植物生态学报 ›› 2021, Vol. 45 ›› Issue (11): 1191-1202.DOI: 10.17521/cjpe.2021.0106
所属专题: 生态系统碳水能量通量
李鑫豪1, 田文东2, 李润东1, 靳川1, 蒋燕1, 郝少荣1, 贾昕1,3, 田赟1,3, 查天山1,3,*()
收稿日期:
2021-03-23
接受日期:
2021-05-24
出版日期:
2021-11-20
发布日期:
2021-06-28
通讯作者:
查天山
作者简介:
* (tianshanzha@bjfu.edu.cn)基金资助:
LI Xin-Hao1, TIAN Wen-Dong2, LI Run-Dong1, JIN Chuan1, JIANG Yan1, HAO Shao-Rong1, JIA Xin1,3, TIAN Yun1,3, ZHA Tian-Shan1,3,*()
Received:
2021-03-23
Accepted:
2021-05-24
Online:
2021-11-20
Published:
2021-06-28
Contact:
ZHA Tian-Shan
Supported by:
摘要:
温带森林生态系统水热通量在多时间尺度上受各种生物物理因子的影响。该研究假设这些因子对水热通量的影响机制具有时间尺度分异性, 通过涡度相关法(EC)于2019年全年对北京松山典型天然落叶阔叶林生态系统蒸散发(ET)、显热通量(H)、潜热通量(LE)、土壤热通量(G)、饱和水汽压差(VPD)、空气温度(Ta)、光合有效辐射(PAR)、归一化植被指数(NDVI)及10 cm深度土壤水分(VWC)等要素进行原位连续监测, 使用小波分析的方法分析了日、季节尺度上生物与非生物因子对生态系统能量分配与水汽交换的调控机制。主要研究结果: 2019年松山天然落叶阔叶林生态系统年均波文比(β)为1.53。ET具有明显的季节变化特征, 从第100天开始逐渐增加, 7月达到峰值, 第300天下降到最低水平。ET最大日累计值为5.01 mm·d-1, 年累计值为476.2 mm, 年降水量为503.3 mm。在日尺度上水热通量与VPD间滞后时间最短, 为3.36 h。在季节尺度上与PAR间滞后时间最短, 为8天。季节尺度上PAR通过VPD来对ET造成间接影响, 而对β造成直接影响。该研究发现不同时间尺度上水热通量与环境因子间的时滞关系, 为选择模型在不同时间尺度下北方温带落叶阔叶林生态系统过程的最佳输入参数提供科学支持。
李鑫豪, 田文东, 李润东, 靳川, 蒋燕, 郝少荣, 贾昕, 田赟, 查天山. 北京松山落叶阔叶林生态系统水热通量对环境因子的响应. 植物生态学报, 2021, 45(11): 1191-1202. DOI: 10.17521/cjpe.2021.0106
LI Xin-Hao, TIAN Wen-Dong, LI Run-Dong, JIN Chuan, JIANG Yan, HAO Shao-Rong, JIA Xin, TIAN Yun, ZHA Tian-Shan. Responses of water vapor and heat fluxes to environmental factors in a deciduous broad- leaved forest ecosystem in Beijing. Chinese Journal of Plant Ecology, 2021, 45(11): 1191-1202. DOI: 10.17521/cjpe.2021.0106
图1 北京松山落叶阔叶林生态系统基于30 min数据和校正后30 min数据的2019年能量闭合状况。括号内数值为对应指标95%的置信区间。G, 土壤热通量; H, 显热通量; Hc, 校正显热通量; LE, 潜热通量; LEc, 校正潜热通量; Rn, 净辐射。
Fig. 1 Energy balance closure of the ecosystem based on the half-hourly data with and without energy balance correction at the deciduous broad-leaved forest ecosystem in Beijing in 2019. Numbers in parentheses show the 95% confidence intervals of the intercepts and slopes. G, soil heat flux; H, sensible heat flux; Hc, corrected sensible heat flux; LE, latent heat flux; LEc, corrected latent heat flux; Rn, net radiation.
图2 北京松山落叶阔叶林生态系统2019年样地环境因子的季节变化。A, 光合有效辐射(PAR)。B, 气温(Ta)。C, 饱和水汽压差(VPD)。D, 降水量(P)和10 cm深度土壤含水量(VWC)。E, 冠层导度(gs)。F, 归一化植被指数(NDVI)。
Fig. 2 Dynamics in daily means of environmental variables in 2019 in the sample plot of the deciduous broad-leaved forest ecosystem in Beijing. A, Photosynthetically active radiation (PAR). B, Air temperature (Ta). C, Vapor pressure deficit (VPD). D, Precipitation (P) and soil water content (VWC) at a depth of 10 cm. E, Canopy conductance (gs). F, Normalized differential vegetation index (NDVI).
图3 北京松山落叶阔叶林生态系统2019年水热通量日均值的季节变化。A, 净辐射(Rn)。B, 土壤热通量(G)。C, 校正显热通量(Hc)和校正潜热通量(LEc)。D, 波文比(β)。E, 蒸散发(ET)。
Fig. 3 Seasonal variation of daily mean values of water and heat fluxes in 2019 at the deciduous broad-leaved forest ecosystem in Beijing. A, Net radiation (Rn). B, Soil heat flux (G). C, Corrected sensible heat fluxes (Hc) and corrected latent heat fluxes (LEc). D, Bowen ratio (β). E, Evapotranspiration (ET).
图4 校正显热通量在净辐射中的占比(Hc/Rn)与光合有效辐射(PAR)(A)、气温(Ta)(B)、土壤含水量(VWC)(C)、水汽压差(VPD)(D)、冠层导度(gs)(E)、归一化植被指数(NDVI)(F)之间的小波相关性。相位差用箭头表示。向上的箭头表示环境因素领先Hc/Rn 90°或滞后270°, 向下的箭头表示环境因素滞后Hc/Rn 90°或领先270°。左(右)箭头表示环境因素与Hc/Rn变化反相(同相)。U形弧线内黑线围成的区域满足0.05显著性水平。
Fig. 4 Wavelet coherence between the proportion of corrected sensible heat flux in net radiation (Hc/Rn) and photosynthetically active radiation (PAR)(A), air temperature (Ta)(B), soil water content (VWC)(C), vapor pressure deficit (VPD)(D), canopy conductance (gs)(E), and normalized difference vegetation index (NDVI)(F). The phase difference is shown by arrows. Arrows pointing down indicate environmental factors leading Hc/Rn by 90° or lagging Hc/Rn by 270°, while arrows pointing up indicate environmental factors lagging Hc/Rn by 90° or leading Hc/Rn by 270°. Arrows pointing left (right) indicate environmental factors and Hc/Rn vary anti-phase (in-phase). The area surrounded by black lines in the U-shaped represent the 0.05 significance level.
图5 校正潜热通量在净辐射中的占比(LEc/Rn)与光合有效辐射(PAR)(A)、气温(Ta)(B)、土壤含水量(VWC)(C)、水汽压差(VPD)(D)、冠层导度(gs)(E)、归一化植被指数(NDVI)(F)之间的小波相关性。相位差用箭头表示。向上的箭头表示环境因素领先LEc/Rn 90°或滞后270°, 向下的箭头表示环境因素滞后LEc/Rn 90°或领先270°。左(右)箭头表示环境因素与LEc/Rn变化反相(同相)。U形弧线内黑线围成的区域满足0.05显著性水平。
Fig. 5 Wavelet coherence between the proportion of corrected latent heat flux in net radiation (LEc/Rn) and photosynthetically active radiation (PAR)(A), air temperature (Ta)(B), soil water content (VWC)(C), vapor pressure deficit (VPD)(D), canopy conductance (gs)(E), and normalized difference vegetation index (NDVI)(F). The phase difference is shown by arrows. Arrows pointing down indicate environmental factors leading LEc/Rn by 90° or lagging LEc/Rn by 270°, while arrows pointing up indicate environmental factors lagging LEc/Rn by 90° or leading LEc/Rn by 270°. Arrows pointing left (right) indicate environmental factors and LEc/Rn vary anti-phase (in-phase). The area surrounded by black lines in the U-shaped represent the 0.05 significance level.
图6 蒸散发(ET)与光合有效辐射(PAR)(A)、气温(Ta)(B)、土壤含水量(VWC)(C)、水汽压差(VPD)(D)、冠层导度(gs)(E)、归一化植被指数(NDVI)(F)之间的小波相关性。相位差用箭头表示。向上的箭头表示环境因素领先ET 90°或滞后270°, 向下的箭头表示环境因素滞后ET 90°或领先270°。左(右)箭头表示环境因素与ET变化反相(同相)。U形弧线内黑线围成的区域满足0.05显著性水平。
Fig. 6 Wavelet coherence between the evapotranspiration (ET) and photosynthetically active radiation (PAR)(A), air temperature (Ta)(B), soil water content (VWC)(C), vapor pressure deficit (VPD)(D), canopy conductance (gs)(E), and normalized difference vegetation index (NDVI)(F). The phase difference is shown by arrows. Arrows pointing down indicate environmental factors leading ET by 90° or lagging ET by 270°, while arrows pointing up indicate environmental factors lagging ET by 90° or leading ET by 270°. Arrows pointing left (right) indicate environmental factors and ET vary anti-phase (in-phase). The area surrounded by black lines in the U-shaped represent the 0.05 significance level.
PAR | Ta | VWC | VPD | gs | NDVI | |
---|---|---|---|---|---|---|
Hc/Rn | 20.41 (14.36) | 22.83 (14.13) | 18.81 (13.67) | 0.46 (1.44) | 4.84 (10.54) | 23.24 (14.06) |
LEc/Rn | 9.47 (14.67) | 22.17 (15.74) | 19.94 (17.65) | 7.87 (4.97) | 4.13 (3.63) | 23.77 (14.74) |
ET | 4.43 (11.23) | 3.21 (10.47) | 0.31 (0.20) | 1.76 (9.70) | 4.99 (1.05) | 19.33 (15.43) |
表1 校正显热通量在净辐射中的占比(Hc/Rn)、校正潜热通量在净辐射中的占比(LEc/Rn)、蒸散发(ET)在日尺度上与各环境因子之间的滞后关系
Table 1 The lag relationship between the proportion of the corrected sensible heat flux in the net radiation (Hc/Rn), the proportion of the corrected latent heat flux in the net radiation (LEc/Rn), evapotranspiration (ET) and environmental factors at the daily scale
PAR | Ta | VWC | VPD | gs | NDVI | |
---|---|---|---|---|---|---|
Hc/Rn | 20.41 (14.36) | 22.83 (14.13) | 18.81 (13.67) | 0.46 (1.44) | 4.84 (10.54) | 23.24 (14.06) |
LEc/Rn | 9.47 (14.67) | 22.17 (15.74) | 19.94 (17.65) | 7.87 (4.97) | 4.13 (3.63) | 23.77 (14.74) |
ET | 4.43 (11.23) | 3.21 (10.47) | 0.31 (0.20) | 1.76 (9.70) | 4.99 (1.05) | 19.33 (15.43) |
PAR | Ta | VWC | VPD | gs | NDVI | |
---|---|---|---|---|---|---|
Hc/Rn | 10.41 (2.01) | - | 20.64 (20.53) | 11.17 (1.24) | 13.10 (10.98) | 20.36 (20.91) |
LEc/Rn | 10.52 (8.79) | 14.05 (6.30) | 23.41 (8.40) | 16.44 (9.86) | 25.23 (0.67) | 16.02 (13.36) |
ET | 3.06 (1.55) | 9.55 (14.99) | 15.09 (19.19) | 10.67 (10.12) | - | 27.81 (9.74) |
表2 校正显热通量在净辐射中的占比(Hc/Rn)、校正潜热通量在净辐射中的占比(LEc/Rn)、蒸散发(ET)在季节尺度上与各环境因子之间的滞后关系
Table 2 The lag relationship between the proportion of the corrected sensible heat flux in the net radiation (Hc/Rn), the proportion of the corrected latent heat flux in the net radiation (LEc/Rn), evapotranspiration (ET) and environmental factors at the seasonal scale
PAR | Ta | VWC | VPD | gs | NDVI | |
---|---|---|---|---|---|---|
Hc/Rn | 10.41 (2.01) | - | 20.64 (20.53) | 11.17 (1.24) | 13.10 (10.98) | 20.36 (20.91) |
LEc/Rn | 10.52 (8.79) | 14.05 (6.30) | 23.41 (8.40) | 16.44 (9.86) | 25.23 (0.67) | 16.02 (13.36) |
ET | 3.06 (1.55) | 9.55 (14.99) | 15.09 (19.19) | 10.67 (10.12) | - | 27.81 (9.74) |
图7 波文比(β)和蒸散发(ET)在剔除饱和水汽压差(VPD)影响后与光合有效辐射(PAR)之间(A, B), 以及β和ET在去除PAR影响后与VPD间(C, D)的局部小波相关性。U形弧线内黑线围成的区域满足0.05的显著性水平。
Fig. 7 Partial wavelet coherence between Bowen ratios (β) and photosynthetically active radiation (PAR) after removing the effects of vapor pressure deficit (VPD)(A), between evapotranspiration (ET) and VPD after removing the effects of PAR (B), between β and VPD after removing the effects of PAR (C), and between ET and VPD after removing the effects of PAR (D). The area surrounded by black lines in the U-shaped represent the 0.05 significance level.
[1] |
Amiro BD, Barr AG, Black TA, Iwashita H, Kljun N, McCaughey JH, Morgenstern K, Murayama S, Nesic Z, Orchansky AL, Saigusa N (2006). Carbon, energy and water fluxes at mature and disturbed forest sites Saskatchewan, Canada. Agricultural and Forest Meteorology, 136, 237-251.
DOI URL |
[2] |
Bahn M, Reichstein M, Guan K, Moreno JM, Williams C (2015). Preface: climate extremes and biogeochemical cycles in the terrestrial biosphere: impacts and feedbacks across scales. Biogeosciences, 12, 4827-4830.
DOI URL |
[3] |
Baldocchi D, Falge E, Wilson K (2001). A spectral analysis of biosphere-atmosphere trace gas flux densities and meteorological variables across hour to multi-year time scales. Agricultural and Forest Meteorology, 107, 1-27.
DOI URL |
[4] |
Baldocchi DD, Xu LK, Kiang N (2004). How plant functional- type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland. Agricultural and Forest Meteorology, 123, 13-39.
DOI URL |
[5] |
Ding RS, Kang SZ, Li FS, Zhang YQ, Tong L (2013). Evapotranspiration measurement and estimation using modified Priestley-Taylor model in an irrigated maize field with mulching. Agricultural and Forest Meteorology, 168, 140-148.
DOI URL |
[6] |
Forner A, Valladares F, Bonal D, Granier A, Grossiord C, Aranda I (2018). Extreme droughts affecting Mediterranean tree species’ growth and water-use efficiency: the importance of timing. Tree Physiology, 38, 1127-1137.
DOI URL |
[7] |
Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, et al. (2015). Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. Global Change Biology, 21, 2861-2880.
DOI URL |
[8] |
Grinsted A, Moore JC, Jevrejeva S (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561-566.
DOI URL |
[9] |
Hong J, Kim J (2011). Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: a wavelet analysis and its ecosystem modeling implications. Global Change Biology, 17, 1900-1916.
DOI URL |
[10] |
Huang JP, Yu HP, Guan XD, Wang GY, Guo RX (2016). Accelerated dryland expansion under climate change. Nature Climate Change, 6, 166-171.
DOI URL |
[11] |
Jia X, Zha TS, Gong JN, Wu B, Zhang YQ, Qin SG, Chen GP, Feng W, Kellomäki S, Peltola H (2016). Energy partitioning over a semi-arid shrubland in northern China. Hydrological Processes, 30, 972-985.
DOI URL |
[12] |
Jia X, Zha TS, Gong JN, Zhang YQ, Wu B, Qin SG, Peltola H (2018). Multi-scale dynamics and environmental controls on net ecosystem CO2 exchange over a temperate semiarid shrubland. Agricultural and Forest Meteorology, 259, 250-259.
DOI URL |
[13] |
Jia X, Zha TS, Wu B, Zhang YQ, Gong JN, Qin SG, Chen GP, Qian D, Kellomaki S, Peltola H (2014). Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences, 11, 4679-4693.
DOI URL |
[14] |
Jiang P, Liu HY, Piao SL, Ciais P, Wu XC, Yin Y, Wang HY (2019). Enhanced growth after extreme wetness compensates for post-drought carbon loss in dry forests. Nature Communications, 10, 195. DOI: 10.1038/s41467-018-08229-z.
DOI PMID |
[15] | Kang M, Zhang Z, Noormets A, Fang X, Zha T, Zhou J, Sun G, McNulty SG, Chen J (2015). Responses of energy partitioning and surface resistance to drought in a poplar plantation in northern China. Biogeosciences Discussions, 12, 345-388. |
[16] |
Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, Munger JW, O’Keefe J, Schmid HP, Wing IS, Yang B, Richardson AD (2014). Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nature Climate Change, 4, 598-604.
DOI URL |
[17] |
Koebsch F, Jurasinski G, Koch M, Hofmann J, Glatzel S (2015). Controls for multi-scale temporal variation in ecosystem methane exchange during the growing season of a permanently inundated fen. Agricultural and Forest Meteorology, 204, 94-105.
DOI URL |
[18] |
Kosugi Y, Takanashi S, Tanaka H, Ohkubo S, Tani M, Yano M, Katayama T (2007). Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years. Journal of Hydrology, 337, 269-283.
DOI URL |
[19] |
Kume T, Tanaka N, Kuraji K, Komatsu H, Yoshifuji N, Saitoh TM, Suzuki M, Kumagai T (2011). Ten-year evapotranspiration estimates in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 151, 1183-1192.
DOI URL |
[20] |
Launiainen S (2010). Seasonal and inter-annual variability of energy exchange above a boreal Scots pine forest. Biogeosciences, 7, 3921-3940.
DOI URL |
[21] |
Law BE, Falge E, Gu L, Baldocchi DD, Bakwin P, Berbigier P, Davis K, Dolman AJ, Falk M, Fuentes JD, Goldstein A, Granier A, Grelle A, Hollinger D, Janssens IA, et al. (2002). Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97-120.
DOI URL |
[22] | Liu CF (2007). Study on Energy and Water Balance of Poplar Plantation in Beijing. PhD dissertation, Beijing Forestry University, Beijing. |
[ 刘晨峰 (2007). 北京地区杨树人工林能量和水量平衡研究. 博士学位论文, 北京林业大学, 北京.] | |
[23] |
Ma J, Jia X, Zha T, Bourque CPA, Tian Y, Bai Y, Liu P, Yang R, Li C, Li C, Xie J, Yu HQ, Zhang F, Zhou C (2019). Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought. Agricultural and Forest Meteorology, 275, 1-10.
DOI URL |
[24] |
Ma JY, Zha TS, Jia X, Tian Y, Charles PA, Liu P, Bai YJ, Wu YJ, Ren C, Yu HQ, Zhang F, Zhou CX, Chen WJ (2018). Energy and water vapor exchange over a young plantation in northern China. Agricultural and Forest Meteorology, 263, 334-345.
DOI URL |
[25] |
Matsumoto K, Ohta T, Nakai T, Kuwada T, Daikoku K, Iida S, Yabuki H, Kononov AV, van der Molen MK, Kodama Y, Maximov TC, Dolman AJ, Hattori S (2008). Energy consumption and evapotranspiration at several boreal and temperate forests in the Far East. Agricultural and Forest Meteorology, 148, 1978-1989.
DOI URL |
[26] |
Mauder M, Cuntz M, Drüe C, Graf A, Rebmann C, Schmid HP, Schmidt M, Steinbrecher R (2013). A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agricultural and Forest Meteorology, 169, 122-135.
DOI URL |
[27] |
McCaughey JH, Pejam MR, Arain MA, Cameron DA (2006). Carbon dioxide and energy fluxes from a boreal mixedwood forest ecosystem in Ontario, Canada. Agricultural and Forest Meteorology, 140, 79-96.
DOI URL |
[28] |
Ng EKW, Chan JCL (2012). Geophysical applications of partial wavelet coherence and multiple wavelet coherence. Journal of Atmospheric and Oceanic Technology, 29, 1845-1853.
DOI URL |
[29] |
Ouyang ZT, Chen JQ, Becker R, Chu HS, Xie J, Shao CL, John R (2014). Disentangling the confounding effects of PAR and air temperature on net ecosystem exchange at multiple time scales. Ecological Complexity, 19, 46-58.
DOI URL |
[30] |
Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006). Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences, 3, 571-583.
DOI URL |
[31] |
Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439.
DOI URL |
[32] |
Ren C, Wu Y, Zha T, Jia X, Tian Y, Bai Y, Bourque CPA, Ma J, Feng W (2018). Seasonal changes in photosynthetic energy utilization in a desert shrub ( Artemisia ordosica Krasch.) during its different phenophases. Forests, 9, 176. DOI: 10.3390/f9040176.
DOI URL |
[33] |
Rotenberg E, Yakir D (2010). Contribution of semi-arid forests to the climate system. Science, 327, 451-454.
DOI PMID |
[34] |
Stoy PC, Katul GG, Siqueira MBS, Juang JY, McCarthy HR, Kim HS, Oishi AC, Oren R (2005). Variability in net ecosystem exchange from hourly to inter-annual time scales at adjacent pine and hardwood forests: a wavelet analysis. Tree Physiology, 25, 887-902.
DOI URL |
[35] |
Tong XJ, Zhang JS, Meng P, Li J, Zheng N (2014). Ecosystem water use efficiency in a warm-temperate mixed plantation in the North China. Journal of Hydrology, 512, 221-228.
DOI URL |
[36] |
Torrence C, Compo GP (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79, 61-78.
DOI URL |
[37] |
Vargas R, Collins SL, Thomey ML, Johnson JE, Brown RF, Natvig DO, Friggens MT (2012). Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Global Change Biology, 18, 1401-1411.
DOI URL |
[38] |
Vargas R, Detto M, Baldocchi DD, Allen MF (2010). Multiscale analysis of temporal variability of soil CO2 production as influenced by weather and vegetation. Global Change Biology, 16, 1589-1605.
DOI URL |
[39] | Wang ZY (2008). Energy Balance and Water Vapor Flux of Snail Control and Schistosomiasis Prevention Forests Ecosystem in Yangtze Rive Beach Land. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[ 王昭艳 (2008). 长江滩地抑螺防病林生态系统能量平衡与水汽通量研究. 博士学位论文, 中国林业科学研究院, 北京.] | |
[40] |
Wilson KB, Baldocchi DD, Aubinet M, Berbigier P, Bernhofer C, Dolman H, Falge E, Field C, Goldstein A, Granier A, Grelle A, Halldor T, Hollinger D, Katul G, Law BE, et al. (2002). Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research, 38, 1294. DOI: 10.1029/2001WR000989.
DOI |
[41] |
Wu JB, Guan DX, Han SJ, Shi TT, Jin CJ, Pei TF, Yu GR (2007). Energy budget above a temperate mixed forest in northeastern China. Hydrological Processes, 21, 2425-2434.
DOI URL |
[42] |
Wu X, Liu H, Li X, Ciais P, Babst F, Guo W, Zhang C, Magliulo V, Pavelka M, Liu S, Huang Y, Wang P, Shi C, Ma Y (2018a). Differentiating drought legacy effects on vegetation growth over the temperate Northern Hemisphere. Global Change Biology, 24, 504-516.
DOI URL |
[43] |
Wu YJ, Ren C, Tian Y, Zha TS, Liu P, Bai YJ, Ma JY, Lai ZR, Bourque CPA (2018b). Photosynthetic gas-exchange and PSII photochemical acclimation to drought in a native and non-native xerophytic species (Artemisia ordosica and Salix psammophila). Ecological Indicators, 94, 130-138.
DOI URL |
[44] |
Xiao J, Liu S, Stoy PC (2016). Preface: impacts of extreme climate events and disturbances on carbon dynamics. Biogeosciences, 13, 3665-3675.
DOI URL |
[45] |
Xie J, Zha T, Zhou C, Jia X, Yu H, Yang B, Chen J, Zhang F, Wang B, Bourque CPA, Sun G, Ma H, Liu H, Peltola H (2016). Seasonal variation in ecosystem water use efficiency in an urban-forest reserve affected by periodic drought. Agricultural and Forest Meteorology, 221, 142-151.
DOI URL |
[46] |
Yan C, Zhao W, Wang Y, Yang Q, Zhang Q, Qiu GY (2017). Effects of forest evapotranspiration on soil water budget and energy flux partitioning in a subalpine valley of China. Agricultural and Forest Meteorology, 246, 207-217.
DOI URL |
[47] |
Yu GR, Zhu XJ, Fu YL, He HL, Wang QF, Wen XF, Li XR, Zhang LM, Zhang L, Su W, Li SG, Sun XM, Zhang YP, Zhang JH, Yan JH, et al. (2013). Spatial patterns and climate drivers of carbon fluxes in terrestrial ecosystems of China. Global Change Biology, 19, 798-810.
DOI URL |
[48] |
Zha TS, Barr AG, Black TA, McCaughey JH, Bhatti J, Hawthorne I, Krishnan P, Kidston J, Saigusa N, Shashkov A, Nesic Z (2009). Carbon sequestration in boreal jack pine stands following harvesting. Global Change Biology, 15, 1475-1487.
DOI URL |
[49] | Zhang Y (2010). Energy and Water Budget of Poplar Plantation in Suburban Beijing. PhD dissertation, Beijing Forestry University, Beijing. |
[ 张燕 (2010). 北京地区杨树人工林能量平衡和水量平衡. 博士学位论文, 北京林业大学, 北京.] | |
[50] |
Zhang YY, Zhao WZ, He JH, Zhang K (2016). Energy exchange and evapotranspiration over irrigated seed maize agroecosystems in a desert-oasis region, northwest China. Agricultural and Forest Meteorology, 223, 48-59.
DOI URL |
[1] | 王秀英, 陈奇, 杜华礼, 张睿, 马红璐. 基于机器学习的青藏高原高寒沼泽湿地蒸散发插补研究[J]. 植物生态学报, 2023, 47(7): 912-921. |
[2] | 朱玉英, 张华敏, 丁明军, 余紫萍. 青藏高原植被绿度变化及其对干湿变化的响应[J]. 植物生态学报, 2023, 47(1): 51-64. |
[3] | 黄樱, 陈挚, 石喆, 熊博文, 鄢春华, 邱国玉. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022, 46(3): 300-310. |
[4] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[5] | 王芑丹, 杨温馨, 黄洁钰, 徐昆, 王佩. 灌丛化的蒸散耗水效应数值模拟研究——以内蒙古灌丛化草原为例[J]. 植物生态学报, 2017, 41(3): 348-358. |
[6] | 熊育久,邱国玉,谢芳. 内蒙古太仆寺旗退耕草地植物种类变化与水分收支[J]. 植物生态学报, 2014, 38(5): 425-439. |
[7] | 赵晶晶, 刘良云. 物候变化对北美温带落叶阔叶林生态系统生产力的影响[J]. 植物生态学报, 2012, 36(5): 363-371. |
[8] | 陈兰, 张守仁. 增强UV-B辐射对暖温带落叶阔叶林土庄绣线菊水分利用效率、气孔导度、叶氮素含量及形态特性的影响[J]. 植物生态学报, 2006, 30(1): 47-56. |
[9] | 桑卫国, 苏宏新, 陈灵芝. 东灵山暖温带落叶阔叶林生物量和能量密度研究[J]. 植物生态学报, 2002, 26(增刊): 88-92. |
[10] | 桑卫国, 马克平, 陈灵芝. 暖温带落叶阔叶林碳循环的初步估算[J]. 植物生态学报, 2002, 26(5): 543-548. |
[11] | 桑卫国, 陈灵芝, 王喜武. 东灵山地区落叶阔叶林长期动态的模拟[J]. 植物生态学报, 2000, 24(2): 180-185. |
[12] | 万师强, 陈灵芝. 暖温带落叶阔叶林冠层对降水的分配作用[J]. 植物生态学报, 1999, 23(6): 557-561. |
[13] | 阎传海, 张绅, 宋永昌. 南京地区森林植被性质的初步研究[J]. 植物生态学报, 1995, 19(3): 280-285. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19