植物生态学报 ›› 2012, Vol. 36 ›› Issue (5): 363-371.DOI: 10.3724/SP.J.1258.2012.00363
• 研究论文 • 下一篇
发布日期:
2012-05-04
通讯作者:
刘良云
作者简介:
* E-mail: lyliu@ceode.ac.cn
ZHAO Jing-Jing, LIU Liang-Yun*()
Published:
2012-05-04
Contact:
LIU Liang-Yun
摘要:
数据源、时间范围、空间尺度等的差异导致许多物候变化对陆地生态系统碳收支影响的研究缺少可比性。该文基于4级碳通量填充数据, 采用相对阈值方法提取了两个北美典型温带阔叶林站Harvard Forest (HF)和University of Michigan Biological Station (UMBS)共20年的物候参数(返青期、枯黄期和生长季长度), 并研究了物候变化对生态系统生产力的影响。结果表明: 1)生长季长度的延长对年累积总初级生产力(GPP)有显著贡献, 但由于呼吸作用(RE)的干扰, 生长季长度变化对年净生态系统生产力(NEP)的影响并不显著; 2)返青期的提前对上半年生态系统总初级生产力的贡献最为显著, 二者的相关系数分别为0.76 (HF)和0.93 (UMBS); 3)枯黄期的延迟对生产力的影响并不显著; 4)随着春季返青期的提前或秋季枯黄期的延迟, 上、下半年GPP和RE的累积量虽均有增加趋势, 但由于各自增加的幅度不确定, 导致年NEP与二者的响应关系复杂。
赵晶晶, 刘良云. 物候变化对北美温带落叶阔叶林生态系统生产力的影响. 植物生态学报, 2012, 36(5): 363-371. DOI: 10.3724/SP.J.1258.2012.00363
ZHAO Jing-Jing, LIU Liang-Yun. Effects of phenological change on ecosystem productivity of temperate deciduous broad- leaved forests in North America. Chinese Journal of Plant Ecology, 2012, 36(5): 363-371. DOI: 10.3724/SP.J.1258.2012.00363
图1 20% GPPmax的相对阈值物候提取方法(2001年Harvard Forest站)。EOS, 枯黄期, 即生长季结束日期; SOS, 返青期, 即生长季开始日期。
Fig. 1 20% GPPmax threshold phenology extraction algorithm (Harvard Forest Station in 2001). EOS, end of growing season; SOS, start of growing season.
图2 Harvard Forest (HF)站(A)和University of Michigan Biological Station (UMBS) (B)返青期、枯黄期和生长季长度的年际变化。
Fig. 2 Interannual variation of start of growing season, end of growing season, growing season length at Harvard Forest (HF) Station (A) and University of Michigan Biological Station (UMBS) (B).
图3 Harvard Forest (HF)站(A)和University of Michigan Biological Station (UMBS) (B)生长季长度与年累积总初级生产力的相关性。
Fig. 3 Correlation between growing season length and annual gross primary productivity at Harvard Forest (HF) Station (A) and University of Michigan Biological Station (UMBS) (B).
图4 Harvard Forest (HF)站(A)和University of Michigan Biological Station (UMBS)站(B)生长季长度与净生态系统生产力的相关性。
Fig. 4 Correlation between growing season length and net ecosystem productivity at Harvard Forest (HF) Station (A) and University of Michigan Biological Station (UMBS) (B).
图5 Harvard Forest (HF)站(A)和University of Michigan Biological Station (UMBS)站(B)生长季长度与呼吸作用的相关性。
Fig. 5 Correlation between growing season length and respiration at Harvard Forest (HF) Station (A) and University of Michigan Biological Station (UMBS) (B).
站点名 Station name | 物候期变化 Phenological change | GPP WY | GPP FHY | GPP LHY | RE WY | RE FHY | RE LHY | NEP WY | NEP FHY | NEP LHY |
---|---|---|---|---|---|---|---|---|---|---|
HF | 返青期提前1天 SOS advanced for one day | 0.6 | 0.76 | 0.60 | 0.14 | 0.57 | -0.37 | 0.57 | 0.17 | 0.56 |
枯黄期延迟1天 EOS delayed for one day | 0.2 | 0.22 | 0.14 | 0.37 | 0.45 | 0.10 | -0.10 | -0.35 | 0.04 | |
UMBS | 返青期提前1天 SOS advanced for one day | 0.0 | 0.93 | -0.88 | 0.05 | 0.69 | -0.63 | 0.05 | 0.71 | -0.75 |
枯黄期延迟1天 EOS delayed for one day | 0.2 | -0.51 | 0.78 | -0.17 | -0.62 | 0.40 | 0.54 | -0.17 | 0.81 |
表1 Harvard Forest (HF)站和University of Michigan Biological Station (UMBS)物候期变化(返青期(SOS)和枯黄期(EOS))与上半年(FHY)、下半年(LHY)和全年(WY)总初级生产力、呼吸作用和净生态系统生产力的相关系数
Table 1 Correlation coefficient between phenological change (start of growing season (SOS), end of growing season (EOS)) and gross primary productivity (GPP), respiration (RE), net ecosystem productivity (NEP) in first half year (FHY), last half year (LHY) and whole year (WY), respectively, at Harvard Forest (HF) Station and University of Michigan Biological Station (UMBS)
站点名 Station name | 物候期变化 Phenological change | GPP WY | GPP FHY | GPP LHY | RE WY | RE FHY | RE LHY | NEP WY | NEP FHY | NEP LHY |
---|---|---|---|---|---|---|---|---|---|---|
HF | 返青期提前1天 SOS advanced for one day | 0.6 | 0.76 | 0.60 | 0.14 | 0.57 | -0.37 | 0.57 | 0.17 | 0.56 |
枯黄期延迟1天 EOS delayed for one day | 0.2 | 0.22 | 0.14 | 0.37 | 0.45 | 0.10 | -0.10 | -0.35 | 0.04 | |
UMBS | 返青期提前1天 SOS advanced for one day | 0.0 | 0.93 | -0.88 | 0.05 | 0.69 | -0.63 | 0.05 | 0.71 | -0.75 |
枯黄期延迟1天 EOS delayed for one day | 0.2 | -0.51 | 0.78 | -0.17 | -0.62 | 0.40 | 0.54 | -0.17 | 0.81 |
图6 Harvard Forest (HF)站(A)和University of Michigan Biological Station (UMBS) (B)返青期对上半年总初级生产力(GPP)、呼吸作用(RE)、净生态系统生产力(NEP)的影响, 以及枯黄期对下半年总初级生产力、呼吸作用、净生态系统生产力的影响。
Fig. 6 Effects of start of growing season in first half year and those of end of growing season in last half year on gross primary productivity (GPP), respiration (RE), net ecosystem productivity (NEP) at Harvard Forest (HF) Station (A) and University of Michigan Biological Station (UMBS) (B).
站点名 Station name | 物候期变化 Phenological change | GPP WY | GPP FHY | GPP LHY | RE WY | RE FHY | RE LHY | NEP WY | NEP FHY | NEP LHY |
---|---|---|---|---|---|---|---|---|---|---|
HF | 返青期提前1天 SOS advanced for one day | -0.04 | 9.35 | -9.39 | 0.44 | 4.23 | -3.79 | 0.48 | 5.11 | -5.60 |
枯黄期延迟1天 EOS delayed for one day | 3.46 | -5.54 | 9.00 | -1.54 | -4.10 | 2.56 | 5.01 | -1.43 | 6.44 | |
UMBS | 返青期提前1天 SOS advanced for one day | 10.12 | 7.79 | 4.33 | 1.78 | 4.80 | -3.02 | 8.34 | 0.99 | 7.34 |
枯黄期延迟1天 EOS delayed for one day | 5.19 | 2.65 | 2.53 | 7.61 | 6.15 | 1.46 | -2.42 | -3.49 | 1.07 |
表2 Harvard Forest (HF)站和University of Michigan Biological Station (UMBS)物候期变化(返青期(SOS)和枯黄期(EOS))对上半年(FHY)、下半年(LHY)和全年(WY)总初级生产力、呼吸作用和净生态系统生产力的影响(单位, g C·m-2)
Table 2 Effects of phenological change (start of growing season (SOS), end of growing season (EOS)) on gross primary productivity (GPP), respiration (RE), net ecosystem productivity (NEP) in first half year (FHY), last half year (LHY) and whole year (WY), respectively, at Harvard Forest (HF) Station and University of Michigan Biological Station (UMBS) (Unit, g C·m-2)
站点名 Station name | 物候期变化 Phenological change | GPP WY | GPP FHY | GPP LHY | RE WY | RE FHY | RE LHY | NEP WY | NEP FHY | NEP LHY |
---|---|---|---|---|---|---|---|---|---|---|
HF | 返青期提前1天 SOS advanced for one day | -0.04 | 9.35 | -9.39 | 0.44 | 4.23 | -3.79 | 0.48 | 5.11 | -5.60 |
枯黄期延迟1天 EOS delayed for one day | 3.46 | -5.54 | 9.00 | -1.54 | -4.10 | 2.56 | 5.01 | -1.43 | 6.44 | |
UMBS | 返青期提前1天 SOS advanced for one day | 10.12 | 7.79 | 4.33 | 1.78 | 4.80 | -3.02 | 8.34 | 0.99 | 7.34 |
枯黄期延迟1天 EOS delayed for one day | 5.19 | 2.65 | 2.53 | 7.61 | 6.15 | 1.46 | -2.42 | -3.49 | 1.07 |
[1] | Badeck FW, Bondeau A, Böttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004). Responses of spring phenology to climate change. New Phytologist, 162, 295-309. |
[2] | Baldocchi DD, Wilson KB (2001). Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecological Modelling, 142, 155-184. |
[3] | Barr AG, Black TA, Hogg EH, Griffis TJ, Morgenstern K, Kljun N, Theede A, Nesic Z (2007). Climatic controls on the carbon and water balances of a boreal aspen forest, 1994-2003. Global Change Biology, 13, 561-576. |
[4] | Barr AG, Black TA, Hogg EH, Kljun N, Morgenstern K, Nesic Z (2004). Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology, 126, 237-255. |
[5] | Carrara A, Kowalski AS, Neirynck J, Janssens IA, Yuste JC, Ceulemans R (2003). Net ecosystem CO2 exchange of mixed forest in Belgium over 5 years. Agricultural and Forest Meteorology, 119, 209-227. |
[6] | Chen WJ, Black TA, Yang PC, Barr AG, Neumann HH, Nesic Z, Blanken PD, Novak MD, Eley J, Ketler RJ, Cuenca R (1999). Effects of climatic variability on the annual carbon sequestration by a boreal aspen forest. Global Change Biology, 5, 41-53. |
[7] | Churkina G, Schimel D, Braswell BH, Xiao XM (2005). Spatial analysis of growing season length control over net ecosystem exchange. Global Change Biology, 11, 1777-1787. |
[8] |
Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007). Shifting plant phenology in response to global change. Trends in Ecology and Evolution, 22, 357-365.
URL PMID |
[9] | Dunn AL, Barford CC, Wofsy SC, Goulden ML, Daube BC (2007). A long-term record of carbon exchange in a boreal black spruce forest: means, responses to interannual variability, and decadal trends. Global Change Biology, 13, 577-590. |
[10] | Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burbag G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Guðmundssonm J, Hollinger D, Kowalski AS, Katul G, Lawq BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Kyaw Tha Paw U, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002). Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113, 53-74. |
[11] | Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996). Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2, 169-182. |
[12] | Gu LH, Post WM, Baldocchi DD, Black TA, Suyker AE, Verma SB, Vesala T, Wofsy SC (2009). Characterizing the seasonal dynamics of plant community photosynthesis across a range of vegetation types. Phenology of Ecosystem Processes, Part 1, 35-58. |
[13] | Gough CM, Vogel CS, Schmid HP, Su HB, Curtis PS (2008). Multi-year convergence of biometric and meteorological estimates of forest carbon storage. Agricultural and Forest Meteorology, 148, 158-170. |
[14] | Hogg EH, Price DT, Black TA (2000). Postulated feedbacks of deciduous forest phenology on seasonal climate patterns in the western Canadian interior. Journal of Climate, 13, 4229-4243. |
[15] | Hollinger DY, Aber J, Dail B, Davidson EA, Goltz SM, Hughes H, Leclerc MY, Lee JL, Richardson AD, Rodrigues C, Scott NA, Achuatavarier D, Walsh J (2004). Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biology, 10, 1689-1706. |
[16] | Hu J, Moore DJP, Burns SP, Monson RK (2010). Longer growing seasons lead to less carbon sequestration by a subalpine forest. Global Change Biology, 16, 771-783. |
[17] | Jonsson P, Eklundh L (2002). Seasonality extraction by function fitting to time-series of satellite sensor data. IEEE Transactions on Geoscience and Remote Sensing, 40, 1824-1932. |
[18] | Kaduk J, Heimann M (1996). A prognostic phenology scheme for global terrestrial carbon cycle models. Climate Research, 6, 1-19. |
[19] | Min QL, Lin B (2006). Determination of spring onset and growing season leaf development using satellite measurements. Remote Sensing of Environment, 104, 96-102. |
[20] | Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui DF, Jarvis AJ, Kattge J, Noormets A, Stauch VJ (2007). Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology, 147, 209-232. |
[21] | Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott- Denton LE, Sparks K, Huxman TE (2002). Carbon sequestration in a high-elevation, subalpine forest. Global Change Biology, 8, 459-478. |
[22] | Moore KE, Fitzjarrald DR, Sakai RK, Goulden ML, Munger JW, Wofsy SC (1996). Seasonal variation in radiative and turbulent exchange at a deciduous forest in central Massachusetts. Journal of Applied Meteorology, 35, 122-134. |
[23] |
Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003). Climate- driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560-1563.
URL PMID |
[24] | Niemand C, Köstner B, Prasse H, Grünwald T, Bernhofer C (2005). Relating tree phenology with annual carbon fluxes at Tharandt forest. Meteorologische Zeitschrift, 14, 197-202. |
[25] |
Niu SL, Luo YQ, Fei SF, Montagnani L, Bohrer G, Janssens IA, Gielen B, Rambal S, Moors E, Matteucci G (2011). Seasonal hysteresis of net ecosystem exchange in response to temperature change: patterns and causes. Global Change Biology, 17, 3102-3114.
DOI URL |
[26] |
Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006). Towards a standardized processing of net ecosystem exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583.
DOI URL |
[27] | Parmesan C (2007). Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Global Change Biology, 13, 1860-1872. |
[28] |
Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr A, Chen AP, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008). Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52.
DOI URL PMID |
[29] | Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439. |
[30] | Richardson AD, Anderson RS, Arain MA, Barr AG, Bohrer G, Chen GS, Chen JM, Ciais P, Davis KJ, Desai AR, Dietze MC, Dragoni D, Garrity SR, Gough CM, Grant R, Hollinger DY, Margolis HA, McCaughey H, Migliavacca M, Monson RK, Munger JW, Poulter B, Raczka BM, Ricciuto DM, Sahoo AK, Schaefer K, Tian HQ, Vargas R, Verbeeck H, Xiao JF, Xue YK (2012). Terrestrial biosphere models need better representation of vegetation phenology: results from the North American Carbon Program Site Synthesis. Global Change Biology, 18, 566-584. |
[31] |
Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, Munger JW, Moors E, Piao SL, Rebmann C, Reichstein M, Saigusa N, Tomelleri E, Vargas R, Varlagin A (2010). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society of London: Biological Sciences, 365, 3227-3246.
URL PMID |
[32] | Richardson AD, O’Keefe J (2009). Phenological differences between understory and overstory: a case study using the long-term Harvard Forest records. In: Noormets A ed. Phenology of Ecosystem Processes. Springer Science, New York. 87-117. |
[33] |
Richardson AD, Hollinger DY, Dail DB, Lee JT, Munger JW, O’Keefe J (2009). Influence of spring phenology on seasonal and annual carbon balance in two contrasting New England forests. Tree Physiology, 29, 321-331.
DOI URL PMID |
[34] |
Schwartz MD (1992). Phenology and springtime surface-layer change. Monthly Weather Review, 120, 2570-2578.
DOI URL |
[35] |
Schwartz MD, Ahas R, Aasa A (2006). Onset of spring starting earlier across the Northern Hemisphere. Global Change Biology, 12, 343-351.
DOI URL |
[36] | Urbanski S, Barford C, Wofsy S, Kucharik C, Pyle E, Budney J, McKain K, Fitzjarrald D, Czikowsky M, Munger JW (2007). Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research, 112, G02020. |
[37] |
White MA, Thornton PE, Running SW (1997). A continental phenology model for monitoring vegetation responses to interannual climatic variability. Global Biogeochemical Cycles, 11, 217-234.
DOI URL |
[1] | 李兆光, 文高, 和桂青, 徐天才, 和琼姬, 侯志江, 李燕, 薛润光. 滇西北藜麦氮磷钾生态化学计量特征的物候期动态[J]. 植物生态学报, 2023, 47(5): 724-732. |
[2] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[3] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[4] | 邢磊, 段娜, 李清河, 刘成功, 李慧卿, 孙高洁. 白刺不同物候期的生物量分配规律[J]. 植物生态学报, 2020, 44(7): 763-771. |
[5] | 冯继广, 朱彪. 氮磷添加对树木生长和森林生产力影响的研究进展[J]. 植物生态学报, 2020, 44(6): 583-597. |
[6] | 周贵尧, 周灵燕, 邵钧炯, 周旭辉. 极端干旱对陆地生态系统的影响: 进展与展望[J]. 植物生态学报, 2020, 44(5): 515-525. |
[7] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[8] | 李明泽, 王斌, 范文义, 赵丹丹. 东北林区净初级生产力及大兴安岭地区林火干扰影响的模拟研究[J]. 植物生态学报, 2015, 39(4): 322-332. |
[9] | 余振, 孙鹏森, 刘世荣. 中国东部南北样带主要植被类型物候期的变化[J]. 植物生态学报, 2010, 34(3): 316-329. |
[10] | 周广胜, 袁文平, 周莉, 郑元润. 东北地区陆地生态系统生产力及其人口承载力分析[J]. 植物生态学报, 2008, 32(1): 65-72. |
[11] | 田汉勤, 徐小锋, 宋霞. 干旱对陆地生态系统生产力的影响[J]. 植物生态学报, 2007, 31(2): 231-241. |
[12] | 任巍, 田汉勤. 臭氧污染与陆地生态系统生产力[J]. 植物生态学报, 2007, 31(2): 219-230. |
[13] | 吕爱锋, 田汉勤. 气候变化、火干扰与生态系统生产力[J]. 植物生态学报, 2007, 31(2): 242-251. |
[14] | 陈兰, 张守仁. 增强UV-B辐射对暖温带落叶阔叶林土庄绣线菊水分利用效率、气孔导度、叶氮素含量及形态特性的影响[J]. 植物生态学报, 2006, 30(1): 47-56. |
[15] | 张学霞, 葛全胜, 郑景云. 北京地区气候变化和植被的关系——基于遥感数据和物候资料的分析[J]. 植物生态学报, 2004, 28(4): 499-506. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19