植物生态学报 ›› 2023, Vol. 47 ›› Issue (9): 1245-1255.DOI: 10.17521/cjpe.2023.0028
陈颖洁1,2, 房凯2,3,*(), 秦书琪2, 郭彦军1,4, 杨元合2,5
收稿日期:
2023-02-01
接受日期:
2023-04-21
出版日期:
2023-09-20
发布日期:
2023-09-28
通讯作者:
* 房凯(CHEN Ying-Jie1,2, FANG Kai2,3,*(), QIN Shu-Qi2, GUO Yan-Jun1,4, YANG Yuan-He2,5
Received:
2023-02-01
Accepted:
2023-04-21
Online:
2023-09-20
Published:
2023-09-28
Contact:
* FANG Kai(摘要:
草地是陆地生态系统的重要组成部分, 在陆地碳循环中发挥着重要作用。然而, 目前地球系统模型对草地土壤碳动态的预测仍存在较大不确定性, 其主要原因是对土壤有机碳组分含量和分解速率的空间格局及其影响因素的认识尚不充分。该研究基于在内蒙古温带草地开展的样带调查, 按土壤颗粒的粒径大小进行土壤分级, 并通过室内培养方法测定土壤碳分解速率, 在此基础上进一步利用方差分解探究气候、土壤、植物和矿物4类因素对内蒙古温带草地表层土壤有机碳组分含量和分解速率影响的相对重要性。结果显示: 1)土壤有机碳及其组分含量呈现自西南向东北增加的空间格局, 草甸草原中整土及不同组分碳含量最大, 典型草原次之, 荒漠草原最小; 而有机碳标准化的碳分解速率呈现相反的趋势。2)气候和矿物是驱动土壤有机碳组分含量空间变异的主要因素, 且两者在不同组分中的相对重要性存在差异, 即随土壤粒径减小, 矿物的相对重要性逐渐增加。3)碳分解速率受矿物、土壤和气候因素共同影响。上述结果表明不同土壤碳组分含量和碳分解速率空间变异的影响因素存在差异, 矿物因素对细颗粒组分的影响尤为重要, 意味着地球系统模型中应考虑矿物因素在不同碳组分中的作用, 从而更准确地预测全球变化背景下的草地土壤碳动态。
陈颖洁, 房凯, 秦书琪, 郭彦军, 杨元合. 内蒙古温带草地土壤有机碳组分含量和分解速率的空间格局及其影响因素. 植物生态学报, 2023, 47(9): 1245-1255. DOI: 10.17521/cjpe.2023.0028
CHEN Ying-Jie, FANG Kai, QIN Shu-Qi, GUO Yan-Jun, YANG Yuan-He. Spatial patterns and determinants of soil organic carbon component contents and decomposition rate in temperate grasslands of Nei Mongol, China. Chinese Journal of Plant Ecology, 2023, 47(9): 1245-1255. DOI: 10.17521/cjpe.2023.0028
图1 内蒙古温带草地土壤有机碳含量(A)及碳组分含量(B-D)的空间格局。植被类型图基于1:1 000 000中国植被图(中国科学院中国植被图编辑委员会, 2001)绘制。箱线图中的线、底边和顶边以及误差棒分别表示一组数据的中位值、25百分位数和75百分位数以及标准差。不同小写字母表示不同草地类型存在显著差异(p < 0.05)。
Fig. 1 Spatial distributions of total soil organic carbon (C) content (A) and in three fractions content (B-D) in temperate grasslands of Nei Mongol. The vegetation map was obtained from China’s vegetation atlas with a scale of 1:1 000 000 (The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences, 2001). The lines, lower and upper boundaries, and bars in the boxes show median values, 25th and 75th percentiles, and standard deviations of all data, respectively. Different lowercase letters denote significant differences among different grassland types (p < 0.05). DS, desert steppe; MS, meadow steppe; TS, typical steppe.
图2 内蒙古温带草地有机碳(OC)标准化碳分解速率的空间格局(A)及不同草地类型间土壤碳分解速率的差异(B)。植被类型图基于1:1 000 000中国植被图(中国科学院中国植被图编辑委员会, 2001)绘制。箱线图中的线、底边和顶边以及误差棒分别表示一组数据的中位值、25百分位数和75百分位数以及标准差。不同小写字母表示不同草地类型存在显著差异(p < 0.05)。
Fig. 2 Spatial distribution of soil carbon (C) decomposition rate standardized by soil organic C (OC) in temperate grasslands of Nei Mongol (A), and comparison of soil C decomposition rate among different grassland types (B). The vegetation map was obtained from China’s vegetation atlas with a scale of 1:1 000 000 (The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences, 2001). The lines, lower and upper boundaries, and bars in the boxes show median values, 25th and 75th percentiles, and standard deviations of all data, respectively. Different lowercase letters denote significant differences among different grassland types (p < 0.05). DS, desert steppe; MS, meadow steppe; TS, typical steppe.
图3 内蒙古温带草地不同碳组分有机碳含量的差异。箱线图中的线、底边和顶边以及误差棒分别表示一组数据的中位值、25百分位数和75百分位数以及标准差。不同小写字母表示不同草地类型碳组分存在显著差异(p < 0.05)。
Fig. 3 Comparison of organic carbon (C) contents among different soil aggregate fractions in temperate grasslands of Nei Mongol. The lines, lower and upper boundaries, and bars in the boxes show median values, 25th and 75th percentiles, and standard deviations of all data, respectively. Different lowercase letters denote significant differences of C fractions among different grassland types (p < 0.05).
图4 内蒙古温带草地土壤有机碳含量、碳组分含量、碳分解速率与气候、土壤、植物和矿物变量的相关性。土壤有机碳、大团聚体碳、微团聚体碳、粉粒黏粒碳含量和有机碳标准化的碳分解速率数据经过了lg转化。括号中的“+”和“-”分别代表正相关关系和负相关关系。AGB, 地上生物量; AI, 干旱指数; CaExch, 交换性钙; Clay + silt, 黏粒和粉粒含量; Feo + Alo, 弱结晶态铁铝氧化物; Fep + Alp, 有机络合态铁铝氧化物; MAP, 年降水量; MAT, 年平均气温。*, p < 0.05; **, p < 0.01; ***, p < 0.001。
Fig. 4 Correlations of total soil organic carbon (C) content, C content in different aggregate fractions and C decomposition rate with climatic, edaphic, plant and mineral variables in temperate grasslands of Nei Mongol. Soil organic C, macroaggregate C, microaggregate C, silt and clay C, and C decomposition rate standardized by SOC are lg transformed. The “+” and “-” in parentheses represent positive and negative correlations, respectively. AGB, aboveground biomass; AI, aridity index; CaExch, exchangeable Ca2+; Clay + silt, clay and silt content; Feo + Alo, poorly crystalline Fe/Al oxide; Fep + Alp, organically complexed Fe/Al oxide; MAP, mean annual precipitation; MAT, mean annual air temperature. *, p < 0.05; **, p < 0.01; ***, p < 0.001.
图5 气候、土壤、植物和矿物变量对内蒙古温带草地土壤有机碳含量(A)、碳组分含量(B-D)和碳分解速率(E)影响的相对重要性。土壤有机碳、大团聚体碳、微团聚体碳、粉粒黏粒碳含量和有机碳标准化的碳分解速率数据经过了lg转化。AGB, 地上生物量; AI, 干旱指数; CaExch, 交换性钙含量; Clay + silt, 黏粒和粉粒含量; Feo + Alo, 弱结晶态铁铝氧化物含量; MAP, 年降水量; MAT, 年平均气温。
Fig. 5 Relative effects of climatic, edaphic, plant and mineral variables on soil organic carbon (C) content (A), aggregate C fractions content (B-D), and C decomposition rate (E) in temperate grasslands of Nei Mongol. Soil organic C, macroaggregate C, microaggregate C, silt and clay C contents, and C decomposition rate standardized by SOC are lg transformed. AGB, aboveground biomass; AI, aridity index; CaExch, exchangeable Ca2+ content; Clay + silt, clay and silt content; Feo + Alo, poorly crystalline Fe/Al oxide content; MAP, mean annual precipitation; MAT, mean annual air temperature.
[1] |
Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608.
DOI PMID |
[2] | Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing. |
[鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.] | |
[3] | Burnham KP, Anderson DR (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd ed. Springer, New York. |
[4] |
Cao YQ, Xu L, Zhang Z, Chen Z, He NP (2019). Soil microbial metabolic quotient in Inner Mongolian grasslands: patterns and influence factors. Chinese Geographical Science, 29, 1001-1010.
DOI |
[5] |
Chen LY, Liang JY, Qin SQ, Liu L, Fang K, Xu YP, Ding JZ, Li F, Luo YQ, Yang YH (2016). Determinants of carbon release from the active layer and permafrost deposits on the Tibetan Plateau. Nature Communications, 7, 13046. DOI: 10.1038/ncomms13046.
PMID |
[6] | Chen QM, Wang SQ, Yu GR (2003). Spatial characteristics of soil organic carbon and nitrogen in Inner Mongolia. Chinese Journal of Applied Ecology, 14, 699-704. |
[陈庆美, 王绍强, 于贵瑞 (2003). 内蒙古自治区土壤有机碳、氮蓄积量的空间特征. 应用生态学报, 14, 699-704.] | |
[7] |
Colman BP, Schimel JP (2013). Drivers of microbial respiration and net N mineralization at the continental scale. Soil Biology & Biochemistry, 60, 65-76.
DOI URL |
[8] |
Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173.
DOI |
[9] | Ding JZ, Chen LY, Zhang BB, Liu L, Yang GB, Fang K, Chen YL, Li F, Kou D, Ji CJ, Luo YQ, Yang YH (2016). Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems. Global Biogeochemical Cycles, 30, 1310-1323. |
[10] |
Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Pinto MC, Casanova-Katny A, Muñoz C, Boudin M, Venegas EZ, Boeckx P (2015). Soil carbon storage controlled by interactions between geochemistry and climate. Nature Geoscience, 8, 780-783.
DOI |
[11] |
Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012). Soil organic matter turnover is governed by accessibility not recalcitrance. Global Change Biology, 18, 1781-1796.
DOI URL |
[12] |
Elliott ET, Palm CA, Reuss DE, Monz CA (1991). Organic matter contained in soil aggregates from a tropical chronosequence: correction for sand and light fraction. Agriculture, Ecosystems & Environment, 34, 443-451.
DOI URL |
[13] | Fang JY, Geng XQ, Zhao X, Shen HH, Hu HF (2018). How many areas of grasslands are there in China? Chinese Science Bulletin, 63, 1731-1739. |
[方精云, 耿晓庆, 赵霞, 沈海花, 胡会峰 (2018). 我国草地面积有多大? 科学通报, 63, 1731-1739.] | |
[14] |
Fang K, Qin SQ, Chen LY, Zhang QW, Yang YH (2019). Al/Fe mineral controls on soil organic carbon stock across Tibetan alpine grasslands. Journal of Geophysical Research: Biogeosciences, 124, 247-259.
DOI |
[15] |
Friedlingstein P, O’Sullivan M, Jones MW, Andrew RM, Hauck J, Olsen A, Peters GP, Peters W, Pongratz J, Sitch S le Quéré C, Canadell JG, Ciais P, Jackson RB, Alin S, et al. (2020). Global carbon budget 2020. Earth System Science Data, 12, 3269-3340.
DOI URL |
[16] |
Gentsch N, Mikutta R, Alves RJE, Barta J, Čapek P, Gittel A, Hugelius G, Kuhry P, Lashchinskiy N, Palmtag J, Richter A, Šantrůčková H, Schnecker J, Shibistova O, Urich T, et al. (2015). Storage and transformation of organic matter fractions in cryoturbated permafrost soils across the Siberian Arctic. Biogeosciences, 12, 4525-4542.
DOI URL |
[17] |
Kou D, Ma WH, Ding JZ, Zhang BB, Fang K, Hu HF, Yu JC, Wang T, Qin SQ, Zhao X, Fang JY, Yang YH (2018). Dryland soils in northern China sequester carbon during the early 2000s warming hiatus period. Functional Ecology, 32, 1620-1630.
DOI URL |
[18] | Krige DG (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Southern African Institute of Mining and Metallurgy, 52, 119-139. |
[19] |
Lavallee JM, Soong JL, Cotrufo MF (2020). Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Global Change Biology, 26, 261-273.
DOI PMID |
[20] |
le Provost G, Badenhausser I, le Bagousse-Pinguet Y, Clough Y, Henckel L, Violle C, Bretagnolle V, Roncoroni M, Manning P, Gross N (2020). Land-use history impacts functional diversity across multiple trophic groups. Proceedings of the National Academy of Sciences of the United States of America, 117, 1573-1579.
DOI PMID |
[21] |
Lehmann J, Kleber M (2015). The contentious nature of soil organic matter. Nature, 528, 60-68.
DOI |
[22] |
Li P, Sayer EJ, Jia Z, Liu WX, Wu YT, Yang S, Wang CZ, Yang L, Chen DM, Bai YF, Liu LL (2020). Deepened winter snow cover enhances net ecosystem exchange and stabilizes plant community composition and productivity in a temperate grassland. Global Change Biology, 26, 3015-3027.
DOI PMID |
[23] |
Lugato E, Lavallee JM, Haddix ML, Panagos P, Cotrufo MF (2021). Different climate sensitivity of particulate and mineral-associated soil organic matter. Nature Geoscience, 14, 295-300.
DOI |
[24] |
Luo YQ, Ahlström A, Allison SD, Batjes NH, Brovkin V, Carvalhais N, Chappell A, Ciais P, Davidson EA, Finzi AC, Georgiou K, Guenet B, Hararuk O, Harden JW, He YJ, et al. (2016). Toward more realistic projections of soil carbon dynamics by earth system models. Global Biogeochemical Cycles, 30, 40-56.
DOI URL |
[25] |
Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010). Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 19, 233-243.
DOI URL |
[26] | Ma WH, Yang YH, He JS, Zeng H, Fang JY (2008). Above and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Scientia Sinica (Vitae), 38, 84-92. |
[马文红, 杨元合, 贺金生, 曾辉, 方精云 (2008). 内蒙古温带草地生物量及其与环境因子的关系. 中国科学: 生命科学, 38, 84-92.] | |
[27] | National Agricultural Technology Extension and Service Center (2006). Soil Analysis Technology Standard. 2nd ed. China Agriculture Press, Beijing. |
[全国农业技术推广服务中心 (2006). 土壤分析技术规范. 2版. 中国农业出版社, 北京.] | |
[28] | Ni XY, Liao S, Tan SY, Wang DY, Peng Y, Yue K, Wu FZ, Yang YS (2020). A quantitative assessment of amino sugars in soil profiles. Soil Biology & Biochemistry, 143, 107762. DOI: 10.1016/j.soilbio.2020.107762. |
[29] |
Oades JM (1988). The retention of organic matter in soils. Biogeochemistry, 5, 35-70.
DOI URL |
[30] | Qin SQ, Kou D, Mao C, Chen YL, Chen LY, Yang YH (2021). Temperature sensitivity of permafrost carbon release mediated by mineral and microbial properties. Science Advances, 7, eabe3596. DOI: 10.1126/sciadv.abe3596. |
[31] |
Rey A, Jarvis P (2006). Modelling the effect of temperature on carbon mineralization rates across a network of European forest sites (FORCAST). Global Change Biology, 12, 1894-1908.
DOI URL |
[32] |
Rowley MC, Grand S, Verrecchia ÉP (2018). Calcium- mediated stabilisation of soil organic carbon. Biogeochemistry, 137, 27-49.
DOI |
[33] |
Shi Y, Baumann F, Ma Y, Song C, Kühn P, Scholten T, He JS (2012). Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications. Biogeosciences, 9, 2287-2299.
DOI URL |
[34] |
Six J, Conant RT, Paul EA, Paustian K (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155-176.
DOI URL |
[35] |
Six J, Elliott ET, Paustian K (2000). Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biology & Biochemistry, 32, 2099-2103.
DOI URL |
[36] | Soil Census Office of Inner Mongolia Autonomous Region, Soil and Fertilizer Workstation of Inner Mongolia Autonomous Region (1994). Soil of Inner Mongolia. Science Press, Beijing. |
[内蒙古自治区土壤普查办公室, 内蒙古自治区土壤肥料工作站 (1994). 内蒙古土壤. 科学出版社, 北京.] | |
[37] | The Editorial Committee of Vegetation Map of China, Chinese Academy of Sciences (2001). 1:1000000 Vegetation Atlas of China. Science Press, Beijing. |
[中国科学院中国植被图编辑委员会 (2001). 1:1000000中国植被图集. 科学出版社, 北京.] | |
[38] |
Todd-Brown KEO, Randerson JT, Hopkins F, Arora V, Hajima T, Jones C, Shevliakova E, Tjiputra J, Volodin E, Wu T, Zhang Q, Allison SD (2014). Changes in soil organic carbon storage predicted by Earth system models during the 21st century. Biogeosciences, 11, 2341-2356.
DOI URL |
[39] |
von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006). Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—A review. European Journal of Soil Science, 57, 426-445.
DOI URL |
[40] |
Wang T, Xu S, Zhao MY, Li H, Kou D, Fang JY, Hu HF (2017). Allocation of mass and stability of soil aggregate in different types of Nei Mongol grasslands. Chinese Journal of Plant Ecology, 41, 1168-1176.
DOI |
[王甜, 徐姗, 赵梦颖, 李贺, 寇丹, 方精云, 胡会峰 (2017). 内蒙古不同类型草原土壤团聚体含量的分配及其稳定性. 植物生态学报, 41, 1168-1176.]
DOI |
|
[41] |
Were K, Bui DT, Dick ØB, Singh BR (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators, 52, 394-403.
DOI URL |
[42] | White RP, Murray S, Rohweder M (2000). Pilot Analysis of Global Ecosystems: Grassland Ecosystems. World Resources Institute, Washington D.C., USA. |
[43] |
Yang YH, Fang JY, Ma WH, Smith P, Mohammat A, Wang SP, Wang W (2010). Soil carbon stock and its changes in northern China’s grasslands from 1980s to 2000s. Global Change Biology, 16, 3036-3047.
DOI URL |
[44] |
Yang YH, Fang JY, Tang YH, Ji CJ, Zheng CY, He JS, Zhu B (2008). Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biology, 14, 1592-1599.
DOI URL |
[45] |
Yang YH, Shi Y, Sun WJ, Chang JF, Zhu JX, Chen LY, Wang X, Guo YP, Zhang HT, Yu LF, Zhao SQ, Xu K, Zhu JL, Shen HH, Wang YY, et al. (2022). Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China: Life Sciences, 65, 861-895.
DOI |
[46] | Ye CL, Huang WJ, Hall SJ, Hu SJ (2022). Association of organic carbon with reactive iron oxides driven by soil pH at the global scale. Global Biogeochemical Cycles, 36, e2021GB007128. DOI: 10.1029/2021GB007128. |
[47] | Zhang CH, Wang MJ, Zhang L, Yang LP (2013). Response of meadow steppe ANPP to climate change in Hulunbeir, Inner Mongolia—A simulation study. Acta Prataculturae Sinica, 22(3), 41-50. |
[张存厚, 王明玖, 张立, 杨丽萍 (2013). 呼伦贝尔草甸草原地上净初级生产力对气候变化响应的模拟. 草业学报, 22(3), 41-50.]
DOI |
|
[48] | Zhou ZH, Liu L, Hou L (2022). Soil organic carbon stabilization and formation: mechanism and model. Journal of Beijing Forestry University, 44(10), 11-22. |
[周正虎, 刘琳, 侯磊 (2022). 土壤有机碳的稳定和形成: 机制和模型. 北京林业大学学报, 44(10), 11-22.] | |
[49] | Zhuang QW, Shao ZF, Li DR, Huang X, Cai BW, Altan O, Wu SX (2022). Unequal weakening of urbanization and soil salinization on vegetation production capacity. Geoderma, 411, 115712. DOI: 10.1016/j.geoderma.2022.115712. |
[50] | Zimmerman AR, Ahn MY (2011). Organo-mineral-enzyme interaction and soil enzyme activity//Shukla G, Varma A. Soil Biology: Soil Enzyme. Springer, Berlin. |
[51] |
Zomer RJ, Trabucco A, Bossio DA, Verchot LV (2008). Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems & Environment, 126, 67-80.
DOI URL |
[1] | 秦文宽, 张秋芳, 敖古凯麟, 朱彪. 土壤有机碳动态对增温的响应及机制研究进展[J]. 植物生态学报, 2024, 48(4): 403-415. |
[2] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤固碳贡献差异[J]. 植物生态学报, 2023, 47(9): 1234-1244. |
[3] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[4] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[5] | 董利军, 李金花, 陈珊, 张瑞, 孙建, 马妙君. 若尔盖湿地高寒草甸退化过程中土壤有机碳含量变化及成因分析[J]. 植物生态学报, 2021, 45(5): 507-515. |
[6] | 孙建, 王毅, 刘国华. 青藏高原高寒草地地上植物碳积累速率对生态系统多功能性的影响机制[J]. 植物生态学报, 2021, 45(5): 496-506. |
[7] | 王奕丹, 李亮, 刘琪璟, 马泽清. 亚热带6个典型树种吸收细根寿命与形态属性格局[J]. 植物生态学报, 2021, 45(4): 383-393. |
[8] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[9] | 罗斯生, 罗碧珍, 魏书精, 胡海清, 李小川, 吴泽鹏, 王振师, 周宇飞, 钟映霞. 中度强度森林火灾对马尾松次生林土壤有机碳密度的影响[J]. 植物生态学报, 2020, 44(10): 1073-1086. |
[10] | 李娜, 张一鹤, 韩晓增, 尤孟阳, 郝翔翔. 长期不同植被覆盖对黑土团聚体内有机碳组分的影响[J]. 植物生态学报, 2019, 43(7): 624-634. |
[11] | 杨昊天, 王增如, 贾荣亮. 腾格里沙漠东南缘荒漠草地不同群落类型土壤有机碳分布及储量特征[J]. 植物生态学报, 2018, 42(3): 288-296. |
[12] | 王丽华, 薛晶月, 谢雨, 吴彦. 不同气候类型下四川草地土壤有机碳空间分布及影响因素[J]. 植物生态学报, 2018, 42(3): 297-306. |
[13] | 赵睿宇, 李正才, 王斌, 葛晓改, 戴云喜, 赵志霞, 张雨洁. 毛竹林地表覆盖年限对土壤有机碳的影响[J]. 植物生态学报, 2017, 41(4): 418-429. |
[14] | 杨路存, 李长斌, 宁祎, 聂秀青, 徐文华, 周国英. 青海高寒金露梅灌丛碳密度及其分配格局[J]. 植物生态学报, 2017, 41(1): 62-70. |
[15] | 杜虎, 曾馥平, 宋同清, 温远光, 李春干, 彭晚霞, 张浩, 曾昭霞. 广西主要森林土壤有机碳空间分布及其影响因素[J]. 植物生态学报, 2016, 40(4): 282-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19