植物生态学报 ›› 2019, Vol. 43 ›› Issue (8): 709-717.DOI: 10.17521/cjpe.2019.0112
所属专题: 根系生态学
张乔艳1,唐丽霞1,*(),廖华刚2,潘露1,陈龙1,黄同丽1
收稿日期:
2019-05-14
修回日期:
2019-08-14
出版日期:
2019-08-20
发布日期:
2020-01-03
通讯作者:
唐丽霞
基金资助:
ZHANG Qiao-Yan1,TANG Li-Xia1,*(),LIAO Hua-Gang2,PAN Lu1,CHEN Long1,HUANG Tong-Li1
Received:
2019-05-14
Revised:
2019-08-14
Online:
2019-08-20
Published:
2020-01-03
Contact:
TANG Li-Xia
Supported by:
摘要:
根截面微观结构由连通的骨架和相互贯通或封闭的孔洞构成, 其与根系抗拉力学特性有密切的联系。该文通过单根拉拔测试根系力学特性并采用扫描电镜获取根截面微观特征, 探讨根截面微观结构特征与根抗拉力学特性的关系。主要结果显示: 1)根系截面单位面积承受拉力和拉伸应变的能力均随根直径的增大而降低。2)根系抗拉强度和韧性随平均孔径的增加而降低, 其次孔径的均匀性对二者也存在一定的影响。3)导管排列方式随根直径的增加, 呈现单管孔→复管孔→管孔链→管孔团的排列方式, 导管排列方式和分布均匀性对根抗拉力学特性都有影响, 其中排列方式较分布均匀性的影响大。4)根截面管孔面积比对根抗拉特性的影响还受木质部和根皮及导管特征的影响。该研究从根系微观结构的角度揭示了根直径的增大影响截面微观结构进而影响根系的抗拉力学特性, 为进一步解析灌木根系固土力学机制提供了一定的理论基础。
张乔艳, 唐丽霞, 廖华刚, 潘露, 陈龙, 黄同丽. 多花木蓝根截面微观结构对其抗拉特性的影响. 植物生态学报, 2019, 43(8): 709-717. DOI: 10.17521/cjpe.2019.0112
ZHANG Qiao-Yan, TANG Li-Xia, LIAO Hua-Gang, PAN Lu, CHEN Long, HUANG Tong-Li. Effect of microstructure in cross section on tensile properties of Indigofera amblyantha. Chinese Journal of Plant Ecology, 2019, 43(8): 709-717. DOI: 10.17521/cjpe.2019.0112
图3 多花木蓝不同根系直径(D)截面导管孔径分布特征。
Fig. 3 Characteristics of vessel pore size distribution of Indigofera amblyantha in cross section with different root diameters (D).
根直径 Root diameter (mm) | 最大孔径 Maximum of pore size (mm) | 最小孔径 Minimum of pore size (mm) | 平均孔径 Mean of pore size (mm) |
---|---|---|---|
1 | 0.068 | 0.009 | 0.028 |
2 | 0.07 | 0.01 | 0.034 |
3 | 0.08 | 0.01 | 0.040 |
4 | 0.11 | 0.01 | 0.042 |
5 | 0.13 | 0.01 | 0.057 |
表1 多花木蓝不同根直径根截面管孔孔径
Table 1 Pore size of vessels of Indigofera amblyantha in cross section with different root diameters
根直径 Root diameter (mm) | 最大孔径 Maximum of pore size (mm) | 最小孔径 Minimum of pore size (mm) | 平均孔径 Mean of pore size (mm) |
---|---|---|---|
1 | 0.068 | 0.009 | 0.028 |
2 | 0.07 | 0.01 | 0.034 |
3 | 0.08 | 0.01 | 0.040 |
4 | 0.11 | 0.01 | 0.042 |
5 | 0.13 | 0.01 | 0.057 |
根直径 Root diameter (mm) | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
导管面积比 Area ratio of vessels (%) | 7.42 ± 0.29 | 6.91 ± 0.16 | 6.80 ± 0.37 | 4.44 ± 0.37 | 10.82 ± 0.13 |
木质部面积比 Area ration of xylem (%) | 21.85 ± 1.18 | 36.44 ± 3.2 | 45.89 ± 0.66 | 47.16 ± 3.13 | 53.06 ± 1.27 |
根皮面积比 Area ratio of velamen (%) | 67.35 ± 1.18 | 59.16 ± 7.25 | 47.30 ± 0.66 | 46.24 ± 3.12 | 39.53 ± 1.27 |
表2 多花木蓝不同根直径根系显微构造百分比(平均值±标准偏差)
Table 2 Percentage of microstructure of Indigofera amblyantha with different roots diameter (mean ± SD)
根直径 Root diameter (mm) | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
导管面积比 Area ratio of vessels (%) | 7.42 ± 0.29 | 6.91 ± 0.16 | 6.80 ± 0.37 | 4.44 ± 0.37 | 10.82 ± 0.13 |
木质部面积比 Area ration of xylem (%) | 21.85 ± 1.18 | 36.44 ± 3.2 | 45.89 ± 0.66 | 47.16 ± 3.13 | 53.06 ± 1.27 |
根皮面积比 Area ratio of velamen (%) | 67.35 ± 1.18 | 59.16 ± 7.25 | 47.30 ± 0.66 | 46.24 ± 3.12 | 39.53 ± 1.27 |
[1] | Chen SY, Xue ZH, Liu JW, Zhao KY, Bao XC (2018). Effect of alkali treatment on relaxation properties of wood. Journal of Northwest Forestry University, 33, 193-197, 202. |
[ 陈思禹, 薛振华, 刘金炜, 赵凯燕, 包秀春 (2018). 碱处理对木材松弛性能的影响. 西北林学院学报, 33, 193-197, 202.] | |
[2] | Cofie P, Koolen AJ, Perdok UD (2000). Measurement of stress-strain relationship of beech roots and calculation of the reinforcement effect of tree roots in soil-wheel systems. Soil & Tillage Research, 57, 1-12. |
[3] | Ding T, Bei ZT, Li Y (2012). Influence of heat treatment on crystallinity and mechanical properties of Chinese fir lumber. China Forestry Science and Technology, 26(2), 23-26. |
[ 丁涛, 贝政廷, 李源 (2012). 杉木热处理材结晶度及力学性能的研究. 林业科技开发, 26(2), 23-26.] | |
[4] | Genet M, Stokes A, Salin F, Mickovski SB, Fourcaud T, Dumail JF, van Beek R (2005). The influence of cellulose content on tensile strength in tree roots. Plant and Soil, 278, 1-9. |
[5] | Hathaway RL, Penny D (1975). Root strength in some Populus and Salix clones. New Zealand Journal of Botany, 13, 333-344. |
[6] | He S, Xu J, Wu ZX, Bao YJ, Yu H, Chen YH (2017). Compare of porous structure of moso bamboo and Pinus sylvestris L. lumber. Journal of Nanjing Forestry University (Natural Sciences Edition), 41, 157-162. |
[ 何盛, 徐军, 吴再兴, 包永洁, 于辉, 陈玉和 (2017). 毛竹与樟子松木材孔隙结构的比较. 南京林业大学学报(自然科学版), 41, 157-162.] | |
[7] | Jiang KY, Chen LH, Gai XG, Yang YJ (2013a). Relationship between tensile properties and microstructures of three different broadleaf tree roots in North China. Transactions of the Chinese Society of Agricultural Engineering, 29(3), 115-123. |
[ 蒋坤云, 陈丽华, 盖小刚, 杨苑君 (2013a). 华北护坡阔叶树种根系抗拉性能与其微观结构的关系. 农业工程学报, 29(3), 115-123.] | |
[8] | Jiang KY, Chen LH, Yang YJ, Gai XG (2013b). Relationship between tensile strength and selected anatomical features of two different conifer species roots in North China. Journal of Soil and Water Conservation, 27, 8-12, 19. |
[ 蒋坤云, 陈丽华, 杨苑君, 盖小刚 (2013b). 华北油松、落叶松根系抗拉强度与其微观结构的相关性研究. 水土保持学报, 27, 8-12, 19.] | |
[9] | Li K, Zhu HL, Song L, Li GR, Xie BS, Li BF (2018). Relationship between tensile properties and microstructure of two tpytical plant roots in the Qinghai-Tibet Plateau. Research of Soil and Water Conservation, 25, 240-249. |
[ 李可, 朱海丽, 宋路, 李国荣, 谢彬山, 李本峰 (2018). 青藏高原两种典型植物根系抗拉特性与其微观结构的关系. 水土保持研究, 25, 240-249.] | |
[10] | Li N (2016). Study on Influence Factors of Root Tensile Properties by Four Arbor Root System. Master degree dissertation, Beijing Forestry University, Beijing. 14-17. |
[ 李宁 (2016). 四种乔木根系抗拉特性的影响因素研究. 硕士学位论文, 北京林业大学, 北京. 14-17.] | |
[11] | Li Q, Zhou BZ, An YF, Xu SH (2014). Root system distribution and biomechanical characteristics of Bambusa oldhami. Chinese Journal of Applied Ecology, 25, 1319-1326. |
[ 李谦, 周本智, 安艳飞, 徐升华 (2014). 绿竹根系分布及生物力学性质. 应用生态学报, 25, 1319-1326.] | |
[12] | Lian G, Wang TK, Dai CY (1990). Measuring wood voidage by X-ray absorption method. Forestry Science & Technology, (1), 39, 43-44 |
[ 连广, 王庭魁, 戴澄月 (1990). X射线吸收法测定木材空隙度. 林业科技, (1), 39, 43-44.] | |
[13] | Liu XG (2013). Study on Friction and Anchorage Characteristics Between Root System and Soil. Master degree dissertation, Beijing Forestry University, Beijing. 5-6. |
[ 刘小光 (2013). 林木根系与土壤摩擦锚固性能研究. 硕士学位论文, 北京林业大学, 北京. 5-6.] | |
[14] | Liu YX, Zhao GJ (2012). Wood Science. 2nd edn. China Forestry Publishing House, Beijing. 36. |
[ 刘一星, 赵广杰 (2012). 木材学. 第二版. 中国林业出版社, 北京. 36.] | |
[15] | Lü CJ, Chen LH (2013). Relationship between root tensile mechanical properties and its main chemical components of typical tree species in North China. Transactions of the Chinese Society of Agricultural Engineering, 29, 69-78. |
[ 吕春娟, 陈丽华 (2013). 华北典型植被根系抗拉力学特性及其与主要化学成分关系. 农业工程学报, 29, 69-78.] | |
[16] | Luo WS, Zhao GJ (2001). Pore structure of cell wall of wood and transport processes of substance. Journal of Beijing Forestry University, 23(2), 85-89. |
[ 罗文圣, 赵广杰 (2001). 木材细胞壁的空隙构造及物质的输运过程. 北京林业大学学报, 23(2), 85-89.] | |
[17] | Ma DY, Wang XM, Xue ZH (2010). Study on wood density and organic proportion based on structure. Journal of Inner Mongolia University of Science and Technology, 29, 167-170. |
[ 马大燕, 王喜明, 薛振华 (2010). 基于构造的木材密度与组织比量的研究. 内蒙古科技大学学报, 29, 167-170.] | |
[18] | Zhang CB, Chen LH, Jiang J (2014). Why fine tree roots are stronger than thicker roots: The role of cellulose and lignin in relation to slope stability. Geomorphology, 206, 196-202. |
[19] | Zhang CB, Chen LH, Jiang J, Zhou S (2012). Effects of gauge length and strain rate on the tensile strength of tree roots. Trees, 26, 1577-1584. |
[20] | Zhang SY (1987). Relationship between anatomical characteristics and physical-mechanical properties of east-Liaoning oak ( Q. liotungensis). Journal of Anhui Agricultural College, 14, 26-38. |
[ 张述银 (1987). 辽东栎木材解剖特征与物理-力学性质的关系. 安徽农学院学报, 14, 26-38.] | |
[21] | Zhao LB, Zhang BG (2007). Experimental study on root bio-mechanics and relevant factors of Medicago sativa and Digitaria sanguinalis. Transactions of the Chinese Society of Agricultural Engineering, 23, 7-12. |
[ 赵丽兵, 张宝贵 (2007). 紫花苜蓿和马唐根的生物力学性能及相关因素的试验研究. 农业工程学报, 23, 7-12.] | |
[22] | Zheng XX, Tian PB, Pan B (2018). Comparison of the structure and properties of Eucalyptus grandis and Eucalyptus deglupta. Forestry Machinery & Woodworking Equipment, 46(11), 36-40, 52. |
[ 郑欣欣, 田佩彬, 潘彪 (2018). 巨桉和剥皮桉木材构造与性质的比较. 林业机械与木工设备, 46(11), 36-40, 52.] | |
[23] | Zhou XW (2018). Study on Cell Wall Structure and Properties of Down Regulated C3H and HCT Transgenic Poplar. PhD dissertation, Chinese Academy of Forestry Sciences, Beijing. |
[ 周贤武 (2018). C3H和HCT下调转基因杨树木材细胞壁结构与性能研究. 博士学位论文, 中国林业科学研究院, 北京.] | |
[24] | Zhu HL, Hu XS, Mao XQ, Li GR, Sheng HY, Chen GC (2008). Study on mechanical characteristics of shrub roots for slope protection in Loess area of Tibetan Plateau. Chinese Journal of Rock Mechanics and Engineering, 27(Suppl. 2), 3445-3452. |
[ 朱海丽, 胡夏嵩, 毛小青, 李国荣, 盛海彦, 陈桂琛 (2008). 青藏高原黄土区护坡灌木植物根系力学特性研究. 岩石力学与工程学报, 27(增刊2), 3445-3452.] | |
[25] | Zhu HL, Hu XS, Mao XQ, Li GR, Zhang XL, Chen GC (2009). Relationship between mechanical characteristics and anatomical structures of slope protection plant root. Transactions of the Chinese Society of Agricultural Engineering, 25(15), 40-46. |
[ 朱海丽, 胡夏嵩, 毛小青, 李国荣, 张兴玲, 陈桂琛 (2009). 护坡植物根系力学特性与其解剖结构关系. 农业工程学报, 25(15), 40-46.] |
[1] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[2] | 何斐, 李川, Faisal SHAH, 卢谢敏, 王莹, 王梦, 阮佳, 魏梦琳, 马星光, 王卓, 姜浩. 丛枝菌根菌丝桥介导刺槐-魔芋间碳转运和磷吸收[J]. 植物生态学报, 2023, 47(6): 782-791. |
[3] | 刘洋, 马煦, 邸楠, 曾子航, 付海曼, 李新, 席本野. 毛白杨根系液流与水力再分配特征[J]. 植物生态学报, 2023, 47(1): 123-133. |
[4] | 谢欢, 张秋芳, 陈廷廷, 曾泉鑫, 周嘉聪, 吴玥, 林惠瑛, 刘苑苑, 尹云锋, 陈岳民. 氮添加促进丛枝菌根真菌和根系协作维持土壤磷有效性[J]. 植物生态学报, 2022, 46(7): 811-822. |
[5] | 郑景明, 刘洪妤. 采用Strauss-Hardcore模型研究不同导管构型被子植物的导管空间分布特征[J]. 植物生态学报, 2021, 45(9): 1024-1032. |
[6] | 任金培, 李俊鹏, 王卫锋, 代永欣, 王林. 八个树种叶水力性状对水分条件的响应及其驱动因素[J]. 植物生态学报, 2021, 45(9): 942-951. |
[7] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[8] | 倪鸣源, ARITSARA Amy Ny Aina, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹. 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析[J]. 植物生态学报, 2021, 45(4): 394-403. |
[9] | 魏春雪, 杨璐, 汪金松, 杨家明, 史嘉炜, 田大栓, 周青平, 牛书丽. 实验增温对陆地生态系统根系生物量的影响[J]. 植物生态学报, 2021, 45(11): 1203-1212. |
[10] | 刘丽燕, 冯锦霞, 刘文鑫, 万贤崇. 干旱胁迫对转PtPIP2;8基因84K杨苗木光合、生长和根系结构的影响[J]. 植物生态学报, 2020, 44(6): 677-686. |
[11] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[12] | 祝维, 余立璇, 赵德海, 贾黎明. 基于根系发育分级的砂壤土下成熟林木根系构型分析[J]. 植物生态学报, 2019, 43(2): 119-130. |
[13] | 高文童, 张春艳, 董廷发, 胥晓. 丛枝菌根真菌对不同性别组合模式下青杨雌雄植株根系生长的影响[J]. 植物生态学报, 2019, 43(1): 37-45. |
[14] | 席本野, 邸楠, 曹治国, 刘金强, 李豆豆, 王烨, 李广德, 段劼, 贾黎明, 张瑞娜. 树木吸收利用深层土壤水的特征与机制: 对人工林培育的启示[J]. 植物生态学报, 2018, 42(9): 885-905. |
[15] | 程向芬, 马晋, 赵涵, 姜在民, 蔡靖. 木本植物水力学结构之导管长度研究进展[J]. 植物生态学报, 2018, 42(6): 609-618. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19