Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (3): 217-226.DOI: 10.17521/cjpe.2019.0003
• Research Articles • Previous Articles Next Articles
CHENG Yi-Kang1,ZHANG Hui1,WANG Xu1,LONG Wen-Xing1,2,*(),LI Chao1,FANG Yan-Shan3,FU Ming-Qi3,ZHU Kong-Xin4
Received:
2019-01-04
Revised:
2019-02-27
Online:
2019-03-20
Published:
2019-05-30
Contact:
LONG Wen-Xing ORCID:0000-0002-9195-5878
Supported by:
CHENG Yi-Kang, ZHANG Hui, WANG Xu, LONG Wen-Xing, LI Chao, FANG Yan-Shan, FU Ming-Qi, ZHU Kong-Xin. Effects of functional diversity and phylogenetic diversity on the tropical cloud forest community assembly[J]. Chin J Plant Ecol, 2019, 43(3): 217-226.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2019.0003
研究样地 Study site | 海拔 Elevation (m) | 经度 Longitude (E) | 纬度 Latitude (N) | 坡度 Slope (°) | 样方数 No. of plots | 样地面积 Plot area (m2) | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
尖峰岭 Jianfeng Mt. | 1 187.17- 1 397.19 | 108.87° | 18.72° | 10-65 | 12 | 4 800 | 罗浮锥、丛花厚壳桂、美丽新木姜子、黄叶树 Castanopsis faberi, Cryptocarya densiflora, Neolitsea pulchella, Xanthophyllum hainanense |
霸王岭 Bawang Mt. | 1 313.24- 1 385.24 | 109.21° | 19.08° | 2-45 | 21 | 8 400 | 蚊母树、赤楠、九节、黄杞 Distylium racemosum, Syzygium buxifolium, Psychotria rubra, Engelhardtia roxburghiana |
黎母山 Limu Mt. | 1 363.73- 1 403.32 | 109.76° | 19.18° | 3-42 | 15 | 6 000 | 普洱茶、岭南青冈、罗浮锥、细枝柃 Camellia sinensis var. assamica, Cyclobalanopsis championii, Castanopsis faberi, Eurya loquaiana |
Table 1 Information on the study sites in the tropical cloud forest in Hainan Island
研究样地 Study site | 海拔 Elevation (m) | 经度 Longitude (E) | 纬度 Latitude (N) | 坡度 Slope (°) | 样方数 No. of plots | 样地面积 Plot area (m2) | 优势种 Dominant species |
---|---|---|---|---|---|---|---|
尖峰岭 Jianfeng Mt. | 1 187.17- 1 397.19 | 108.87° | 18.72° | 10-65 | 12 | 4 800 | 罗浮锥、丛花厚壳桂、美丽新木姜子、黄叶树 Castanopsis faberi, Cryptocarya densiflora, Neolitsea pulchella, Xanthophyllum hainanense |
霸王岭 Bawang Mt. | 1 313.24- 1 385.24 | 109.21° | 19.08° | 2-45 | 21 | 8 400 | 蚊母树、赤楠、九节、黄杞 Distylium racemosum, Syzygium buxifolium, Psychotria rubra, Engelhardtia roxburghiana |
黎母山 Limu Mt. | 1 363.73- 1 403.32 | 109.76° | 19.18° | 3-42 | 15 | 6 000 | 普洱茶、岭南青冈、罗浮锥、细枝柃 Camellia sinensis var. assamica, Cyclobalanopsis championii, Castanopsis faberi, Eurya loquaiana |
环境变量 Environmental variable | PCA1 | PCA2 | PCA3 | PCA4 |
---|---|---|---|---|
林冠开阔度 CO (%) | -0.33 | - | 0.89 | -0.24 |
土壤有机质含量 SOM (g·kg-1) | -0.35 | 0.47 | -0.23 | -0.34 |
全磷含量 TP (g·kg-1) | -0.50 | - | - | 0.31 |
全氮含量 TN (g·kg-1) | -0.47 | -0.11 | -0.32 | -0.15 |
有效氮含量 AN (mg·kg-1) | -0.47 | -0.19 | -0.19 | -0.19 |
有效磷含量 AP (mg·kg-1) | 0.24 | 0.59 | - | -0.48 |
坡度 SP (o) | 0.13 | -0.61 | - | -0.66 |
特征值 Characteristic value | 3.32 | 1.87 | 0.48 | 0.17 |
解释方差比例 Explained variance proportion | 0.52 | 0.27 | 0.10 | 0.07 |
累积解释方差比例 Cumulative explained variance proportion | 0.52 | 0.79 | 0.89 | 0.96 |
Table 2 Principle component analysis (PCA) among environment factors in tropical cloud forest
环境变量 Environmental variable | PCA1 | PCA2 | PCA3 | PCA4 |
---|---|---|---|---|
林冠开阔度 CO (%) | -0.33 | - | 0.89 | -0.24 |
土壤有机质含量 SOM (g·kg-1) | -0.35 | 0.47 | -0.23 | -0.34 |
全磷含量 TP (g·kg-1) | -0.50 | - | - | 0.31 |
全氮含量 TN (g·kg-1) | -0.47 | -0.11 | -0.32 | -0.15 |
有效氮含量 AN (mg·kg-1) | -0.47 | -0.19 | -0.19 | -0.19 |
有效磷含量 AP (mg·kg-1) | 0.24 | 0.59 | - | -0.48 |
坡度 SP (o) | 0.13 | -0.61 | - | -0.66 |
特征值 Characteristic value | 3.32 | 1.87 | 0.48 | 0.17 |
解释方差比例 Explained variance proportion | 0.52 | 0.27 | 0.10 | 0.07 |
累积解释方差比例 Cumulative explained variance proportion | 0.52 | 0.79 | 0.89 | 0.96 |
Fig. 2 Correlation analysis among environmental factors of Hainan tropical cloud forests. CO, canopy openness; SOM, soil organic matter content; TP, total phosphorus content; TN, total nitrogen content; AN, available nitrogen content; AP, available phosphorus content; SP, slope. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
功能性状 Functional trait | K | p |
---|---|---|
根部氮含量 Root nitrogen content (RN) | 0.258 | 0.639 |
根部磷含量 Root phosphorus content (RP) | 0.405 | 0.193 |
根部可溶性糖含量 Root soluble sugar content (RS) | 0.210 | 0.820 |
叶片氮含量 Leaf nitrogen content (LN) | 0.677 | 0.027 |
叶片磷含量 Leaf phosphorus content (LP) | 0.579 | 0.055 |
叶片可溶性糖含量 Leaf soluble sugar content (LS) | 0.190 | 0.857 |
茎干氮含量 Stem nitrogen content (SN) | 0.448 | 0.195 |
茎干磷含量 Stem phosphorus content (SP) | 4.258 | 0.005 |
茎干可溶性糖含量 Stem soluble sugar content (SS) | 0.314 | 0.429 |
比叶面积 Specific leaf area (SLA) | 0.373 | 0.413 |
叶绿素含量 Chlorophyll content (Chl) | 0.459 | 0.062 |
叶片厚度 Leaf thickness (LTh) | 0.282 | 0.589 |
木材密度 Wood density (WD) | 0.294 | 0.527 |
Table 3 Phylogenetic signal of plants functional traits in tropical cloud forest
功能性状 Functional trait | K | p |
---|---|---|
根部氮含量 Root nitrogen content (RN) | 0.258 | 0.639 |
根部磷含量 Root phosphorus content (RP) | 0.405 | 0.193 |
根部可溶性糖含量 Root soluble sugar content (RS) | 0.210 | 0.820 |
叶片氮含量 Leaf nitrogen content (LN) | 0.677 | 0.027 |
叶片磷含量 Leaf phosphorus content (LP) | 0.579 | 0.055 |
叶片可溶性糖含量 Leaf soluble sugar content (LS) | 0.190 | 0.857 |
茎干氮含量 Stem nitrogen content (SN) | 0.448 | 0.195 |
茎干磷含量 Stem phosphorus content (SP) | 4.258 | 0.005 |
茎干可溶性糖含量 Stem soluble sugar content (SS) | 0.314 | 0.429 |
比叶面积 Specific leaf area (SLA) | 0.373 | 0.413 |
叶绿素含量 Chlorophyll content (Chl) | 0.459 | 0.062 |
叶片厚度 Leaf thickness (LTh) | 0.282 | 0.589 |
木材密度 Wood density (WD) | 0.294 | 0.527 |
Fig. 3 Comparison of functional diversity and phylogenetic diversity expectations with observed values in tropical cloud forest. The null distribution is the grey histogram and the observed values are the black vertical bars. MPD, mean pairwise distance; RaoQ, Rao’s quadratic entropy.
Fig. 4 Patterns of standard effect size of Rao’s quadratic entropy (SES.RaoQ) along environmental gradients in tropical cloud forest. CO, canopy openness; TP, total phosphorus content; SP, slope.
Fig. 5 Patterns of net relatedness index (NRI) along environmental gradients in tropical cloud forest. CO, canopy openness; TP, total phosphorus content; SP, slope.
[1] | Agricultural Chemistry Committee of Soil Society of China ( 1983). Agricultural chemical Routine Analysis Method of Soil. Science Press, Beijing. 186-194. |
[ 中国土壤学会农业化学专业委员会( 1983). 土壤农业化学常规分析方法. 科学出版社, 北京. 186-194.] | |
[2] | Andersen KM, Endara MJ, Turner BL, Dalling JW ( 2012). Trait-based community assembly of understory palms along a soil nutrient gradient in a lower montane tropical forest. Oecologia, 168, 519-531. |
[3] | Blomberg SP, Garland T, Ives AR ( 2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57, 717-745. |
[4] | Botta-Dukát Z, Czúcz B ( 2016). Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution, 7, 114-126. |
[5] | Bu WS, Zang RG, Ding Y ( 2014). Field observed relationships between biodiversity and ecosystem functioning during secondary succession in a tropical lowland rainforest. Acta Oecologica, 55, 1-7. |
[6] | Cadotte MW, Cardinale BJ, Oakley TH ( 2008). Evolutionary history and the effect of biodiversity on plant productivity. Proceedings of the National Academy of Sciences of the United States of America, 105, 17012-17017. |
[7] | Cavender-Bares J, Kozak KH, Fine PVA, Kembel SW ( 2009). The merging of community ecology and phylogenetic biology. Ecology Letters, 12, 693-715. |
[8] | CBOL Plant Wording Group ( 2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America, 106, 12794-12797. |
[9] | Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, Steege H, Morgan HD, Heijden A, Pausas JG, Poorter H ( 2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380. |
[10] | Cornell HV ( 1985). Local and regional richness of cynipine gall wasps on California oaks. Ecology, 66, 1247-1260. |
[11] | Cornell HV, Harrison SP ( 2014). What are species pools and when are they important? Annual Review of Ecology, Evolution,and Systematics, 45, 45-67. |
[12] | de Bello F, Price JN, Münkemüller T, Liira J, Zobel M, Thuiller W, Gerhold P, Götzenberger L, Lavergne S, Lepš S, Zobel K, Pärtel M ( 2012). Functional species pool framework to test for biotic effects on community assembly. Ecology, 93, 2263-2273. |
[13] | Eller CB, Burgess SSO, Oliveira RS ( 2015). Environmental controls in the water use patterns of a tropical cloud forest tree species, Drimys brasiliensis (Winteraceae). Tree Physiology, 35, 387-399. |
[14] | Eriksson O ( 1993). The species-pool hypothesis and plant community diversity. Oikos, 68, 371-374. |
[15] | Goldsmith GR, Matzke NJ, Dawson TE ( 2013). The incidence and implications of clouds for cloud forest plant water relations. Ecology Letters, 16, 307-314. |
[16] | Gonzalez-Caro S, Umana MN, Alvarez E, Stevenson PR, Swenson NG ( 2014). Phylogenetic alpha and beta diversity in tropical tree assemblages along regional-scale environmental gradients in northwest South America. Journal of Plant Ecology, 7, 145-153. |
[17] | Hardy OJ ( 2008). Testing the spatial phylogenetic structure of local communities: Statistical performances of different null models and test statistics on a locally neutral community. Journal of Ecology, 96, 914-926. |
[18] | Harrison S, Cornell H ( 2008). Toward a better understanding of the regional causes of local community richness. Ecology Letters, 11, 969-979. |
[19] | He JS, Wang X, Flynn DFB, Wang L, Schmid B, Fang J ( 2009). Taxonomic, phylogenetic, and environmental trade-offs between leaf productivity and persistence. Ecology, 90, 2779-2791. |
[20] | Kang Y, Deng Z, Zang R, Long W ( 2017). DNA barcoding analysis and phylogenetic relationships of tree species in tropical cloud forests. Scientific Reports, 7, 12564. DOI: 10.1038/s41598-017-13057-0. |
[21] | Kraft NJB, Ackerly DD ( 2010). Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecological Monographs, 80, 401-422. |
[22] | Kraft NJB, Valencia R, Ackerly DD ( 2008). Functional traits and niche-based tree community assembly in an Amazonia forest. Science, 322, 580-582. |
[23] | Long WX, Schamp BS, Zang RG, Ding Y, Huang YF, Xiang YZ ( 2015 a). Community assembly in a tropical cloud forest related to specific leaf area and maximum species height. Journal of Vegetation Science, 47, 416-423. |
[24] | Long WX, Xiong MH, Zang RG, Schamp BS, Yang XB, Ding Y, Huang YF, Xiang YZ ( 2015 b). Changes in patterns of species co-occurrence across two tropical cloud forests differing in soil nutrients and air temperature. Biotropica, 47, 416-423. |
[25] | Long WX, Zang RG, Ding Y ( 2011 a). Air temperature and soil phosphorus availability correlate with trait differences between two types of tropical cloud forests. Flora, 206, 896-903. |
[26] | Long WX, Zang RG, Schamp BS, Ding Y ( 2011 b). Within- and among-species variation in specific leaf area drive community assembly in a tropical cloud forest. Oecologia, 167, 1103-1113. |
[27] | Losos JB ( 2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995-1007. |
[28] | Luna-Vega I, Magallón S ( 2010). Phylogenetic composition of angiosperm diversity in the cloud forests of Mexico. Biotropica, 42, 444-454. |
[29] | Mason NWH, Richardson SJ, Peltzer DA, Bello FD, Wardle DA, Allen RB ( 2012). Changes in coexistence mechanisms along a long-term soil chronosequence revealed by functional trait diversity. Journal of Ecology, 100, 678-689. |
[30] | McGill BJ, Enquist BJ, Weiher E, Westoby M ( 2006). Rebuilding community ecology from functional traits. Trends in Ecology & Evolution, 21, 178-185. |
[31] | McIntire EJB, Fajardo A ( 2014). Facilitation as a ubiquitous driver of biodiversity. New Phytologist, 201, 403-416. |
[32] | Mori AS, Shiono T, Koide D, Kitagawa R, Ota AT, Mizumachi E ( 2013). Community assembly processes shape an altitudinal gradient of forest biodiversity. Global Ecology and Biogeography, 22, 878-888. |
[33] | Naeem S, Wright JP ( 2003). Disentangling biodiversity effects on ecosystem functioning: deriving solutions to a seemingly insurmountable problem. Ecology Letters, 6, 567-579. |
[34] | Niu KC, Liu YN, Shen ZH, He FL, Fang JY ( 2009). Community assemble: The relative important of neutral theory and niche theory. Biodiversity Science, 17, 579-593. |
[ 牛克昌, 刘怿宁, 沈泽昊, 何芳良, 方精云 ( 2009). 群落构建的中性理论和生态位理论. 生物多样性, 17, 579-593.] | |
[35] | Paine CET, Baraloto C, Chave J, Hérault B ( 2011). Functional traits of individual trees reveal ecological constraints on community assembly in tropical rain forests. Oikos, 120, 720-727. |
[36] | Pärtel M, Szava-Kovats R, Zobel M ( 2011). Dark diversity: Shedding light on absent species. Trends in Ecology & Evolution, 26, 124-128. |
[37] | Pearse WD, Jones A, Purvis A ( 2013). Barro Colorado Island’s phylogenetic assemblage structure across fine spatial scales and among clades of different ages. Ecology, 94, 2861-2872. |
[38] | Ricklefs RE ( 1987). Community diversity: Relative roles of local and regional processes. Science, 235, 206-207. |
[39] | Spasojevic MJ, Suding KN ( 2012). Inferring community assembly mechanisms from functional diversity patterns: The importance of multiple assembly processes. Journal of Ecology, 100, 652-661. |
[40] | Srivastava DS ( 1999). Using local-regional richness plots to test for species saturation: Pitfalls and potentials. Journal of Animal Ecology, 68, 1-16 |
[41] | Swenson NG ( 2011). Phylogenetic beta diversity metrics, trait evolution and inferring the functional beta diversity of communities. PLOS ONE, 6, e21264. DOI: 10.137/journal.pone.0021264. |
[42] | Swenson NG ( 2013). The assembly of tropical tree communities-the advances and shortcomings of phylogenetic and functional trait analyses. Ecography, 36, 264-276. |
[43] | Swenson NG, Enquist BJ ( 2009). Opposing assembly mechanisms in a Neotropical dry forest: Implications for phylogenetic and functional community ecology. Ecology, 90, 2161-2170. |
[44] | Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK ( 2006). The problem and promise of scale dependency in community phylogenetics. Ecology, 87, 2418-2424. |
[45] | Swenson NG, Erickson DL, Mi X, Bourg NA, Forero-Montaña J, Ge XJ, Howe R, Lake JK, Liu XJ, Ma KP, Pei NC, Thomson J, Uriarte M, Wolf A, Wright SJ, Ye WH, Zhang JL, Zimmerman JK, Kress WJ ( 2012). Phylogenetic and functional alpha and beta diversity in temperate and tropical tree communities. Ecology, 93, S112-S125. |
[46] | Vamosi SM, Heard SB, Vamosi JC, Webb CO ( 2009). Emerging patterns in the comparative analysis of phylogenetic community structure. Molecular Ecology, 18, 572-592. |
[47] | Wang XX, Long WX, Yang XB, Xiong MH, Kang Y, Huang J, Wang X, Hong XJ, Zhou ZL, Lu YQ, Fang J, Li SX ( 2016). Patterns of plant diversity within and among three tropical cloud forest communities in Hainan Island. Chinese Journal of Plant Ecology, 40, 469-479. |
[ 王茜茜, 龙文兴, 杨小波, 熊梦辉, 康勇, 黄瑾, 王旭, 洪小江, 周照骊, 陆雍泉, 方精, 李时兴 ( 2016). 海南岛3个林区热带云雾林植物多样性变化. 植物生态学报, 40, 469-479.] | |
[48] | Webb CO, Ackerly DD, Kembel SW ( 2008). Phylocom: Software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100. |
[49] | Webb CO, Ackerly DD, Mcpeek MA, Donoghue MJ ( 2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33, 475-505. |
[50] | Weiher E, Keddy CPA ( 1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81, 309-322. |
[51] | Yang J, Zhang G, Ci X, Swenson NG, Cao M, Sha LQ, Li J, Baskin CC, Slik JWF, Lin LX ( 2014). Functional and phylogenetic assembly in a Chinese tropical tree community across size classes, spatial scales and habitats. Functional Ecology, 28, 520-529. |
[52] | Zobel M, Scheiner S ( 2016). The species pool concept as a framework for studying patterns of plant diversity: Official organ of the International Association for Vegetation Science. Journal of Vegetation Science, 27, 8-18. |
[1] |
Yuan-He YANG Dianye Zhang Wei Bin Liu Yang Feng Xuehui Mao Chao Xu Weijie He Mei Wang Lu Zheng Zhihu Wang Yuanyuan Lei-Yi CHEN.
Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input [J]. Chin J Plant Ecol, 2023, 47(1): 0-0. |
[2] | LI Wan-Nian, LUO Yi-Min, HUANG Ze-Yue, YANG Mei. Effects of mixed young plantations of Parashorea chinensis on soil microbial functional diversity and carbon source utilization [J]. Chin J Plant Ecol, 2022, 46(9): 1109-1124. |
[3] | DONG Liu-Wen, REN Zheng-Wei, ZHANG Rui, XIE Chen-Di, ZHOU Xiao-Long. Functional diversity rather than species diversity can explain community biomass variation following short-term nitrogen addition in an alpine grassland [J]. Chin J Plant Ecol, 2022, 46(8): 871-881. |
[4] | WANG Zi-Long, HU Bin, BAO Wei-Kai, LI Fang-Lan, HU Hui, WEI Dan-Dan, YANG Ting-Hui, LI Xiao-Juan. Latitudinal patterns and underlying factors of component biomass in plant communities in the arid valley of southwest China [J]. Chin J Plant Ecol, 2022, 46(5): 539-551. |
[5] | WANG Yi-Chen, DENG Zhi-Yan, ZHANG Shou-Xin, XIAO Chu-Chu, FENG Guang, LONG Wen-Xing, LIU Ji-Shi. Host tree selection by vascular epiphytes in tropical cloud forest of Hainan Island, China [J]. Chin J Plant Ecol, 2022, 46(4): 405-415. |
[6] | ZHANG Yi, CHENG Jie, SU Ji-Shuai, CHENG Ji-Min. Diversity-productivity relationship of plant communities in typical grassland during the long- term grazing exclusion succession [J]. Chin J Plant Ecol, 2022, 46(2): 176-187. |
[7] | ZHAO Yan-Ping, WANG Zhong-Wu, WENDU Rigen, ZHAO Yu-Jin, BAI Yong-Fei. Remotely sensed monitoring method of grassland plant functional diversity and its relationship with productivity based on Sentinel-2 satellite data [J]. Chin J Plant Ecol, 2022, 46(10): 1234-1250. |
[8] | WANG Yu-Bing,SUN Yi-Han,DING Wei,ZHANG En-Tao,LI Wen-Huai,CHI Yong-Gang,ZHENG Shu-Xia. Effects and pathways of long-term nitrogen addition on plant diversity and primary productivity in a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 22-32. |
[9] | DING Wei,WANG Yu-Bing,XIANG Guan-Hai,CHI Yong-Gang,LU Shun-Bao,ZHENG Shu-Xia. Effects of Caragana microphylla encroachment on community structure and ecosystem function of a typical steppe [J]. Chin J Plant Ecol, 2020, 44(1): 33-43. |
[10] | QIN Hao, ZHANG Yin-Bo, DONG Gang, ZHANG Feng. Altitudinal patterns of taxonomic, phylogenetic and functional diversity of forest communities in Mount Guandi, Shanxi, China [J]. Chin J Plant Ecol, 2019, 43(9): 762-773. |
[11] | TANG Li-Li, ZHANG Mei, ZHAO Xiang-Lin, KANG Mu-Yi, LIU Hong-Yan, GAO Xian-Ming, YANG Tong, ZHENG Pu-Fan, SHI Fu-Chen. Species distribution and community assembly rules of Juglans mandshurica in North China [J]. Chin J Plant Ecol, 2019, 43(9): 753-761. |
[12] | SHI Jing-Jing,ZHAO Ming-Fei,WANG Yu-Hang,XUE Feng,KANG Mu-Yi,JIANG Yuan. Community assembly of herbaceous layer of the planted forests in the central Loess Plateau, China [J]. Chin J Plant Ecol, 2019, 43(9): 834-842. |
[13] | CHAI Yong-Fu, XU Jin-Shi, LIU Hong-Yan, LIU Quan-Ru, ZHENG Cheng-Yang, KANG Mu-Yi, LIANG Cun-Zhu, WANG Ren-Qing, GAO Xian-Ming, ZHANG Feng, SHI Fu-Chen, LIU Xiao, YUE Ming. Species composition and phylogenetic structure of major shrublands in North China [J]. Chin J Plant Ecol, 2019, 43(9): 793-805. |
[14] | XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. Community assembly, diversity patterns and distributions of broad-leaved forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 732-741. |
[15] | HAO Shu-Jun, LI Xiao-Yu, HOU Man-Man, ZHAO Xiu-Hai. Spatial variations of community functional traits at different successional stages in temperate forests of Changbai Mountains, Northeast China [J]. Chin J Plant Ecol, 2019, 43(3): 208-216. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn