2022, 46(1): 18-26. |
[7] | 张央, 安明态, 武建勇, 刘锋, 汪伟. 中国兜兰属宽瓣亚属植物地理分布格局及其主导气候因子[J]. 植物生态学报, 2022, 46(1): 40-50. |
[8] | 孙文泰, 马明. 黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J]. 植物生态学报, 2021, 45(9): 972-986. |
[9] | 董琳琳, 普晓妍, 张璐璐, 宋亮, 鲁志云, 李苏. 亚热带森林附生地衣压力-体积曲线分析及其适用性[J]. 植物生态学报, 2021, 45(3): 274-285. |
[10] | 吴建波, 王小丹. 高寒草原优势种紫花针茅叶片解剖结构对青藏高原高寒干旱环境适应性分析[J]. 植物生态学报, 2021, 45(3): 265-273. |
[11] | 徐光来, 李爱娟, 徐晓华, 杨先成, 杨强强. 中国生态功能保护区归一化植被指数动态及气候因子驱动[J]. 植物生态学报, 2021, 45(3): 213-223. |
[12] | 王兆鹏, 张同文, 袁玉江, 张瑞波, 喻树龙, 刘蕊, 石仁娜•加汗, 郭冬, 王勇辉. 罗霄山南部4个针叶树种生长特征及其气候响应对比分析[J]. 植物生态学报, 2021, 45(12): 1303-1313. |
[13] | 艾则孜提约麦尔·麦麦提, 玉素甫江·如素力, 何辉, 拜合提尼沙·阿不都克日木. 2000-2017年新疆天山植被水分利用效率时空特征及其与气候因子关系分析[J]. 植物生态学报, 2019, 43(6): 490-500. |
[14] | 杨继鸿, 李亚楠, 卜海燕, 张世挺, 齐威. 青藏高原东缘常见阔叶木本植物叶片性状对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 863-876. |
[15] | 董正武, 赵英, 雷加强, 喜银巧. 塔克拉玛干沙漠不同区域柽柳沙包土壤盐分分布特征及其影响因素[J]. 植物生态学报, 2018, 42(8): 873-884. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19