Chin J Plant Ecol ›› 2022, Vol. 46 ›› Issue (5): 539-551.DOI: 10.17521/cjpe.2021.0237
• Research Articles • Previous Articles Next Articles
WANG Zi-Long1,2, HU Bin1, BAO Wei-Kai1, LI Fang-Lan1,*(), HU Hui1,2, WEI Dan-Dan1,2, YANG Ting-Hui1,2, LI Xiao-Juan1,2
Received:
2021-06-26
Accepted:
2021-10-13
Online:
2022-05-20
Published:
2021-12-16
Contact:
LI Fang-Lan
Supported by:
WANG Zi-Long, HU Bin, BAO Wei-Kai, LI Fang-Lan, HU Hui, WEI Dan-Dan, YANG Ting-Hui, LI Xiao-Juan. Latitudinal patterns and underlying factors of component biomass in plant communities in the arid valley of southwest China[J]. Chin J Plant Ecol, 2022, 46(5): 539-551.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2021.0237
变量 Variable | 最大值 Maximum | 最小值 Minimum | 平均值±标准误 Mean ± SE |
---|---|---|---|
群落生物量 CB (t·hm-2) | 56.50 | 2.51 | 17.05 ± 1.09 |
灌木生物量 SB (t·hm-2) | 52.49 | 0.26 | 11.51 ± 1.03 |
草本生物量 HB (t·hm-2) | 9.68 | 0.03 | 2.11 ± 0.21 |
凋落物生物量 LB (t·hm-2) | 18.34 | 0.29 | 3.41 ± 0.34 |
植被地上生物量 VAGB (t·hm-2) | 34.37 | 0.12 | 7.32 ± 0.58 |
植被地下生物量 VAGB (t·hm-2) | 43.57 | 0.21 | 6.30 ± 0.59 |
灌木地上生物量 SAGB (t·hm-2) | 32.73 | 0.10 | 6.51 ± 0.58 |
灌木地下生物量 SAGB (t·hm-2) | 42.21 | 0.12 | 5.00 ± 0.59 |
灌木生物量百分比 SB/CB (%) | 96.53 | 1.62 | 60.18 ± 2.76 |
草本生物量百分比 HB/CB (%) | 69.90 | 0.57 | 15.57 ± 1.67 |
凋落物生物量百分比 LB/CB (%) | 86.67 | 1.57 | 24.14 ± 2.09 |
Table 1 Descriptive statistics of biomass of communities and components in the arid valley, southwestern China (n = 101)
变量 Variable | 最大值 Maximum | 最小值 Minimum | 平均值±标准误 Mean ± SE |
---|---|---|---|
群落生物量 CB (t·hm-2) | 56.50 | 2.51 | 17.05 ± 1.09 |
灌木生物量 SB (t·hm-2) | 52.49 | 0.26 | 11.51 ± 1.03 |
草本生物量 HB (t·hm-2) | 9.68 | 0.03 | 2.11 ± 0.21 |
凋落物生物量 LB (t·hm-2) | 18.34 | 0.29 | 3.41 ± 0.34 |
植被地上生物量 VAGB (t·hm-2) | 34.37 | 0.12 | 7.32 ± 0.58 |
植被地下生物量 VAGB (t·hm-2) | 43.57 | 0.21 | 6.30 ± 0.59 |
灌木地上生物量 SAGB (t·hm-2) | 32.73 | 0.10 | 6.51 ± 0.58 |
灌木地下生物量 SAGB (t·hm-2) | 42.21 | 0.12 | 5.00 ± 0.59 |
灌木生物量百分比 SB/CB (%) | 96.53 | 1.62 | 60.18 ± 2.76 |
草本生物量百分比 HB/CB (%) | 69.90 | 0.57 | 15.57 ± 1.67 |
凋落物生物量百分比 LB/CB (%) | 86.67 | 1.57 | 24.14 ± 2.09 |
Fig. 3 Changes in proportions of biomass of community components along latitude gradients in the arid valley, southwestern China. CB, community biomass; HB, herb biomass; LB, litter biomass; SB, shrub biomass.
Fig. 4 Redundancy analysis (RDA) of community biomass and environmental factors in the arid valley, southwestern China (n = 101). Ca2+, soil calcium ion exchange capacity; CB, community biomass; CEC, soil cation exchange capacity; H, mean community height; HB, herb biomass; HC, herb coverage; HMf, herb Margalef index; Hr, herb richness; HSW, herb Shannon-Wiener index; LB, litter biomass; LC, litter coverage; MAP, mean annual precipitation; MAT, mean annual air temperature; Mg2+, soil magnesium ion exchange capacity; SB, shrub biomass; SC, shrub coverage; SMf, shrub Margalef index; SOC, soil organic carbon content; Sr, shrub richness; SSW, shrub Shannon-Wiener index; TC, soil total carbon content; TIN, soil total inorganic nitrogen content; TN, soil total nitrogen content; TP, soil total phosphorus content.
变量 Variable | 第一轴 RDA1 | 第二轴 RDA2 | 第三轴 RDA3 |
---|---|---|---|
土壤阳离子交换量 Soil cation exchange capacity | 0.22 | 0.41 | 0.19 |
土壤总磷含量 Soil total phosphorus content | -0.11 | 0.09 | 0.15 |
土壤总氮含量 Soil total nitrogen content | -0.37 | 0.08 | -0.18 |
土壤总碳含量 Soil total carbon content | -0.25 | 0.15 | -0.21 |
土壤 pH Soil pH | -0.28 | -0.25 | -0.50 |
土壤有机碳含量 Soil organic carbon content | -0.16 | 0.26 | 0.03 |
土壤钙离子交换量 Soil calcium ion exchange capacity | -0.14 | 0.11 | -0.28 |
土壤镁离子交换量 Soil magnesium ion exchange capacity | -0.47 | -0.06 | 0.24 |
土壤总无机氮含量 Soil total inorganic nitrogen content | 0.28 | 0.21 | -0.03 |
群落平均高度 Mean community height | 0.00 | 0.77 | 0.31 |
灌木盖度 Shrub coverage | -0.70 | 0.49 | 0.11 |
草本盖度 Herb coverage | 0.66 | -0.22 | 0.33 |
凋落物盖度 Litter coverage | 0.61 | 0.15 | 0.42 |
灌木丰富度 Shrub richness | -0.44 | 0.22 | 0.19 |
草本丰富度 Herb richness | -0.42 | -0.22 | 0.31 |
草本Shannon-Wiener指数 Herb Shannon-Wiener index | 0.64 | 0.61 | -0.21 |
草本Margalef指数 Herb Margalef index | 0.33 | 0.26 | -0.41 |
灌木Shannon-Wiener指数 Shrub Shannon-Wiener index | -0.63 | 0.03 | 0.16 |
灌木Margalef指数 Shrub Margalef index | -0.38 | 0.25 | 0.21 |
年降水量 Mean annual precipitation | 0.21 | 0.70 | 0.06 |
年平均气温 Mean annual air temperature | 0.65 | 0.42 | 0.07 |
群落生物量 Community biomass | 0.00 | 0.00 | 0.00 |
灌木生物量 Shrub biomass | -0.65 | 0.10 | 0.09 |
草本生物量 Herb biomass | 0.30 | -0.56 | 0.06 |
凋落物生物量 Litter biomass | 0.62 | 0.37 | 0.07 |
Table 2 First three axis eigenvalues of redundancy analysis (RDA) of biomass of community and component and environmental factors in arid valley, southwestern China (n = 101)
变量 Variable | 第一轴 RDA1 | 第二轴 RDA2 | 第三轴 RDA3 |
---|---|---|---|
土壤阳离子交换量 Soil cation exchange capacity | 0.22 | 0.41 | 0.19 |
土壤总磷含量 Soil total phosphorus content | -0.11 | 0.09 | 0.15 |
土壤总氮含量 Soil total nitrogen content | -0.37 | 0.08 | -0.18 |
土壤总碳含量 Soil total carbon content | -0.25 | 0.15 | -0.21 |
土壤 pH Soil pH | -0.28 | -0.25 | -0.50 |
土壤有机碳含量 Soil organic carbon content | -0.16 | 0.26 | 0.03 |
土壤钙离子交换量 Soil calcium ion exchange capacity | -0.14 | 0.11 | -0.28 |
土壤镁离子交换量 Soil magnesium ion exchange capacity | -0.47 | -0.06 | 0.24 |
土壤总无机氮含量 Soil total inorganic nitrogen content | 0.28 | 0.21 | -0.03 |
群落平均高度 Mean community height | 0.00 | 0.77 | 0.31 |
灌木盖度 Shrub coverage | -0.70 | 0.49 | 0.11 |
草本盖度 Herb coverage | 0.66 | -0.22 | 0.33 |
凋落物盖度 Litter coverage | 0.61 | 0.15 | 0.42 |
灌木丰富度 Shrub richness | -0.44 | 0.22 | 0.19 |
草本丰富度 Herb richness | -0.42 | -0.22 | 0.31 |
草本Shannon-Wiener指数 Herb Shannon-Wiener index | 0.64 | 0.61 | -0.21 |
草本Margalef指数 Herb Margalef index | 0.33 | 0.26 | -0.41 |
灌木Shannon-Wiener指数 Shrub Shannon-Wiener index | -0.63 | 0.03 | 0.16 |
灌木Margalef指数 Shrub Margalef index | -0.38 | 0.25 | 0.21 |
年降水量 Mean annual precipitation | 0.21 | 0.70 | 0.06 |
年平均气温 Mean annual air temperature | 0.65 | 0.42 | 0.07 |
群落生物量 Community biomass | 0.00 | 0.00 | 0.00 |
灌木生物量 Shrub biomass | -0.65 | 0.10 | 0.09 |
草本生物量 Herb biomass | 0.30 | -0.56 | 0.06 |
凋落物生物量 Litter biomass | 0.62 | 0.37 | 0.07 |
变量 Variable | 群落 Community | 灌木 Shrub | 草本 Herb | 凋落物 Litter |
---|---|---|---|---|
土壤阳离子交换量 Soil cation exchange capacity | 0.028 | -0.011 | -0.202* | 0.244* |
土壤总磷含量 Soil total phosphorus content | -0.010 | 0.022 | -0.088 | -0.033 |
土壤总氮含量 Soil total nitrogen content | 0.094 | 0.183 | -0.074 | -0.182 |
土壤总碳含量 Soil total carbon content | 0.083 | 0.140 | -0.082 | -0.090 |
土壤pH Soil pH | -0.236* | -0.115 | 0.046 | -0.418** |
土壤有机碳含量 Soil organic carbon content | 0.045 | 0.084 | -0.128 | -0.016 |
土壤钙离子交换量 Soil calcium ion exchange capacity | -0.034 | 0.051 | -0.076 | -0.191 |
土壤镁离子交换量 Soil magnesium ion exchange capacity | 0.055 | 0.155 | -0.082 | -0.213* |
土壤总无机氮含量 Soil total inorganic nitrogen content | 0.013 | -0.046 | -0.053 | 0.201* |
群落均高 Mean community height | 0.053 | 0.072 | -0.414** | 0.220* |
灌木盖度 Shrub coverage | 0.014 | 0.212* | -0.483** | -0.244* |
草本盖度 Herb coverage | 0.090 | -0.100 | 0.282** | 0.364** |
凋落物盖度 Litter coverage | 0.077 | -0.092 | 0.074 | 0.436** |
灌木丰富度 Shrub richness | 0.157 | 0.250* | -0.206* | -0.097 |
草本丰富度 Herb richness | 0.159 | 0.239* | 0.045 | -0.219* |
草本Shannon-Wiener指数 Herb Shannon-Wiener index | -0.155 | -0.224* | -0.295** | 0.347** |
草本Margalef指数 Herb Margalef index | -0.143 | -0.147 | -0.151 | 0.082 |
灌木Shannon-Wiener指数 Shrub Shannon-Wiener index | 0.073 | 0.224* | -0.139 | -0.314** |
灌木Margalef指数 Shrub Margalef index | 0.144 | 0.211* | -0.185 | -0.041 |
年降水量 Mean annual precipitation | -0.262** | -0.189 | -0.449** | 0.034 |
年平均气温 Mean annual air temperature | -0.077 | -0.199* | -0.110 | 0.395** |
Table 3 Pearson correlation coefficient between biomass of community component and environmental factors in arid valley, southwestern China (n = 101)
变量 Variable | 群落 Community | 灌木 Shrub | 草本 Herb | 凋落物 Litter |
---|---|---|---|---|
土壤阳离子交换量 Soil cation exchange capacity | 0.028 | -0.011 | -0.202* | 0.244* |
土壤总磷含量 Soil total phosphorus content | -0.010 | 0.022 | -0.088 | -0.033 |
土壤总氮含量 Soil total nitrogen content | 0.094 | 0.183 | -0.074 | -0.182 |
土壤总碳含量 Soil total carbon content | 0.083 | 0.140 | -0.082 | -0.090 |
土壤pH Soil pH | -0.236* | -0.115 | 0.046 | -0.418** |
土壤有机碳含量 Soil organic carbon content | 0.045 | 0.084 | -0.128 | -0.016 |
土壤钙离子交换量 Soil calcium ion exchange capacity | -0.034 | 0.051 | -0.076 | -0.191 |
土壤镁离子交换量 Soil magnesium ion exchange capacity | 0.055 | 0.155 | -0.082 | -0.213* |
土壤总无机氮含量 Soil total inorganic nitrogen content | 0.013 | -0.046 | -0.053 | 0.201* |
群落均高 Mean community height | 0.053 | 0.072 | -0.414** | 0.220* |
灌木盖度 Shrub coverage | 0.014 | 0.212* | -0.483** | -0.244* |
草本盖度 Herb coverage | 0.090 | -0.100 | 0.282** | 0.364** |
凋落物盖度 Litter coverage | 0.077 | -0.092 | 0.074 | 0.436** |
灌木丰富度 Shrub richness | 0.157 | 0.250* | -0.206* | -0.097 |
草本丰富度 Herb richness | 0.159 | 0.239* | 0.045 | -0.219* |
草本Shannon-Wiener指数 Herb Shannon-Wiener index | -0.155 | -0.224* | -0.295** | 0.347** |
草本Margalef指数 Herb Margalef index | -0.143 | -0.147 | -0.151 | 0.082 |
灌木Shannon-Wiener指数 Shrub Shannon-Wiener index | 0.073 | 0.224* | -0.139 | -0.314** |
灌木Margalef指数 Shrub Margalef index | 0.144 | 0.211* | -0.185 | -0.041 |
年降水量 Mean annual precipitation | -0.262** | -0.189 | -0.449** | 0.034 |
年平均气温 Mean annual air temperature | -0.077 | -0.199* | -0.110 | 0.395** |
Fig. 5 Variation partitioning analysis between biomass of community and its components and environmental factors in the arid valley, southwestern China (n = 101).
[1] |
Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
DOI URL |
[2] |
Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146-1156.
PMID |
[3] | Bao WK, Pang XY, Li FL, Zhou ZQ (2012). A Study of Ecological Restoration and Sustainable Management of the Arid Minjiang River Valley, China. Science Press, Beijing. |
[ 包维楷, 庞学勇, 李芳兰, 周志琼 (2012). 干旱河谷生态恢复与持续管理的科学基础. 科学出版社, 北京.] | |
[4] |
Bosatta E, Ågren GI (1999). Soil organic matter quality interpreted thermodynamically. Soil Biology & Biochemistry, 31, 1889-1891.
DOI URL |
[5] | Chen H, Li YQ, Zheng SW, Mu CL, Liu J (2007). Research on the correlations of shrub biomass with slope-aspect and altitude in dry valley of the upper reach of the Minjiang River. Journal of Chengdu University (Natural Science Edition), 26(1), 14-18. |
[ 陈泓, 黎燕琼, 郑绍伟, 慕长龙, 刘军 (2007). 岷江上游干旱河谷灌丛生物量与坡向及海拔梯度相关性研究. 成都大学学报(自然科学版), 26(1), 14-18.] | |
[6] |
Cuesta B, Villar-Salvador P, Puértolas J, Rey Benayas JM, Michalet R (2010). Facilitation of Quercus ilex in Mediterranean shrubland is explained by both direct and indirect interactions mediated by herbs. Journal of Ecology, 98, 687-696.
DOI URL |
[7] |
de Bie S, Ketner P, Paasse M, Geerling C (1998). Woody plant phenology in the West Africa savanna. Journal of Biogeography, 25, 883-900.
DOI URL |
[8] | Deng L, Shangguan ZP (2012). Distribution of natural grassland biomass and its relationship with influencing factors in Shaanxi. Acta Agrestia Sinica, 20, 825-835. |
[ 邓蕾, 上官周平 (2012). 陕西省天然草地生物量空间分布格局及其影响因素. 草地学报, 20, 825-835.] | |
[9] | Du MQ, Zhang HS, Peng D, Zha TG (2020). Distribution of shrub-herb community biomass and its relationship with soil factors in middle and low mountainous areas of northwest Hebei Province. Pratacultural Science, 37, 1-9. |
[ 杜美琪, 张恒硕, 彭栋, 查同刚 (2020). 冀西北中低山区灌草群落生物量分配及其与土壤因子的关系. 草业科学, 37, 1-9.] | |
[10] |
Epstein HE, Lauenroth WK, Burke IC (1997). Effects of temperature and soil texture on ANPP in the U.S. Great Plains. Ecology, 78, 2628-2631.
DOI URL |
[11] | Fan JR, Yang C, Bao WK, Liu JL, Li X (2020). Distribution scope and district statistical analysis of dry valleys in southwest China. Mountain Research, 38, 303-313. |
[ 范建容, 杨超, 包维楷, 刘佳丽, 李炫 (2020). 西南地区干旱河谷分布范围及分区统计分析. 山地学报, 38, 303- 313.] | |
[12] |
Fang JY, Tang YH, Son Y (2010). Why are East Asian ecosystems important for carbon cycle research. Scientia Sinica Vitae, 40, 561-565.
DOI URL |
[ 方精云, 唐艳鸿, Son Y (2010). 碳循环研究: 东亚生态系统为什么重要. 中国科学: 生命科学, 40, 561-565.] | |
[13] |
Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
DOI URL |
[ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
DOI |
|
[14] |
Fick SE, Hijmans RJ (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.
DOI URL |
[15] |
Fierer N, Craine JM, Mclauchlan K, Schimel JP (2005). Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320-326.
DOI URL |
[16] |
Finér L, Zverev V, Palviainen M, Romanis T, Kozlov MV (2019). Variation in fine root biomass along a 1000 km long latitudinal climatic gradient in mixed boreal forests of North-East Europe. Forest Ecology and Management, 432, 649-655.
DOI URL |
[17] |
Gruner DS, Bracken MES, Berger SA, Eriksson BK, Gamfeldt L, Matthiessen B, Moorthi S, Sommer U, Hillebrand H (2017). Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos, 126, 8-17.
DOI URL |
[18] |
Guo YP, Schöb C, Ma WH, Mohammat A, Liu HY, Yu SL, Jiang YX, Schmid B, Tang ZY (2019). Increasing water availability and facilitation weaken biodiversity-biomass relationships in shrublands. Ecology, 100, e02624. DOI: 10.1002/ecy.2624.
DOI |
[19] | Han B, Fan JW, Zhong HP (2006). Grassland biomass of communities along gradients of the Inner Mongolia grassland transect. Journal of Plant Ecology (Chinese Version), 30, 553-562. |
[ 韩彬, 樊江文, 钟华平 (2006). 内蒙古草地样带植物群落生物量的梯度研究. 植物生态学报, 30, 553-562.]
DOI |
|
[20] |
Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-108.
DOI URL |
[21] |
Hu H, Yang Y, Bao WK, Liu X, Li FL (2020). Effects of microhabitat changes on seedling establishment of native plants in a dry valley. Chinese Journal of Plant Ecology, 44, 1028-1039.
DOI URL |
[ 胡慧, 杨雨, 包维楷, 刘鑫, 李芳兰 (2020). 干旱河谷微生境变化对乡土植物幼苗定植的影响. 植物生态学报, 44, 1028-1039.] | |
[22] |
Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas- fir stand. Global Change Biology, 14, 1305-1318.
DOI URL |
[23] | Jin ZZ, Ou XK (2000). Vegetation of Yuan River, Nu River, Jinsha River, and Lancang River Dry-hot Valleys. Yunnan University Press, Kunming. 285-286. |
[ 金振洲, 欧晓昆 (2000). 元江、怒江、金沙江、澜沧江干热河谷植被. 云南大学出版社, 昆明. 285-286.] | |
[24] | Jin ZZ, Ou XK, Zhou Y (1987). The general situation of natural vegetation in dry-hot river valley of Yuanmou, Yunnan Province. Acta Phytoecologica et Geobotanica Sinica, 11, 308-317. |
[ 金振洲, 欧晓昆, 周跃 (1987). 云南元谋干热河谷植被概况. 植物生态学与地植物学学报, 11, 308-317.] | |
[25] | Li FL, Zhu LH, Bao WK (2009). Effects of environmental stress on seedlings root growth and nodulation of leguminous shrubs in the dry valley of Minjiang River. Chinese Journal of Applied Ecology, 20, 1825-1831. |
[ 李芳兰, 朱林海, 包维楷 (2009). 环境胁迫对岷江干旱河谷豆科灌木幼苗根系生长及其结瘤的影响. 应用生态学报, 20, 1825-1831.] | |
[26] | Li T, Deng Q, Yuan ZY, Jiao F (2015). Latitude gradient changes on herbaceous biomass and leaf N and P stoichiometry characteristics in Loess Plateau. Journal of Plant Nutrition and Fertilizer, 21, 743-751. |
[ 李婷, 邓强, 袁志友, 焦峰 (2015). 黄土高原纬度梯度下草本植物生物量的变化及其氮、磷化学计量学特征. 植物营养与肥料学报, 21, 743-751.] | |
[27] | Liu GH, Ma KM, Fu BJ, Guan WB, Kang YX, Zhou JY, Liu SL (2003). Aboveground biomass of main shrubs in dry valley of Minjiang River. Acta Ecologica Sinica, 23, 1757-1764. |
[ 刘国华, 马克明, 傅伯杰, 关文彬, 康永祥, 周建云, 刘世梁 (2003). 岷江干旱河谷主要灌丛类型地上生物量研究. 生态学报, 23, 1757-1764.] | |
[28] | Liu LH (1989). Vegetational types of the arid valleys in the Hengduan mountainous region. Mountain Research, 7, 175-182. |
[ 刘伦辉 (1989). 横断山区干旱河谷植被类型. 山地学报, 7, 175-182.] | |
[29] | Liu S, Luo D, Yang HG, Shi ZM, Liu QL, Zhang L, Kang Y, Ma Q (2018). Fine root biomass, productivity and turnover of Abies faxoniana primary forest in subalpine region of western Sichuan, China. Chinese Journal of Ecology, 37, 987-993. |
[ 刘顺, 罗达, 杨洪国, 史作民, 刘千里, 张利, 康英, 马青 (2018). 川西亚高山岷江冷杉原始林细根生物量、生产力和周转. 生态学杂志, 37, 987-993.] | |
[30] |
Liu Y, Li P, Xu Y, Shi SL, Ying LX, Zhang WJ, Peng PH, Shen ZH (2016a). Quantitative classification and ordination for plant communities in dry valleys of southwest China. Biodiversity Science, 24, 378-388.
DOI URL |
[ 刘晔, 李鹏, 许玥, 石松林, 应凌霄, 张婉君, 彭培好, 沈泽昊 (2016a). 中国西南干旱河谷植物群落的数量分类和排序分析. 生物多样性, 24, 378-388.] | |
[31] |
Liu Y, Xu Y, Shi SL, Peng PH, Shen ZH (2016b). Quantitative classification and environmental interpretations for the structural differentiation of the plant communities in the dry valley of Jinshajiang River. Biodiversity Science, 24, 407-420.
DOI URL |
[ 刘晔, 许玥, 石松林, 彭培好, 沈泽昊 (2016b). 金沙江干旱河谷植物群落的数量分类及其结构分异的环境解释. 生物多样性, 24, 407-420.] | |
[32] | Lu ZL, Gong XS (2009). Progress on the research of shrub biomass estimation. Forest Inventory and Planning, 34, 37-40. |
[ 卢振龙, 龚孝生 (2009). 灌木生物量测定的研究进展. 林业调查规划, 34, 37-40.] | |
[33] | Ma AN, Yu GR, He NP, Wang QF, Peng SL (2014). Above- and below-ground biomass relationships in Chinaʼs grassland vegetation. Quaternary Sciences, 34, 769-776. |
[ 马安娜, 于贵瑞, 何念鹏, 王秋凤, 彭舜磊 (2014). 中国草地植被地上和地下生物量的关系分析. 第四纪研究, 34, 769-776.] | |
[34] |
Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010). Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 19, 233-243.
DOI URL |
[35] | Ma WH, Yang YH, He JS, Zeng H, Fang JY (2008). Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China Series C: Life Sciences, 51, 263-270. |
[36] |
Maestre FT, Bautista S, Cortina J (2003). Positive, negative, and net effects in grass-shrub interactions in Mediterranean semiarid grasslands. Ecology, 84, 3186-3197.
DOI URL |
[37] | Nie XQ, Yang LC, Li CB, Zhou GY (2016). Patterns of biomass partitioning across alpine shrubs in the Three-river Source Region. Chinese Journal of Applied and Environmental Biology, 22, 538-545. |
[ 聂秀青, 杨路存, 李长斌, 周国英 (2016). 三江源地区高寒灌丛生物量空间分布格局. 应用与环境生物学报, 22, 538-545.] | |
[38] |
Palpurina S, Wagner V, von Wehrden H, Hájek M, Horsák M, Brinkert A, Hölzel N, Wesche K, Kamp J, Hájková P, Danihelka J, Lustyk P, Merunková K, Preislerová Z, Kočí M, et al. (2017). The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography, 26, 425-434.
DOI URL |
[39] | Pugnaire FI, Valladares F (2007). Functional Plant Ecology. 2nd ed. CRC Press, Boca Raton, USA. 435-447. |
[40] |
Qi YL, Wei W, Chen CG, Chen LD (2019). Plant root-shoot biomass allocation over diverse biomes: a global synthesis. Global Ecology and Conservation, 18, e00606. DOI: 10.1016/j.gecco.2019.
DOI URL |
[41] |
Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988). Primary production of the central grassland region of the United States. Ecology, 69, 40-45.
DOI URL |
[42] |
Scolforo HF, Scolforo JRS, Mello CR, Mello JM, Ferraz Filho AC, (2015). Spatial distribution of aboveground carbon stock of the arboreal vegetation in Brazilian biomes of Savanna, Atlantic Forest and Semi-arid woodland. PLOS ONE, 10, e0128781. DOI: 10.1371/journal.pone.0128781.
DOI |
[43] |
Shen ZH (2016). Plant diversity in the dry valleys of Southwest China: spatial deviation and determinants for flora and plant communities. Biodiversity Science, 24, 363-366.
DOI URL |
[ 沈泽昊 (2016). 中国西南干旱河谷的植物多样性: 区系和群落结构的空间分异与成因. 生物多样性, 24, 363- 366.]
DOI |
|
[44] |
Shen ZH, Zhang ZM, Hu JM, Han J, Yang JD, Ying LX (2016). Protection and utilization of plant biodiversity resources in dry valleys of Southwest China. Biodiversity Science, 24, 475-488.
DOI URL |
[ 沈泽昊, 张志明, 胡金明, 韩杰, 杨济达, 应凌霄 (2016). 西南干旱河谷植物多样性资源的保护与利用. 生物多样性, 24, 475-488.]
DOI |
|
[45] | Tang LT, Zi HB, Hu L, Ade LJ, Wang CT (2019). Forest biomass and its influencing factors in Qinghai Province. Acta Ecologica Sinica, 39, 3677-3686. |
[ 唐立涛, 字洪标, 胡雷, 阿的鲁骥, 王长庭 (2019). 青海省森林细根生物量及其影响因子. 生态学报, 39, 3677-3686.] | |
[46] |
Wang B, Zha TS, Jia X, Wu B, Zhang YQ, Qin SG (2014). Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences, 11, 259-268.
DOI URL |
[47] | Xie ZQ, Tang ZY, Liu Q, Xu WT (2019). Carbon Budget of Shrub Ecosystems in China. Science Press, Beijing. |
[ 谢宗强, 唐志尧, 刘庆, 徐文婷 (2019). 中国灌丛生态系统碳收支研究. 科学出版社, 北京.] | |
[48] |
Xu MJ, Ji HB, Zhuang SY (2018). Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China. PLOS ONE, 13, e0193024. DOI: 10.1371/journal.pone.0193024.
DOI |
[49] |
Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93.
DOI URL |
[50] |
Zhang H, Wang KL, Xu XL, Song TQ, Xu YF, Zeng FP (2015). Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests. Scientific Reports, 5, 15997. DOI: 10.1038/srep15997.
DOI PMID |
[51] | Zhang JY, Liu TX, Luo YY, Duan LM, Li W, Yang L, Scharaw B (2020). Temporal and spatial distribution of aboveground biomass of vegetation and quantitative analysis of impact factors in semi-arid grassland basin. Chinese Journal of Ecology, 39, 364-375. |
[ 张俊怡, 刘廷玺, 罗艳云, 段利民, 李玮, 杨璐, Scharaw B (2020). 半干旱草原型流域植被地上生物量时空分布特征及其影响因子. 生态学杂志, 39, 364-375.] | |
[52] | Zhang RZ (1992). The Dry Valleys of the Hengduan Mountains Region. Science Press, Beijing. |
[ 张荣祖 (1992). 横断山区干旱河谷. 科学出版社, 北京.] | |
[53] |
Zhang Y, Chen HYH, Taylor AR (2017). Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Functional Ecology, 31, 419-426.
DOI URL |
[1] | Yao Liu Quan-Lin ZHONG Chao-Bin XU Dong-Liang CHENG 芳 跃郑 Zou Yuxing Zhang Xue Xin-Jie Zheng Yun-Ruo Zhou. Relationship between fine root functional traits and rhizosphere microenvironment of Machilus pauhoi at different sizes [J]. Chin J Plant Ecol, 2024, 48(预发表): 0-0. |
[2] | Ke-Yu CHEN Sen Xing Yu Tang Sun JiaHui Shijie Ren Bao-Ming JI. Arbuscular mycorrhizal fungal community characteristics and driving factors in different grassland types [J]. Chin J Plant Ecol, 2024, 48(5): 660-674. |
[3] | Hao-Ran BAI Meng HOU Yan-Jie LIU. Effects of the invasion of Cenchrus spinifex and drought on productivity of Leymus chinensis community [J]. Chin J Plant Ecol, 2024, 48(5): 577-589. |
[4] | WANG Ge, HU Shu-Ya, LI Yang, CHEN Xiao-Peng, LI Hong-Yu, DONG Kuan-Hu, HE Nian-Peng, WANG Chang-Hui. Temperature sensitivity of soil net nitrogen mineralization rates across different grassland types [J]. Chin J Plant Ecol, 2024, 48(4): 523-533. |
[5] | LIANG Yi-Xian, WANG Chuan-Kuan, ZANG Miao-Han, SHANGGUAN Hong-Yu, LIU Yi-Xiao, QUAN Xian-Kui. Responses of radial growth and biomass allocation of Larix gmelinii to climate warming [J]. Chin J Plant Ecol, 2024, 48(4): 459-468. |
[6] | DONG Shao-Qiong, HOU Dong-Jie, QU Xiao-Yun, GUO Ke. A plot-based dataset of plant communities on the Qaidam Basin, China [J]. Chin J Plant Ecol, 2024, 48(4): 534-540. |
[7] | HUANG Ling, WANG Zhen, MA Ze, YANG Fa-Lin, LI Lan, SEREKPAYEV Nurlan, NOGAYEV Adilbek, HOU Fu-Jiang. Effects of long-term grazing and nitrogen addition on the growth of Stipa bungeana population in typical steppe of Loess Plateau [J]. Chin J Plant Ecol, 2024, 48(3): 317-330. |
[8] | XUE Zhi-Fang, LIU Tong, WANG Li-Sheng, SONG Ji-Hu, CHEN Hong-Yang, XU Ling, YUAN Ye. Community structure and characteristics of plain valley forests in main tributaries of Ertix River Basin, China [J]. Chin J Plant Ecol, 2024, 48(3): 390-402. |
[9] | RU Ya-Qian, XUE Jian-Guo, GE Ping, LI Yu-Lin, LI Dong-Xu, HAN Peng, YANG Tian-Run, CHU Wei, CHEN Zhang, ZHANG Xiao-Lin, LI Ang, HUANG Jian-Hui. Ecological and economic effects of intensive rotational grazing in a typical steppe [J]. Chin J Plant Ecol, 2024, 48(2): 171-179. |
[10] | GENG Xue-Qi, TANG Ya-Kun, WANG Li-Na, DENG Xu, ZHANG Ze-Ling, ZHOU Ying. Nitrogen addition increases biomass but reduces nitrogen use efficiency of terrestrial plants in China [J]. Chin J Plant Ecol, 2024, 48(2): 147-157. |
[11] | XIAO Lan, DONG Biao, ZHANG Lin-Ting, DENG Chuan-Yuan, LI Xia, JIANG De-Gang, LIN Yong-Ming. Characteristics of main plant communities on uninhabited islands in Bohai Sea, China [J]. Chin J Plant Ecol, 2024, 48(1): 127-134. |
[12] | LIU Cong-Cong, HE Nian-Peng, LI Ying, ZHANG Jia-Hui, YAN Pu, WANG Ruo-Meng, WANG Rui-Li. Current and future trends of plant functional traits in macro-ecology [J]. Chin J Plant Ecol, 2024, 48(1): 21-40. |
[13] | CHEN Zhao-Quan, WANG Ming-Hui, HU Zi-Han, LANG Xue-Dong, HE Yun-Qiong, LIU Wan-De. Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China [J]. Chin J Plant Ecol, 2024, 48(1): 68-79. |
[14] | LI Bing, ZHU Wan-Wan, HAN Cui, YU Hai-Long, HUANG Ju-Ying. Soil respiration and its influencing factors in a desert steppe in northwestern China under changing precipitation regimes [J]. Chin J Plant Ecol, 2023, 47(9): 1310-1321. |
[15] | LI Na, TANG Shi-Ming, GUO Jian-Ying, TIAN Ru, WANG Shan, HU Bing, LUO Yong-Hong, XU Zhu-Wen. Meta-analysis of effects of grazing on plant community properties in Nei Mongol grassland [J]. Chin J Plant Ecol, 2023, 47(9): 1256-1269. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn