植物生态学报 ›› 2011, Vol. 35 ›› Issue (7): 687-698.DOI: 10.3724/SP.J.1258.2011.00687
所属专题: 植物功能性状
• 研究论文 • 下一篇
祝介东1,2, 孟婷婷1, 倪健1,*(), 苏宏新1, 谢宗强1, 张守仁1, 郑元润1, 肖春旺1
发布日期:
2011-08-18
通讯作者:
倪健
作者简介:
*E-mail: jni@ibcas.ac.cn
ZHU Jie-Dong1,2, MENG Ting-Ting1, NI Jian1,*(), SU Hong-Xin1, XIE Zong-Qiang1, ZHANG Shou-Ren1, ZHENG Yuan-Run1, XIAO Chun-Wang1
Published:
2011-08-18
Contact:
NI Jian
摘要:
为研究不同生物气候带内植物叶片大小与叶柄干重间的异速生长关系, 探讨不同植物功能型对叶内异速生长关系的效应, 在黑龙江呼中、吉林长白山、北京东灵山、浙江古田山、湖北神农架和四川都江堰6个地区, 选择典型地带性成熟林进行主要木本植物的叶片和叶柄性状的测定与统计分析。结果表明: 不同功能型和气候带植物叶片干重、面积、体积均与叶柄干重之间存在着显著的异速生长关系, 共同斜率分别为0.82、0.70和0.80, 均显著小于1.0。在相同叶柄干重下, 灌木较乔木支持更大的叶片体积, 但它们支持的叶片干重与叶片面积无显著差异; 常绿植物在给定叶柄干重下较落叶植物支持更高的叶片干重与体积, 但其支持的叶片面积小于落叶植物; 除神农架地区外, 在给定叶柄干重下, 亚热带的古田山、都江堰地区的植物较温带地区的植物支持更大的叶片干重、面积与体积, 而亚热带神农架地区的植物叶柄支持的叶片大小(面积、体积、干重)与温带地区相近。结果表明, 叶柄限制了叶片的不断增大(包括面积、体积和干重), 叶片和叶柄之间的异速生长关系受功能型、气候带及生境条件的影响。
祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺. 不同气候带间成熟林植物叶性状间异速生长关系 随功能型的变异. 植物生态学报, 2011, 35(7): 687-698. DOI: 10.3724/SP.J.1258.2011.00687
ZHU Jie-Dong, MENG Ting-Ting, NI Jian, SU Hong-Xin, XIE Zong-Qiang, ZHANG Shou-Ren, ZHENG Yuan-Run, XIAO Chun-Wang. Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 2011, 35(7): 687-698. DOI: 10.3724/SP.J.1258.2011.00687
组分 Component | 叶片面积 Lamina area | 叶片体积 Lamina volume | 叶片干重 Lamina mass | 叶柄干重 Petiole mass |
---|---|---|---|---|
物种 Species (%) | 93.57 | 90.20 | 88.60 | 88.51 |
个体 Individual (%) | 6.43 | 9.80 | 11.40 | 11.49 |
表2 各变量的等级变异组分分析(I型方差分析平方和)
Table 2 Hierarchical variance component analysis for each variable (ANOVA type I sums of squares)
组分 Component | 叶片面积 Lamina area | 叶片体积 Lamina volume | 叶片干重 Lamina mass | 叶柄干重 Petiole mass |
---|---|---|---|---|
物种 Species (%) | 93.57 | 90.20 | 88.60 | 88.51 |
个体 Individual (%) | 6.43 | 9.80 | 11.40 | 11.49 |
![]() |
表3 不同功能型与地点内叶片-叶片支持关系的标准主轴(SMA)回归参数
Table 3 Standardized Major Axis (SMA) regression parameters of lamina-lamina support relationships for each functional type and site
![]() |
图1 叶片面积及叶片体积同叶片干重在不同生活型(A、D)、叶候(B、E)和气候带(C、F)内的生长关系。
Fig. 1 Growth relationships between lamina area, lamina volume and lamina mass vary with life form (A, D), leaf phenology (B, E) and climatic zone (C, F). CBM, Changbai Mountain; DLM, Dongling Mountain; DJY, Dujiangyan; GTM, Gutian Mountain; HZ, Huzhong; SNJ, Shennongjia.
Y | X | 沿共同斜率的变异 Shift along the common slope | Y轴截距差异 Shift in elevation | 斜率异质性 Heterogeneity of slopes | |||
---|---|---|---|---|---|---|---|
乔木 Tree | 灌木 Shrub | 乔木 Tree | 灌木 Shrub | ||||
LA | LM | - | - | - | - | p < 0.05 | |
LV | LM | - | - | - | - | p = 0.02 | |
LM | PM | 2.90 | 2.61 | 1.44 | 1.45 | p = 0.88 | |
LA | PM | 4.04a | 3.76b | 2.88 | 2.83 | p = 0.06 | |
LV | PM | - | - | - | - | p = 0.04 |
表4 不同生活型叶片与叶片支持关系的斜率异质性检验以及斜率同质时截距的差异
Table 4 Tests for heterogeneity of slope, and shift in intercept for leaf lamina-lamina support relationships in different life forms when the slopes are homogeneity
Y | X | 沿共同斜率的变异 Shift along the common slope | Y轴截距差异 Shift in elevation | 斜率异质性 Heterogeneity of slopes | |||
---|---|---|---|---|---|---|---|
乔木 Tree | 灌木 Shrub | 乔木 Tree | 灌木 Shrub | ||||
LA | LM | - | - | - | - | p < 0.05 | |
LV | LM | - | - | - | - | p = 0.02 | |
LM | PM | 2.90 | 2.61 | 1.44 | 1.45 | p = 0.88 | |
LA | PM | 4.04a | 3.76b | 2.88 | 2.83 | p = 0.06 | |
LV | PM | - | - | - | - | p = 0.04 |
Y | X | 沿共同斜率的变异 Shift along the common slope | Y轴截距差异 Shift in elevation | 斜率异质性 Heterogeneity of slopes | |||
---|---|---|---|---|---|---|---|
落叶 Deciduous | 常绿 Evergreen | 落叶 Deciduous | 常绿 Evergreen | ||||
LA | LM | - | - | - | - | p = 0.04 | |
LV | LM | 5.48b | 5.77a | 1.67 | 1.71 | p = 0.15 | |
LM | PM | 2.72 | 2.84 | 1.41b | 1.54a | p = 0.99 | |
LA | PM | - | - | - | - | p < 0.05 | |
LV | PM | 4.18 | 4.34 | 2.97b | 3.14a | p = 0.15 |
表5 不同叶候间叶片与叶片支持关系的斜率异质性以及斜率同质时截距的差异
Table 5 Tests for heterogeneity of slope, and shift in intercept for leaf lamina-lamina support relationships in different leaf phenology when the slopes are homogeneity
Y | X | 沿共同斜率的变异 Shift along the common slope | Y轴截距差异 Shift in elevation | 斜率异质性 Heterogeneity of slopes | |||
---|---|---|---|---|---|---|---|
落叶 Deciduous | 常绿 Evergreen | 落叶 Deciduous | 常绿 Evergreen | ||||
LA | LM | - | - | - | - | p = 0.04 | |
LV | LM | 5.48b | 5.77a | 1.67 | 1.71 | p = 0.15 | |
LM | PM | 2.72 | 2.84 | 1.41b | 1.54a | p = 0.99 | |
LA | PM | - | - | - | - | p < 0.05 | |
LV | PM | 4.18 | 4.34 | 2.97b | 3.14a | p = 0.15 |
![]() |
表6 不同地点间叶片与叶片支持关系的斜率异质性以及斜率同质时截距的差异
Table 6 Tests for heterogeneity of slope, and shift in intercept for leaf lamina-lamina support relationships in different sites when the slopes are homogeneity
![]() |
图2 叶片大小(面积、体积、干重)与叶柄干重在不同生活型(A、D、G)、叶候(B、E、H)和气候带(C、F、I)内的异速生长关系。
Fig. 2 Allometric relationships between lamina size (area, volume and mass) and petiole mass vary with life form (A, D and G), leaf phenology (B, E and H), and climatic zone (C, F and I). CBM, Changbai Mountain; DLM, Dongling Mountain; DJY, Dujiang- yan; GTM, Gutian Mountain; HZ, Huzhong; SNJ, Shennongjia.
[1] |
Aerts R (1995). The advantages of being evergreen. Trends in Ecology & Evolution, 10, 402-407.
DOI URL PMID |
[2] |
Anten NPR, Alcalá-Herrera R, Schieving F, Onoda Y (2010). Wind and mechanical stimuli differentially affect leaf traits in Plantago major. New Phytologist, 188, 554-564.
DOI URL |
[3] |
Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A (2005). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: a comparison of co-occurring Mediterranean oaks that differ in leaf lifespan. New Phytologist, 168, 597-612.
DOI URL |
[4] | Cavender-Bares J, Holbrook NM (2001). Hydraulic properties and freezing-induced xylem cavitation in evergreen and deciduous oaks with contrasting habitats. Plant, Cell & Environment, 24, 1243-1256. |
[5] | Charles-Edwards DA (1979). Photosynthesis and crop growth. In: Marcelle R, Clijsters H, van Poucke M eds. Photosynthesis and Plant Development. Dr. W. Junk Publishers, The Hague. 11-24. |
[6] |
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
DOI URL |
[7] |
Davis SD, Sperry JS, Hacke UG (1999). The relationship between xylem conduit diameter and cavitation caused by freezing. American Journal of Botany, 86, 1367-1372.
URL PMID |
[8] |
Enquist BJ (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22, 1045-1064.
DOI URL PMID |
[9] | Falster D, Warton D, Wright IJ (2006). User’s guide to SMATR: standardised major axis tests & routines version 2.0, copyright 2006. http://www.bio.mq.edu.au/ecology/ SMATR/. Cited 10 Jan. 2011. |
[10] |
Harrison SP, Prentice IC, Barboni D, Kohfeld KE, Ni J, Sutra JP (2010). Ecophysiological and bioclimatic foundations for a global plant functional classification. Journal of Vegetation Science, 21, 300-317.
DOI URL |
[11] |
Li GY, Yang DM, Sun SC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Functional Ecology, 22, 557-564.
DOI URL |
[12] |
Meng TT, Ni J, Harrison SP (2009). Plant morphometric traits and climate gradients in northern China: a meta-analysis using quadrat and flora data. Annals of Botany, 104, 1217-1229.
DOI URL PMID |
[13] |
Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B-Biological Sciences, 274, 2109-2114.
DOI URL |
[14] | Niinemets Ü (1996). Plant-growth form alters the relationship between foliar morphology and species shade-tolerance ranking in temperate woody taxa. Vegetatio, 124, 145-153. |
[15] | Niinemets Ü (1998). Adjustment of foliage structure and function to a canopy light gradient in two co-existing deciduous trees. Variability in leaf inclination angles in relation to petiole morphology. Trees-Structure and Function, 12, 446-451. |
[16] |
Niinemets Ü, Kull O (1999). Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees. Tree Physiology, 19, 349-358.
DOI URL PMID |
[17] |
Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007). Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany, 100, 283-303
URL PMID |
[18] |
Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.
DOI URL |
[19] | Niklas KJ (1992). Plant Biomechanics: An Engineering Approach to Plant Form and Function. University of Chicago Press, Chicago. |
[20] | Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31. |
[21] |
Niklas KJ, Cobb ED (2006). Biomass partitioning and leaf N, P-stoichiometry: comparisons between tree and herbace- ous current-year shoots. Plant, Cell & Environment, 29, 2030-2042.
URL PMID |
[22] | Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896. |
[23] |
Niklas KJ, Enquist BJ (2001). Invariant scaling relationships for interspecific plant biomass production rates and body size. Proceedings of the National Academy of Sciences of the United States of America, 98, 2922-2927.
DOI URL PMID |
[24] | Pearcy RW, Yang W (1998). The functional morphology of light capture and carbon gain in the Redwood forest understorey plant Adenocaulon bicolor Hook. Functional Ecology, 12, 543-552. |
[25] | Pitman ETG (1939). A note on normal correlation. Biometrika, 31, 9-12. |
[26] | Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588. |
[27] | R Development Core Team (2011). R: A language and environment for statistical computing. http://www.R-project. org. Cited 10 Jan. 2011. |
[28] | Reich PB, Walters MB, Ellsworth DS (1992). Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecological Monographs, 62, 365-392. |
[29] | Roderick ML, Berry SL, Noble IR (2000). A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves. Functional Ecology, 14, 423-437. |
[30] | Roderick ML, Berry SL, Noble IR, Farquhar GD (1999a). A theoretical approach to linking the composition and morphology with the function of leaves. Functional Ecology, 13, 683-695. |
[31] | Roderick ML, Berry SL, Saunders AR, Noble IR (1999b). On the relationship between the composition, morphology and function of leaves. Functional Ecology, 13, 696-710. |
[32] | Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242. |
[33] | Shinozaki K, Yoda K, Hozumi K, Kira T (1964). A quantitative analysis of plant form the pipe model theory. I. Basic analysis. Japanese Journal of Ecology, 14, 97-105. |
[34] | Takenaka A (1994). Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research, 9, 109-114. |
[35] | Tyree MT, Cochard H, Cruiziat P, Sinclair B, Ameglio T (1993). Drought-induced leaf shedding in walnut: evidence for vulnerability segmentation. Plant, Cell & Environment, 16, 879-882. |
[36] |
Wang H, Ni J, Prentice IC (2011). Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2. Regional Environmental Change. doi: 10.1007/s10113-011-0204-2
DOI URL PMID |
[37] | Warton DI, Weber NC (2002). Common slope tests for bivariate errors-in-variables models. Biometrical Journal, 44, 161-174. |
[38] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
URL PMID |
[39] | West GB, Brown JH (2005). The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. Journal of Experimental Biology, 208, 1575-1592. |
[40] | Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002). Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics, 33, 125-159. |
[41] | Wright IJ, Reich PB, Cornelissen JHC, Falster DS, Groom PK, Hikosaka K, Lee W, Lusk CH, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Warton DI, Westoby M (2005). Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography, 14, 411-421. |
[42] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets Ü, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL PMID |
[43] | Xiang S, Wu N, Sun SC (2009). Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees- Structure and Function, 23, 637-647. |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[3] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[4] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[7] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[8] | 刘艳杰, 刘玉龙, 王传宽, 王兴昌. 东北温带森林5个羽状复叶树种叶成本-效益关系比较[J]. 植物生态学报, 2023, 47(11): 1540-1550. |
[9] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[10] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[11] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[12] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[13] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[14] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[15] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19