植物生态学报 ›› 2014, Vol. 38 ›› Issue (6): 540-549.DOI: 10.3724/SP.J.1258.2014.00050
收稿日期:
2013-12-19
接受日期:
2014-04-01
出版日期:
2014-12-19
发布日期:
2014-06-10
通讯作者:
吴福忠
基金资助:
NI Xiang-Yin,YANG Wan-Qin,LI Han,XU Li-Ya,HE Jie,WU Fu-Zhong()
Received:
2013-12-19
Accepted:
2014-04-01
Online:
2014-12-19
Published:
2014-06-10
Contact:
WU Fu-Zhong
摘要:
亚高山森林凋落叶腐殖化是联系植物与土壤碳库和养分库的重要通道, 在冬季可能受到雪被斑块的影响。该文采用凋落物网袋法, 于2012年11月-2013年4月研究了川西亚高山森林不同厚度雪被斑块(厚雪被、中雪被、薄雪被和无雪被)下优势树种岷江冷杉(Abies faxoniana)、方枝柏(Sabina saltuaria)、四川红杉(Larix mastersiana)、红桦(Betula albo-sinensis)、康定柳(Salix paraplesia)和高山杜鹃(Rhododendron lapponicum)凋落叶在不同雪被关键期(雪被形成期、雪被覆盖期和雪被融化期)的腐殖化特征。结果表明: 亚高山森林冬季不同厚度雪被斑块下6种凋落叶均保持一定程度的腐殖化, 其中红桦凋落叶腐殖化度最大, 达4.45%-5.67%; 岷江冷杉、高山杜鹃、康定柳、四川红杉和方枝柏凋落叶腐殖化度分别为1.91%-2.15%、1.14%-2.03%、1.06%-1.97%、0.01%-1.25%和0.39%-1.21%。凋落叶腐殖质在雪被形成期、融化期和整个冬季累积, 且累积量随雪被厚度减小而增加, 但在雪被覆盖期降解, 且降解量随雪被厚度减小而增大。相关分析结果表明, 亚高山森林凋落叶前期腐殖化主要受凋落叶质量影响, 且与氮和酸不溶性组分呈极显著正相关, 而与碳、磷、水溶性和有机溶性组分呈极显著负相关。表明冬季变暖情景下雪被厚度的减小可能促进亚高山森林凋落叶腐殖化, 但凋落叶腐殖化在不同雪被关键期受雪被斑块和凋落叶质量的调控。
倪祥银,杨万勤,李晗,徐李亚,何洁,吴福忠. 雪被斑块对川西亚高山森林6种凋落叶冬季腐殖化的影响. 植物生态学报, 2014, 38(6): 540-549. DOI: 10.3724/SP.J.1258.2014.00050
NI Xiang-Yin,YANG Wan-Qin,LI Han,XU Li-Ya,HE Jie,WU Fu-Zhong. Effects of snowpack on early foliar litter humification during winter in a subalpine forest of western Sichuan. Chinese Journal of Plant Ecology, 2014, 38(6): 540-549. DOI: 10.3724/SP.J.1258.2014.00050
图1 各采样日期不同雪被斑块的雪被厚度(平均值±标准偏差, n = 9)。SCS, 雪被覆盖期; SFS, 雪被形成期; SMS, 雪被融化期。DS, 厚雪被; MS, 中雪被; TS, 薄雪被; NS, 无雪被。相邻采样日期之间的时期定义为一个雪被关键期。不同小写字母表示雪被厚度在相同日期、不同雪被斑块之间差异显著(p < 0.05)。
Fig. 1 The thickness of snow cover at each sampling date (mean ± SD, n = 9). SCS, snow cover stage; SFS, snow formation stage; SMS, snow melt stage. DS, deep snowpack; MS, medium snowpack; TS, thin snowpack; NS, no snowpack. The time periods between successive sampling dates were identified with critical stages of snow cover according to our previous studies. Different lowercase letters indicate significant differences in snow cover thickness among snowpack types at each sampling date separately (p < 0.05).
图2 各雪被斑块和空气的日平均温度。SCS, 雪被覆盖期; SFS, 雪被形成期; SMS, 雪被融化期。DS, 厚雪被; MS, 中雪被; TS, 薄雪被; NS, 无雪被。
Fig. 2 The daily average temperature of snowpack and air. SCS, snow cover stage; SFS, snow formation stage; SMS, snow melt stage. DS, deep snowpack; MS, medium snowpack; TS, thin snowpack; NS, no snowpack.
物种 Species | 有机碳 OC (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 水溶性组分 WSC (g·kg-1) | 有机溶性组分 OSC (g·kg-1) | 酸溶性组分 ASC (g·kg-1) | 酸不溶性组分 AIR (g·kg-1) |
---|---|---|---|---|---|---|---|
岷江冷杉 Abies faxoniana | 505.60 ± 29.61a | 8.75 ± 0.60c | 1.14 ± 0.10b | 40.83 ± 0.54ab | 27.62 ± 2.28ab | 27.36 ± 1.33b | 23.92 ± 2.54b |
方枝柏 Sabina saltuaria | 516.36 ± 17.67a | 8.77 ± 0.09c | 1.24 ± 0.05ab | 35.74 ± 0.69c | 33.16 ± 3.43a | 32.43 ± 1.29a | 20.60 ± 3.41b |
四川红杉 Larix mastersiana | 543.49 ± 6.29a | 8.60 ± 0.41c | 1.33 ± 0.02a | 40.08 ± 1.08b | 19.11 ± 0.68c | 29.24 ± 0.87ab | 21.46 ± 0.94b |
红桦 Betula albo-sinensis | 496.86 ± 14.51ab | 13.34 ± 0.22a | 0.91 ± 0.04c | 25.06 ± 1.96d | 11.43 ± 0.75d | 27.74 ± 0.94b | 50.96 ± 0.96a |
康定柳 Salix paraplesia | 452.27 ± 16.51b | 11.46 ± 0.89b | 1.11 ± 0.02b | 41.71 ± 0.32ab | 18.48 ± 1.57c | 28.56 ± 1.88b | 26.15 ± 3.29b |
高山杜鹃 Rhododendron lapponicum | 502.91 ± 15.98a | 6.66 ± 0.21d | 1.07 ± 0.09bc | 43.14 ± 1.16a | 25.84 ± 2.29b | 27.00 ± 0.59b | 21.84 ± 3.42b |
表1 6种凋落叶初始组分含量(平均值±标准偏差, n = 3)
Table 1 Initial concentrations of organic carbon (OC), total nitrogen (TN), total phosphorus (TP), water-soluble components (WSC), organic-soluble components (OSC), and acid-soluble components (ASC) and acid-insoluble residues (AIR) of six foliar litter types (mean ± SD, n = 3)
物种 Species | 有机碳 OC (g·kg-1) | 全氮 TN (g·kg-1) | 全磷 TP (g·kg-1) | 水溶性组分 WSC (g·kg-1) | 有机溶性组分 OSC (g·kg-1) | 酸溶性组分 ASC (g·kg-1) | 酸不溶性组分 AIR (g·kg-1) |
---|---|---|---|---|---|---|---|
岷江冷杉 Abies faxoniana | 505.60 ± 29.61a | 8.75 ± 0.60c | 1.14 ± 0.10b | 40.83 ± 0.54ab | 27.62 ± 2.28ab | 27.36 ± 1.33b | 23.92 ± 2.54b |
方枝柏 Sabina saltuaria | 516.36 ± 17.67a | 8.77 ± 0.09c | 1.24 ± 0.05ab | 35.74 ± 0.69c | 33.16 ± 3.43a | 32.43 ± 1.29a | 20.60 ± 3.41b |
四川红杉 Larix mastersiana | 543.49 ± 6.29a | 8.60 ± 0.41c | 1.33 ± 0.02a | 40.08 ± 1.08b | 19.11 ± 0.68c | 29.24 ± 0.87ab | 21.46 ± 0.94b |
红桦 Betula albo-sinensis | 496.86 ± 14.51ab | 13.34 ± 0.22a | 0.91 ± 0.04c | 25.06 ± 1.96d | 11.43 ± 0.75d | 27.74 ± 0.94b | 50.96 ± 0.96a |
康定柳 Salix paraplesia | 452.27 ± 16.51b | 11.46 ± 0.89b | 1.11 ± 0.02b | 41.71 ± 0.32ab | 18.48 ± 1.57c | 28.56 ± 1.88b | 26.15 ± 3.29b |
高山杜鹃 Rhododendron lapponicum | 502.91 ± 15.98a | 6.66 ± 0.21d | 1.07 ± 0.09bc | 43.14 ± 1.16a | 25.84 ± 2.29b | 27.00 ± 0.59b | 21.84 ± 3.42b |
图3 川西亚高山森林不同雪被斑块下6种凋落叶在各雪被关键期的腐殖质碳净累积量(平均值±标准偏差, n = 9)。SCS, 雪被覆盖期; SFS, 雪被形成期; SMS, 雪被融化期; W, 冬季。DS, 厚雪被; MS, 中雪被; TS, 薄雪被; NS, 无雪被。不同小写字母表示腐殖质碳净累积量在相同关键期、不同雪被斑块之间差异显著(p < 0.05)。
Fig. 3 Net accumulation of humus carbon of six foliar litter types under snowpack at each critical stage in the subalpine forest of western Sichuan (mean ± SD, n = 9). AF, Abies foxoniana; BA, Betula albo-sinensis; LM, Larix mastersiana; RL, Rhododendron lapponicum; SP, Salix paraplesia; SS, Sabina saltuaria. SCS, snow cover stage; SFS, snow formation stage; SMS, snow melt stage; W, winter. DS, deep snowpack; MS, medium snowpack; TS, thin snowpack; NS, no snowpack; Different lowercase letters indicate significant differences in humus carbon among snowpack types at each stage separately (p < 0.05).
图4 川西亚高山森林不同雪被斑块下6种凋落叶在各雪被关键期的腐殖化度(平均值±标准偏差, n = 9)。SCS, 雪被覆盖期; SFS, 雪被形成期; SMS, 雪被融化期; W, 冬季。DS, 厚雪被; MS, 中雪被; TS, 薄雪被; NS, 无雪被。不同小写字母表示腐殖化度在相同关键期、不同雪被斑块之间差异显著(p < 0.05)。
Fig. 4 The humification degrees of six foliar litter types under snowpack at each critical stage in the subalpine forest of western Sichuan (mean ± SD, n = 9). AF, Abies foxoniana; BA, Betula albo-sinensis; LM, Larix mastersiana; RL, Rhododendron lapponicum; SP, Salix paraplesia; SS, Sabina saltuaria. SCS, snow cover stage; SFS, snow formation stage; SMS, snow melt stage; W, winter. DS, deep snowpack; MS, medium snowpack; TS, thin snowpack; NS, no snowpack. Different lowercase letters indicate significant differences in humification degrees among snowpack types at each stage separately (p < 0.05).
图5 川西亚高山森林不同雪被斑块下6种凋落叶在各雪被关键期的腐殖化速率(平均值±标准偏差, n = 9)。SCS, 雪被覆盖期; SFS, 雪被形成期; SMS, 雪被融化期; W, 冬季。DS, 厚雪被; MS, 中雪被; TS, 薄雪被; NS, 无雪被。不同小写字母表示腐殖化速率在相同关键期、不同雪被斑块之间差异显著(p < 0.05)。
Fig. 5 The humification rates of six foliar litter types under snowpack at each critical stage in the subalpine forest of western Sichuan (mean ± SD, n = 9). AF, Abies foxoniana; BA, Betula albo-sinensis; LM, Larix mastersiana; RL, Rhododendron lapponicum; SP, Salix paraplesia; SS, Sabina saltuaria. SCS, snow cover stage; SFS, snow formation stage; SMS, snow melt stage; W, winter. DS, deep snowpack; MS, medium snowpack; TS, thin snowpack; NS, no snowpack. Different lowercase letters indicate significant differences in humification rates among snowpack types at each stage separately (p < 0.05).
df | FHC | FHD | FHR | |
---|---|---|---|---|
Time | 2 | 738.973** | 2475.411** | 1578.775** |
Litter | 5 | 491.873** | 721.283** | 757.425** |
Snow | 3 | 51.422** | 35.570** | 89.808** |
Time × Litter | 10 | 276.287** | 468.349** | 381.989** |
Time × Snow | 6 | 60.320** | 161.962** | 152.321** |
Litter × Snow | 15 | 3.764** | 7.741** | 8.867** |
Time × Litter × Snow | 30 | 15.752** | 21.699** | 23.618** |
表2 不同雪被关键期(time)、凋落叶(litter)、雪被斑块(snow)对腐殖质碳(HC)、腐殖化度(HD)、腐殖化速率(HR)的重复测量方差分析
Table 2 Repeated measures ANOVA results for the effects of time, litter, snow, and their interactions on litter humus carbon (HC), humification degree (HD) and humification rate (HR)
df | FHC | FHD | FHR | |
---|---|---|---|---|
Time | 2 | 738.973** | 2475.411** | 1578.775** |
Litter | 5 | 491.873** | 721.283** | 757.425** |
Snow | 3 | 51.422** | 35.570** | 89.808** |
Time × Litter | 10 | 276.287** | 468.349** | 381.989** |
Time × Snow | 6 | 60.320** | 161.962** | 152.321** |
Litter × Snow | 15 | 3.764** | 7.741** | 8.867** |
Time × Litter × Snow | 30 | 15.752** | 21.699** | 23.618** |
雪被形成期 Snow formation stage | 雪被覆盖期 Snow cover stage | 雪被融化期 Snow melt stage | 整个冬季 Whole winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
腐殖质碳 Humus carbon | 腐殖化度 Humification degree | 腐殖质碳 Humus carbon | 腐殖化度 Humification degree | 腐殖质碳 Humus carbon | 腐殖化度 Humification degree | 腐殖质碳 Humus carbon | 腐殖化度 Humification degree | ||||
雪被厚度 Snow cover thickness | -0.484** | -0.536** | 0.395** | 0.562** | -0.169* | -0.196** | -0.234** | -0.155* | |||
日平均温度 Daily average temperature | -0.057 | 0.020 | -0.153* | -0.102 | -0.070 | -0.054 | -0.018 | -0.053 | |||
昼平均温度 Daytime average temperature | 0.100 | 0.068 | -0.062 | -0.071 | -0.060 | -0.063 | -0.007 | -0.042 | |||
夜平均温度 Nighttime average temperature | 0.163* | 0.107 | 0.012 | 0.099 | 0.054 | 0.093 | 0.074 | 0.030 | |||
正积温 Positive accumulated temperature | 0.018 | 0.006 | -0.112 | -0.173* | -0.037 | 0.013 | -0.019 | 0.028 | |||
负积温 Negative accumulated temperature | -0.107 | -0.137* | 0.049 | 0.150* | 0.037 | 0.025 | -0.006 | -0.041 | |||
冻融循环次数 Number of freeze-thaw cycles | 0.085 | 0.063 | -0.216** | -0.149* | -0.009 | 0.044 | 0.052 | 0.047 | |||
有机碳 Organic carbon | -0.068 | -0.247** | 0.110 | -0.352** | -0.129 | -0.158* | -0.324** | -0.459** | |||
全氮 Total nitrogen | 0.238** | 0.186** | -0.123 | 0.011 | 0.315** | 0.280** | 0.488** | 0.524** | |||
碳氮比 C to N ratio | -0.191** | -0.135* | 0.104 | -0.147* | -0.335** | -0.328** | -0.512** | -0.539** | |||
全磷 Total phosphorus | -0.395** | -0.305** | 0.365** | 0.146* | -0.654** | -0.619** | -0.727** | -0.725** | |||
水溶性组分 Water soluble components | -0.339** | -0.256** | 0.251** | 0.218** | -0.409** | -0.423** | -0.639** | -0.554** | |||
有机溶性组分 Organic soluble components | -0.195** | -0.517** | 0.333** | 0.313** | -0.415** | -0.458** | -0.417** | -0.552** | |||
酸溶性组分 Acid soluble components | -0.080 | 0.165* | -0.202** | -0.297** | -0.145* | -0.132 | -0.040 | -0.096 | |||
酸不溶性组分 Acid insoluble residue | 0.373** | 0.455** | -0.220** | -0.157* | 0.404** | 0.457** | 0.581** | 0.698** |
表3 不同雪被关键期腐殖质碳、腐殖化度与环境因子、基质质量的相关分析
Table 3 Correlation analyses between humus carbon, humification degrees and environmental factors and litter qualities at each stage
雪被形成期 Snow formation stage | 雪被覆盖期 Snow cover stage | 雪被融化期 Snow melt stage | 整个冬季 Whole winter | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
腐殖质碳 Humus carbon | 腐殖化度 Humification degree | 腐殖质碳 Humus carbon | 腐殖化度 Humification degree | 腐殖质碳 Humus carbon | 腐殖化度 Humification degree | 腐殖质碳 Humus carbon | 腐殖化度 Humification degree | ||||
雪被厚度 Snow cover thickness | -0.484** | -0.536** | 0.395** | 0.562** | -0.169* | -0.196** | -0.234** | -0.155* | |||
日平均温度 Daily average temperature | -0.057 | 0.020 | -0.153* | -0.102 | -0.070 | -0.054 | -0.018 | -0.053 | |||
昼平均温度 Daytime average temperature | 0.100 | 0.068 | -0.062 | -0.071 | -0.060 | -0.063 | -0.007 | -0.042 | |||
夜平均温度 Nighttime average temperature | 0.163* | 0.107 | 0.012 | 0.099 | 0.054 | 0.093 | 0.074 | 0.030 | |||
正积温 Positive accumulated temperature | 0.018 | 0.006 | -0.112 | -0.173* | -0.037 | 0.013 | -0.019 | 0.028 | |||
负积温 Negative accumulated temperature | -0.107 | -0.137* | 0.049 | 0.150* | 0.037 | 0.025 | -0.006 | -0.041 | |||
冻融循环次数 Number of freeze-thaw cycles | 0.085 | 0.063 | -0.216** | -0.149* | -0.009 | 0.044 | 0.052 | 0.047 | |||
有机碳 Organic carbon | -0.068 | -0.247** | 0.110 | -0.352** | -0.129 | -0.158* | -0.324** | -0.459** | |||
全氮 Total nitrogen | 0.238** | 0.186** | -0.123 | 0.011 | 0.315** | 0.280** | 0.488** | 0.524** | |||
碳氮比 C to N ratio | -0.191** | -0.135* | 0.104 | -0.147* | -0.335** | -0.328** | -0.512** | -0.539** | |||
全磷 Total phosphorus | -0.395** | -0.305** | 0.365** | 0.146* | -0.654** | -0.619** | -0.727** | -0.725** | |||
水溶性组分 Water soluble components | -0.339** | -0.256** | 0.251** | 0.218** | -0.409** | -0.423** | -0.639** | -0.554** | |||
有机溶性组分 Organic soluble components | -0.195** | -0.517** | 0.333** | 0.313** | -0.415** | -0.458** | -0.417** | -0.552** | |||
酸溶性组分 Acid soluble components | -0.080 | 0.165* | -0.202** | -0.297** | -0.145* | -0.132 | -0.040 | -0.096 | |||
酸不溶性组分 Acid insoluble residue | 0.373** | 0.455** | -0.220** | -0.157* | 0.404** | 0.457** | 0.581** | 0.698** |
[1] |
Allison SD (2006). Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes. Biogeochemistry, 81, 361-373.
DOI URL |
[2] |
Austin AT, Ballaré CL (2010). Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 107, 4618-4622.
DOI URL PMID |
[3] |
Baptist F, Yoccoz NG, Choler P (2010). Direct and indirect control by snow cover decomposition in alpine tundra along a snowmelt gradient. Plant and Soil, 328, 397-410.
DOI URL |
[4] | Berg B, McClaugherty C (2014). Plant Litter: Decomposition, Humus Formation, Carbon Sequestration. 3rd edn. Springer-Verlag, Berlin. 11-15. |
[5] |
Bokhorst S, Metcalfe DB, Wardle DA (2013). Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biology and Biochemistry, 62, 157-164.
DOI URL |
[6] |
Bokhorst S, Phoenix GK, Bjerke JW, Callaghan TV, Huyer-Brugman F, Berg MP (2012). Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biology, 18, 1152-1162.
DOI URL |
[7] |
Campbell JL, Mitchell MJ, Groffman PM, Christenson LM, Hardy JP (2005). Winter in northeastern North America: a critical stage for ecological processes. Frontiers in Ecology and the Environment, 3, 314-322.
DOI URL |
[8] | Cleveland CC, Neff JC, Townsend AR, Hood E (2004). Composition, dynamics, and fate of leached dissolved organic matter in terrestrial ecosystems: results from a decomposition experiment. Ecosystems, 7, 275-285. |
[9] |
Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The microbial efficiency-matrix stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
URL PMID |
[10] | Deng RJ, Yang WQ, Zhang J, Hu JL, Feng RF, Jian Y, Lin J (2007). Carbon, nitrogen and phosphorus storage in soil organic layer of the subalpine forest in western Sichuan. Chinese Journal of Applied and Environmental Biology, 13, 492-496. (in Chinese with English abstract) |
[ 邓仁菊, 杨万勤, 张健, 胡建利, 冯瑞芳, 简毅, 林静 (2007). 川西亚高山森林土壤有机层碳、氮、磷储量特征. 应用与环境生物学报, 13, 492-496.] | |
[11] | Dou S (2010). Soil Organic Matter, Science Press, Beijing. 84. (in Chinese) |
[ 窦森 (2010). 土壤有机质. 科学出版社, 北京. 84.] | |
[12] |
Elliott J (2013). Evaluating the potential contribution of vegetation as a nutrient source in snowmelt runoff. Canadian Journal of Soil Science, 93, 435-443.
DOI URL |
[13] |
Gigliotti G, Businelli D, Giusquiani PL (1999). Composition changes of soil humus after massive application of urban waste compost: a comparison between FT-IR spectroscopy and humification parameters. Nutrient Cycling in Agroecosystems, 55, 23-28.
DOI URL |
[14] |
Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001). Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry, 56, 135-150.
DOI URL |
[15] |
Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, Nolan S (2001). Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry, 56, 151-174.
DOI URL |
[16] |
He W, Wu FZ, Yang WQ, Wu QQ, He M, Zhao YY (2013). Effects of snow patches on leaf litter mass loss of two shrubs in an alpine forest. Chinese Journal of Plant Ecology, 37, 306-316. (in Chinese with English abstract)
DOI URL |
[ 何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸 (2013). 雪被斑块对高山森林两种灌木凋落叶质量损失的影响. 植物生态学报, 37, 306-316.]
DOI URL |
|
[17] | Hilli S, Stark S, Willför S, Smeds A, Reunanen M, Hautajärvi R (2012). What is the composition of AIR? Pyrolysis-GC-MS characterization of acid-insoluble residue from fresh litter and organic horizons under boreal forests in southern Finland. Geoderma, 179- 180, 63-72. |
[18] | Hobbie SE, Eddy WC, Buyarski CR, Adair EC, Ogdahl ML, Weisenhorn P (2012). Response of decomposing litter and its microbial community to multiple forms of nitrogen enrichment. Ecological Monographs, 82, 389-405. |
[19] |
Klotzbücher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011). A new conceptual model for the fate of lignin in decomposing plant litter. Ecology, 92, 1052-1062.
URL PMID |
[20] |
Konestabo HS, Michelsen A, Holmstrup M (2007). Responses of springtail and mite populations to prolonged periods of soil freeze-thaw cycles in a sub-artic ecosystem. Applied Soil Ecology, 36, 136-146.
DOI URL |
[21] |
Kreyling J, Haei M, Laudon H (2013). Snow removal reduces annual cellulose decomposition in a riparian boreal forest. Canadian Journal of Soil Science, 93, 427-433.
DOI URL |
[22] |
Olsson PQ, Sturm M, Racine CH, Romanovsky V, Liston GE (2003). Five stages of the Alaskan arctic cold season with ecosystem implications. Arctic, Antarctic, and Alpine Research, 35, 74-81.
DOI URL |
[23] |
Ono K, Hiradate S, Morita S, Ohse K, Hirai K (2011). Humification processes of needle litters on forest floors in Japanese cedar (Cryptomeria japonica) and Hinoki cypress (Chamaecyparis obtusa) plantations in Japan. Plant and Soil, 338, 171-181.
DOI URL |
[24] |
Ono K, Hirai K, Morita S, Ohse K, Hiradate S (2009). Organic carbon accumulation processes on a forest floor during an early humification stage in a temperate deciduous forest in Japan: evaluations of chemical compositional changes by 13C NMR and their decomposition rates from litterbag experiment. Geoderma, 151, 351-356.
DOI URL |
[25] |
Ponge JF (2013). Plant-soil feedbacks mediated by humus forms: a review. Soil Biology and Biochemistry, 57, 1048-1060.
DOI URL |
[26] |
Ponge JF, Chevalier R (2006). Humus index as an indicator of forest stand and soil properties. Forest Ecology and Management, 233, 165-175.
DOI URL |
[27] |
Prescott CE, Maynard DG, Laihl R (2000). Humus in northern forests: friend or for? Forest Ecology and Management, 133, 23-36.
DOI URL |
[28] |
Saccone P, Morin S, Baptist F, Bonneville JM, Colace MP, Domine F, Faure M, Geremia R, Lochet J, Poly F, Lavorel S, Clément JC (2013). The effects of snowpack properties and plant strategies on litter decomposition during winter in subalpine meadows. Plant and Soil, 363, 215-229.
DOI URL |
[29] |
Shibata H, Hasegawa Y, Watanabe T, Fukuzawa K (2013). Impact of snowpack decrease on net nitrogen mineralization and nitrification in forest soil of northern Japan. Biogeochemistry, 116, 69-82.
DOI URL |
[30] | Stevenson FJ (1994). Humus Chemistry: Genesis, Composition, Reactions. 2nd edn. John Wiley & Sons, New York. 17. |
[31] |
Talbot JM, Treseder KK (2012). Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology, 93, 345-354.
DOI URL PMID |
[32] |
Tan B, Wu FZ, Yang WQ, Yang YL, Wang A, Kang LN (2011). Effects of snow pack removal on the dynamics of winter-time soil temperature, carbon, nitrogen, and phosphorus in alpine forests of west Sichuan. Chinese Journal of Applied Ecology, 22, 2553-2559. (in Chinese with English abstract)
URL PMID |
[ 谭波, 吴福忠, 杨万勤, 杨玉莲, 王奥, 康丽娜 (2011). 雪被去除对川西高山森林冬季土壤温度及碳、氮、磷动态的影响. 应用生态学报, 22, 2553-2559.]
URL PMID |
|
[33] |
Wang H, Hong YT, Lin QH, Hong B, Zhu YX, Wang Y, Xu H (2010). Response of humification degree to monsoon climate during the Holocene from the Hongyuan peat bog, eastern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 286, 171-177.
DOI URL |
[34] |
Wetterstedt JÅM, Persson T, Ågren GI (2010). Temperature sensitivity and substrate quality in soil organic matter decomposition: results of an incubation study with three substrates. Global Change Biology, 16, 1806-1819.
DOI URL |
[35] |
Wu FZ, Yang WQ, Zhang J, Deng RJ (2010). Litter decomposition in two subalpine forests during the freeze-thaw season. Acta Oecologica, 36, 135-140.
DOI URL |
[36] |
Wu QG, Wu FZ, Yang WQ, Tan B, Yang YL, Ni XY, He J (2013). Characteristics of gap and disturbance regimes of the alpine fir forest in western Sichuan. Chinese Journal of Applied and Environmental Biology, 19, 922-928. (in Chinese with English abstract)
DOI URL |
[ 吴庆贵, 吴福忠, 杨万勤, 谭波, 杨玉莲, 倪祥银, 何洁 (2013). 川西高山森林林隙特征及干扰状况. 应用与环境生物学报, 19, 922-928.]
DOI URL |
|
[37] |
Wu QQ, Wu FZ, Yang WQ, Xu ZF, He W, He M, Zhao YY, Zhu JX (2013). Effect of seasonal snow cover on litter decomposition in alpine forest. Chinese Journal of Plant Ecology, 37, 296-305. (in Chinese with English abstract)
DOI URL |
[ 武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄 (2013). 季节性雪被对高山森林凋落物分解的影响. 植物生态学报, 37, 296-305.]
DOI URL |
|
[38] | Wu Y, Onipchenko VG (2007). The impact of snow-cover on alpine vegetation type of different aspects in the west of Sichuan Province. Acta Ecologica Sinica, 27, 5120-5129. (in Chinese with English Abstract) |
[ 吴彦, Onipchenko VG (2007). 雪被对川西高山植被坡向性分异的影响. 生态学报, 27, 5120-5129.] | |
[39] | Yang WQ, Wang KY, Kellomäki S, Gong HD (2005). Litter dynamics of three subalpine forests in western Sichuan. Pedosphere, 15, 653-659. |
[40] |
Yang YL, Wu FZ, He ZH, Xu ZF, Liu Y, Yang WQ, Tan B (2012a). Effects of snow pack removal on soil microbial biomass carbon and nitrogen and the number of soil culturable microorganisms during wintertime in alpine Abies faxoniana forest of western Sichuan, southwest China. Chinese Journal of Applied Ecology, 23, 1809-1816. (in Chinese with English Abstract)
URL PMID |
[ 杨玉莲, 吴福忠, 何振华, 徐振锋, 刘洋, 杨万勤, 谭波 (2012a). 雪被去除对川西高山冷杉林冬季土壤微生物生物量碳氮和可培养微生物数量的影响. 应用生态学报, 23, 1809-1816.]
URL PMID |
|
[41] |
Yang YL, Wu FZ, Yang WQ, Tan B, Xu ZF, Liu Y, Kang LN (2012b). Effects of snow pack removal on soil hydrolase enzyme activities in an alpine Abies faxoniana forest of western Sichuan. Acta Ecologica Sinica, 32, 7045-7052. (in Chinese with English abstract)
DOI URL |
[ 杨玉莲, 吴福忠, 杨万勤, 谭波, 徐振锋, 刘洋, 康丽娜 (2012b). 雪被去除对川西高山冷杉林冬季土壤水解酶活性的影响. 生态学报, 32, 7045-7052.]
DOI URL |
|
[42] |
Zeng DH, Mao R, Chang SX, Li LJ, Yang D (2010). Carbon mineralization of tree leaf litter and crop residues from poplar-based agroforestry systems in northern China: a laboratory study. Applied Soil Ecology, 44, 133-137.
DOI URL |
[1] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[2] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[3] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[4] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[5] | 袁锋, 王艳艳, 李茂瑾, 江传阳, 刘贺娜, 李坤玲, 洪滔, 吴承祯, 陈灿. 不同海岸距离上木麻黄凋落叶金属元素含量及归还量动态特征[J]. 植物生态学报, 2020, 44(8): 819-827. |
[6] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[7] | 陈文静, 贡璐, 刘雨桐. 季节性雪被对天山雪岭云杉凋落叶分解和碳氮磷释放的影响[J]. 植物生态学报, 2018, 42(4): 487-497. |
[8] | 武启骞, 王传宽. 控雪处理下红松和蒙古栎凋落叶分解动态[J]. 植物生态学报, 2018, 42(2): 153-163. |
[9] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[10] | 刘群, 庄丽燕, 杨万勤, 倪祥银, 李婷婷, 徐振锋. 川西亚高山两种树木不同径级根系腐殖化过程中胡敏酸和富里酸的累积特征[J]. 植物生态学报, 2017, 41(12): 1251-1261. |
[11] | 高景, 王金牛, 徐波, 谢雨, 贺俊东, 吴彦. 不同雪被厚度下典型高山草地早春植物叶片性状、株高及生物量分配的研究[J]. 植物生态学报, 2016, 40(8): 775-787. |
[12] | 万菁娟, 郭剑芬, 纪淑蓉, 任卫岭, 司友涛, 杨玉盛. 不同来源可溶性有机物对亚热带森林土壤CO2排放的影响[J]. 植物生态学报, 2015, 39(7): 674-681. |
[13] | 李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 胡义. 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响[J]. 植物生态学报, 2015, 39(3): 229-238. |
[14] | 唐仕姗,杨万勤,殷睿,熊莉,王海鹏,王滨,张艳,彭艳君,陈青松,徐振锋. 中国森林生态系统凋落叶分解速率的分布特征及其控制因子[J]. 植物生态学报, 2014, 38(6): 529-539. |
[15] | 何洁,杨万勤,倪祥银,李晗,徐李亚,吴福忠. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响[J]. 植物生态学报, 2014, 38(6): 550-561. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19