Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (4): 405-415.DOI: 10.17521/cjpe.2021.0374
• Research Articles • Previous Articles Next Articles
WANG Yi-Chen1, DENG Zhi-Yan1, ZHANG Shou-Xin1, XIAO Chu-Chu1,*(), FENG Guang1, LONG Wen-Xing1,*(), LIU Ji-Shi2
Received:
2021-10-15
Accepted:
2022-02-18
Online:
2022-04-20
Published:
2022-02-18
Contact:
XIAO Chu-Chu,LONG Wen-Xing
Supported by:
WANG Yi-Chen, DENG Zhi-Yan, ZHANG Shou-Xin, XIAO Chu-Chu, FENG Guang, LONG Wen-Xing, LIU Ji-Shi. Host tree selection by vascular epiphytes in tropical cloud forest of Hainan Island, China[J]. Chin J Plant Ecol, 2022, 46(4): 405-415.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0374
Fig. 1 Frequency of occurrence of epiphytic vascular species on host trees. A, Relationship between the number of epiphytic vascular species per tree (richness) and the number of epiphytic vascular individuals per tree (abundance). B, Frequency distribution of the number of epiphytic vascular individuals per tree. C, Frequency distribution of the number of epiphytic vascular species per tree. Darker circles indicate higher number of observations.
Fig. 3 Variations of the abundance (A) and richness (B) of epiphytic vascular species with substrate types. Vertical line of the boxplots indicate the distribution range of the normal value of data. Different lowercase letters indicate significant difference (p < 0.01).
Fig. 4 Selectivity of epiphytic vascular species for substrate types. A, Pyrrosia eberhardtii. B, Davallia repens. C, Liparis bootanensis. D, Psychotria serpens. E, Coelogyne fimbriata. Vertical line on boxplots indicate the distribution range of the normal value of data. Different lowercase letters indicate significant difference (p < 0.01).
[1] |
Adhikari YP, Fischer A, Fischer HS (2016). Epiphytic orchids and their ecological niche under anthropogenic influence in central Himalayas, Nepal. Journal of Mountain Science, 13, 774-784.
DOI URL |
[2] |
Adhikari YP, Hoffmann S, Kunwar RM, Bobrowski M, Jentsch A, Beierkuhnlein C (2021). Vascular epiphyte diversity and host tree architecture in two forest management types in the Himalaya. Global Ecology and Conservation, 27, e01544. DOI: 10.1016/j.gecco.2021.e01544.
DOI URL |
[3] | Annaselvam J, Parthasarathy N (2001). Diversity and distribution of herbaceous vascular epiphytes in a tropical evergreen forest at Varagalaiar, Western Ghats, India. Biodiversity & Conservation, 10, 317-329. |
[4] | Benavides DAM, Duque M AJ, Duivenvoorden JF, Vasco A, Callejas R (2005). A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodiversity & Conservation, 14, 739-758. |
[5] |
Benner JW, Vitousek PM (2007). Development of a diverse epiphyte community in response to phosphorus fertilization. Ecology Letters, 10, 628-636.
PMID |
[6] |
Bergstrom BJ, Carter R (2008). Host-tree selection by an epiphytic orchid, Epidendrum magnoliae Muhl. (green fly orchid), in an inland hardwood hammock in Georgia. Southeastern Naturalist, 7, 571-580.
DOI URL |
[7] |
Boelter CR, Dambros CS, Nascimento HEM, Zartman CE (2014). A tangled web in tropical tree-tops: effects of edaphic variation, neighbourhood phorophyte composition and bark characteristics on epiphytes in a central Amazonian forest. Journal of Vegetation Science, 25, 1090-1099.
DOI URL |
[8] | Bubb P, May I, Miles L (2004). Cloud Forest Agenda. UNEP- WCMC, Cambridge, UK. 5-10. |
[9] |
Burns KC, Zotz G (2010). A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale. Ecology, 91, 377-385.
PMID |
[10] |
Callaway RM, Reinhart KO, Moore GW, Moore DJ, Pennings SC (2002). Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia, 132, 221-230.
DOI PMID |
[11] |
Callaway RM, Reinhart KO, Tucker SC, Pennings SC (2001). Effects of epiphytic lichens on host preference of the vascular epiphyte Tillandsia usneoides. Oikos, 94, 433-441.
DOI URL |
[12] |
Clark KL, Nadkarni NM, Gholz HL (1998). Growth, net production, litter decomposition, and net nitrogen accumulation by epiphytic bryophytes in a tropical montane forest. Biotropica, 30, 12-23.
DOI URL |
[13] |
Ding Y, Liu GF, Zang RG, Zhang J, Lu XH, Huang JH (2016). Distribution of vascular epiphytes along a tropical elevational gradient: disentangling abiotic and biotic determinants. Scientific Reports, 6, 19706. DOI: 10.1038/srep19706.
DOI PMID |
[14] |
Dislich R, Mantovani W (2016). Vascular epiphyte assemblages in a Brazilian Atlantic Forest fragment: investigating the effect of host tree features. Plant Ecology, 217, 1- 12.
DOI URL |
[15] |
Frei JK O. P, Dodson CH (1972). The chemical effect of certain bark substrates on the germination and early growth of epiphytic orchids. Bulletin of the Torrey Botanical Club, 99, 301-307.
DOI URL |
[16] |
Gentry AH, Dodson C (1987). Contribution of nontrees to species richness of a tropical rain forest. Biotropica, 19, 149- 156.
DOI URL |
[17] |
Gustafsson L, Eriksson I (1995). Factors of importance for the epiphytic vegetation of aspen Populus tremula with special emphasis on bark chemistry and soil chemistry. Journal of Applied Ecology, 32, 412-424.
DOI URL |
[18] |
Hegarty EE (1991). Leaf litter production by lianes and trees in a sub-tropical Australian rain forest. Journal of Tropical Ecology, 7, 201-214.
DOI URL |
[19] |
Hirata A, Kamijo T, Saito S (2008). Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest. Plant Ecology, 201, 247-254.
DOI URL |
[20] | Hu YJ, Li YX (1992). Tropical Rain Forest in Hainan Island. Guangdong Higher Education Press, Guangzhou. 7-32. |
[ 胡玉佳, 李玉杏 (1992). 海南岛热带雨林. 广东高等教育出版社, 广州. 7-32.] | |
[21] |
Köster N, Nieder J, Barthlott W (2011). Effect of host tree traits on epiphyte diversity in natural and anthropogenic habitats in Ecuador. Biotropica, 43, 685-694.
DOI URL |
[22] | Li ZL (2019). Investigation and Control Countermeasures of Diseases and Harmful Animals of Dendrobium Officinale in Field Return Plantation in the Yachang Reserve. Master degree dissertation, Guangxi University, Nanning. 6-9. |
[ 李柱林 (2019). 雅长保护区铁皮石斛野外回归种植病虫害调查及防治对策研究. 硕士学位论文, 广西大学, 南宁. 6-9.] | |
[23] | Liu GF (2010). Diversity and Distribution of Vascular Epiphytes of Tropical Forests in Hainan Island. China. PhD dissertation, Chinese Academy of Forestry, Beijing. 28-46. |
[ 刘广福 (2010). 海南岛热带森林附生维管植物多样性和分布. 博士学位论文, 中国林业科学研究院, 北京. 28-46.] | |
[24] | Liu GF, Ding Y, Zang RG, Xu YY, Lin C, Li XC (2010). Diversity and distribution of vascular epiphytes in the tropical natural coniferous forest of Hainan Island, China. Chinese Journal of Plant Ecology, 34, 1283-1293. |
[ 刘广福, 丁易, 臧润国, 许洋瑜, 林崇, 李小成 (2010). 海南岛热带天然针叶林附生维管植物多样性和分布. 植物生态学报, 34, 1283-1293.]
DOI |
|
[25] |
Long WX, Ding Y, Zang RG, Yang M, Chen SW (2011). Environmental characteristics of tropical cloud forests in the rainy season in Bawangling National Nature Reserve on Hainan Island, South China. Chinese Journal of Plant Ecology, 35, 137-146.
DOI URL |
[ 龙文兴, 丁易, 臧润国, 杨民, 陈少伟 (2011). 海南岛霸王岭热带云雾林雨季的环境特征. 植物生态学报, 35, 137-146.]
DOI |
|
[26] |
Long WX, Schamp BS, Zang RG, Ding Y, Huang YF, Xiang YZ (2015). Community assembly in a tropical cloud forest related to specific leaf area and maximum species height. Journal of Vegetation Science, 26, 513-523.
DOI URL |
[27] |
López-Villalobos A, Flores-Palacios A, Ortiz-Pulido R (2008). The relationship between bark peeling rate and the distribution and mortality of two epiphyte species. Plant Ecology, 198, 265-274.
DOI URL |
[28] | Malizia A (2003). Host tree preference of vascular epiphytes and climbers in a subtropical montane cloud forest of northwest Argentina. Selbyana, 24, 196-205. |
[29] |
Mehltreter K, Flores-Palacios A, García-Franco JG (2005). Host preferences of low-trunk vascular epiphytes in a cloud forest of Veracruz, Mexico. Journal of Tropical Ecology, 21, 651-660.
DOI URL |
[30] |
Morales-Linares J, García-Franco JG, Flores-Palacios A, Valenzuela-González JE, Mata-Rosas M, Díaz-Castelazo C (2016). Vascular epiphytes and host trees of ant-gardens in an anthropic landscape in southeastern Mexico. The Science of Nature, 103, 96. DOI 10.1007/s00114-016-1421-9.
DOI URL |
[31] |
Moran RC, Russell RV (2004). The occurrence of Trichomanes godmanii (Hymenophyllaceae) on Welfia georgii (Arecaceae) at the La Selva biological station, Costa Rica. American Fern Journal, 94, 70-76.
DOI URL |
[32] |
Muñoz AA, Chacón P, Pérez F, Barnert ES, Armesto JJ (2003). Diversity and host tree preferences of vascular epiphytes and vines in a temperate rainforest in southern Chile. Australian Journal of Botany, 51, 381-391.
DOI URL |
[33] | Nieder J, Engwald S, Barthlott W (1999). Patterns of neotropical epiphyte diversity. Selbyana, 20, 66-75. |
[34] |
Nieder J, Prosperí J, Michaloud G (2001). Epiphytes and their contribution to canopy diversity. Plant Ecology, 153, 51- 63.
DOI URL |
[35] |
Sanford WW (1968). Distribution of epiphytic orchids in semi-deciduous tropical forest in southern Nigeria. Journal of Ecology, 56, 697-705.
DOI URL |
[36] |
Seto M, Higa M, Ishikawa S (2020). Host size preferences of vascular epiphytes are reflected in their spatial distributions: a study of a mature broadleaf evergreen forest in Kochi, Japan. Journal of Forest Research, 25, 358-363.
DOI URL |
[37] |
Sillett SC, McCune B, Peck JE, Rambo TR, Ruchty A (2000). Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Ecological Applications, 10, 789-799.
DOI URL |
[38] | Stadtmueller T (1987). Cloud Forests in the Humid Tropics: a Bibliographic Review. The United Nations University, Tokyo, Japan. |
[39] |
Sun JQ, Chen Q, Li HY, Chang YF, Gong HD, Song L, Lu HZ (2019). Progress on the clonality of epiphytic ferns. Biodiversity Science, 27, 1184-1195.
DOI URL |
[ 孙晶琦, 陈泉, 李航宇, 常艳芬, 巩合德, 宋亮, 卢华正 (2019). 附生蕨类植物的克隆性研究进展. 生物多样性, 27, 1184-1195.]
DOI |
|
[40] |
Talley SM, Setzer WN, Jackes BR (1996). Host associations of two adventitious-root-climbing vines in a north Queensland tropical rain forest. Biotropica, 28, 356-366.
DOI URL |
[41] |
Valencia-Díaz S, Flores-Palacios A, Rodríguez-López V, Ventura-Zapata E, Jiménez-Aparicio AR (2010). Effect of host-bark extracts on seed germination in Tillandsia recurvata, an epiphytic bromeliad. Journal of Tropical Ecology, 26, 571-581.
DOI URL |
[42] | Went FW (1940). Soziologie der Epiphyten eines tropischen Regenwaldes. Ann Jard Bot Buitenz, 50, 1-98. |
[43] |
Woods CL, Cardelús CL, DeWalt SJ (2015). Microhabitat associations of vascular epiphytes in a wet tropical forest canopy. Journal of Ecology, 103, 421-430.
DOI URL |
[44] |
Xu HQ, Liu WY (2005). Species diversity and distribution of epiphytes in the montane moist evergreen broad-leaved forest in Ailao Mountain, Yunnan. Biodiversity Science, 13, 137-147.
DOI URL |
[ 徐海清, 刘文耀 (2005). 云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布. 生物多样性, 13, 137-147.]
DOI |
|
[45] | Zhang LN (2014). History, Present situation and prospect of bryological research in Hainan Island, China. Journal of Tropical and Subtropical Botany, 22, 643-652. |
[ 张莉娜 (2014). 海南岛苔藓植物研究历史、现状与展望. 热带亚热带植物学报, 22, 643-652.] | |
[46] | Zhang LY (2015). Pollination Biology and Germination Characteristics of Cleisostoma paniculatum. Master degree dissertation, Fujian Agriculture and Forestry University, Fuzhou. 1-6. |
[ 张林瀛 (2015). 大序隔距兰(Cleisostoma paniculatum)传粉生物学及种子萌发特性研究. 硕士学位论文, 福建农林大学, 福州. 1-6.] | |
[47] |
Zi XM, Sheng CL, Goodale UM, Shao SC, Gao JY (2014). In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza, 24, 487-499.
DOI URL |
[48] |
Zotz G (2013). The systematic distribution of vascular epiphytes —A critical update. Botanical Journal of the Linnean Society, 171, 453-481.
DOI URL |
[49] |
Zotz G, Schultz S (2008). The vascular epiphytes of a lowland forest in Panama—Species composition and spatial structure. Plant Ecology, 195, 131-141.
DOI URL |
[50] |
Zotz G, Vollrath B (2003). The epiphyte vegetation of the palm Socratea exorrhiza—Correlations with tree size, tree age and bryophyte cover. Journal of Tropical Ecology, 19, 81- 90.
DOI URL |
[51] |
Zotz G, Winkler U (2013). Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia, 171, 733-741.
DOI URL |
[1] | LIU Ling, FAN Ying-Jie, SONG Xiao-Tong, LI Min, SHAO Xiao-Ming, WANG Xiao-Rui. Bryophyte societies on the fallen logs of Pinus armandii with different decay classes in Sygera Mountains [J]. Chin J Plant Ecol, 2020, 44(8): 842-853. |
[2] | MENG Wen-Ping, DAI Quan-Hou, RAN Jing-Cheng. A review on the process of bryophyte karstification [J]. Chin J Plant Ecol, 2019, 43(5): 396-407. |
[3] | CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly [J]. Chin J Plant Ecol, 2019, 43(3): 217-226. |
[4] | Chun-Yan PI, Xin LIU, Zhe WANG, Wei-Kai BAO. Bryophyte-cyanobacteria symbioses and their nitrogen fixation capacity—A review [J]. Chin J Plan Ecolo, 2018, 42(4): 407-418. |
[5] | Xi-Xi WANG, Wen-Xing LONG, Xiao-Bo YANG, Meng-Hui XIONG, Yong KANG, Jin HUANG, Xu WANG, Xiao-Jiang HONG, Zhao-Li ZHOU, Yong-Quan LU, Jing FANG, Shi-Xing LI. Patterns of plant diversity within and among three tropical cloud forest communities in Hainan Island [J]. Chin J Plant Ecol, 2016, 40(5): 469-479. |
[6] | Yan-Bin JIANG, Xiao-Ming SHAO. Diversity and distribution pattern of epiphyllous liverworts and its ecological determinants [J]. Chin J Plan Ecolo, 2016, 40(5): 523-532. |
[7] | YIN Ben-Feng,ZHANG Yuan-Ming. Impacts of freeze-thaw processes on antioxidant activities and osmolyte contents of Syntrichia caninervis under different desert microhabitats [J]. Chin J Plan Ecolo, 2015, 39(5): 517-529. |
[8] | WANG Dai-Hua, WANG You-Fang, ZUO Qin, LI Min, WU Wen-Ying, HUANG Jian-Hua, ZHAO Ming-Shui. Bryophyte species diversity in seven typical forests of the West Tianmu Mountain in Zhe- jiang, China [J]. Chin J Plant Ecol, 2012, 36(6): 550-559. |
[9] | LIU Bin-Yang, LIU Wei-Qiu, ZHANG Yi-Shun, LEI Chun-Yi. Physiological responses of bryophytes experienced low temperature stress to simulated nitrogen deposition [J]. Chin J Plant Ecol, 2011, 35(3): 268-274. |
[10] | LIU Bin-Yang, LIU Wei-Qiu, LEI Chun-Yi, ZHANG Yi-Shun. PHYSIOLOGICAL RESPONSES OF THREE BRYOPHYTE SPECIES OF SOUTH CHINA TO SIMULATED NITROGEN DEPOSITION [J]. Chin J Plant Ecol, 2009, 33(1): 141-149. |
[11] | YAN Xiao-Li, BAO Wei-Kai. STRUCTURE AND SPECIES COMPOSITION OF GROUND BRYOPHYTE COMMUNITY OF HIGH-ALTITUDE YOUNG SILVICULTURAL CUTOVERS IN RANGTANG COUNTY, CHINA: EVALUATION ON EFFECTS OF CLEAR- CUTTING AND SILVICULTURAL MANAGEMENT [J]. Chin J Plant Ecol, 2008, 32(4): 815-824. |
[12] | LI Fen-Xia, WANG You-Fang, ZHAN Qi-Fang, XU Bo, ZHAI De-Cheng, DANG Gao-Di. SPECIES DIVERSITY OF FLOOR BRYOPHYTE COMMUNITIES IN FOPING NATURE RESERVE [J]. Chin J Plant Ecol, 2006, 30(6): 919-923. |
[13] | LEI Bo, BAO Wei-Kai, JIA Yu. GROUND BRYOPHYTE COMPOSITION AND SYNUSIA STRUCTURE UNDER SIX TYPES OF YOUNG CONIFEROUS FOREST PLANTATIONS IN THE UPPER MINJIANG RIVER [J]. Chin J Plan Ecolo, 2004, 28(5): 594-600. |
[14] | ZHANG Yuan-Ming, CAO Tong, PAN Bo-Rong. Quantitative Classification and Ordination Analysis on Bryophyte Vegetation in Bogda Mountain, Xinjiang [J]. Chin J Plan Ecolo, 2002, 26(1): 10-16. |
[15] | GUO Shui-Liang, CAO Tong. Studies on Community Distributive Patterns of Epiphytic Bryophytes in Forest Ecosystems in Changbai Mountain [J]. Chin J Plan Ecolo, 2000, 24(4): 442-450. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn