植物生态学报 ›› 2018, Vol. 42 ›› Issue (6): 609-618.DOI: 10.17521/cjpe.2017.0293
• 综述 • 下一篇
收稿日期:
2017-11-11
修回日期:
2018-03-27
出版日期:
2018-06-20
发布日期:
2018-06-20
通讯作者:
蔡靖
基金资助:
CHENG Xiang-Fen1,MA Jin1,ZHAO Han1,JIANG Zai-Min2,CAI Jing1,3,*()
Received:
2017-11-11
Revised:
2018-03-27
Online:
2018-06-20
Published:
2018-06-20
Contact:
Jing CAI
Supported by:
摘要:
导管作为多数被子植物木质部水分运输的主要通道, 了解其结构及功能对研究被子植物水力学特性及植物对环境的适应性有着重要的作用。导管长度作为导管解剖特征之一, 对水分运输的安全性及有效性有着重要的影响。该文概述了导管长度测量及计算的方法, 导管长度在种内及种间的分布, 导管长度与导管直径的关系, 导管长度与导水率的关系及导管长度对建立栓塞脆弱曲线的影响, 并对未来导管长度的研究工作重点提出了建议: 1)改进灌注物质, 使灌注更加充分且更利于观察、提高计算精度、发展活体动态测量技术; 2)建立导管在植物不同器官及整体的分布网络以及不同生活型、不同地区的导管长度数据库; 3)对导管直径在导管方向的变化, 导管长度与其他导管特性之间的关系进行研究; 4)光学测量建立栓塞脆弱曲线技术的兴起, 可为解决离心机法建立栓塞脆弱曲线的真实与准确与否的争议提供新的方向。更深入地了解导管长度在植物水力功能中担负的角色, 可以为耐旱、抗旱品种选育提供理论基础。
程向芬, 马晋, 赵涵, 姜在民, 蔡靖. 木本植物水力学结构之导管长度研究进展. 植物生态学报, 2018, 42(6): 609-618. DOI: 10.17521/cjpe.2017.0293
CHENG Xiang-Fen, MA Jin, ZHAO Han , JIANG Zai-Min, CAI Jing . Vessel length as a key hydraulic structure in woody plants: A review. Chinese Journal of Plant Ecology, 2018, 42(6): 609-618. DOI: 10.17521/cjpe.2017.0293
图1 硅胶注射法测定Populus tremuloides导管长度。A、B、C依次为距离灌注端0.5、1.0和5.0 cm的荧光图片, 亮色部分为紫外灯照射下的被硅胶灌注的导管(蔡靖摄)。
Fig. 1 The vessels of Populus tremuloides with injection of silicone rubber mixed with fluorescer. A, B, C are the observations at 0.5, 1.0 and 5.0 cm from the injection surface, respectively. The brightness indicates the rubber-filled vessels under UV light (Photographed by CAI Jing).
[1] | Akachuku AE ( 1987). A study of lumen diameter variation along the longitudinal axis of wood vessels in Quercus rubra using cinematography. IAWA Journal, 8, 41-45. |
[2] |
André JP ( 1998). A study of the vascular organization of bamboos (Poaceae-Bambuseae) using a microcasting method. IAWA Journal, 19, 265-278.
DOI URL |
[3] |
Apgaua DMG, Tng DYP, Cernusak LA, Cheesman AW, Santos RM, Edwards WJ, Laurance SGW ( 2017). Plant functional groups within a tropical forest exhibit different wood functional anatomy. Functional Ecology, 31, 582-591.
DOI URL |
[4] | Baas P, Ewers FW, Davis SD, Wheeler EA ( 2004). Evolution of xylem physiology. In: Hemsley AR, Poole I eds. The Evolution of Plant Physiology. Elsevier Academic Press,London. 273-295. |
[5] | Barotto AJ, Fernandez ME, Gyenge J, Meyra A, Martinez- Meier AM, Monteoliva S ( 2016). First insights into the functional role of vasicentric tracheids and parenchyma in Eucalyptus species with solitary vessels: Do they contribute to xylem efficiency or safety? Tree Physiology, 36, 1485-1497. |
[6] |
Brodersen CR, Lee EF, Choat B, Jansen S, Phillips RJ, Shackel KA, McElrone AJ, Matthews MA ( 2011). Automated analysis of three-dimensional xylem networks using high-resolution computed tomography. New Phytologist, 191, 1168-1179.
DOI URL |
[7] | Brodersen CR, McElrone AJ, Choat B, Matthews MA, Shackel KA ( 2010). The dynamics of embolism repair in xylem: In vivo visualizations using high resolution computed tomography. Plant Physiology, 154, 1088-1095. |
[8] |
Brodribb TJ, Bienaimé D, Marmottant P ( 2016). Revealing catastrophic failure of leaf networks under stress. Proceedings of the National Academy of Science of United States of America, 113, 4865-4869.
DOI URL PMID |
[9] |
Brodribb TJ, Carriqui M, Delzon S, Lucani C ( 2017). Optical measurement of stem xylem vulnerabilty. Plant Physiology, 174, 2054-2061.
DOI URL PMID |
[10] |
Cai J, Tyree MT ( 2014). Measuring vessel length in vascular plants: Can we divine the truth? History, theory, methods, and contrasting models. Trees, 28, 643-655.
DOI URL |
[11] |
Cai J, Zhang SX, Tyree MT ( 2010). A computational algorithm addressing how vessel length might depend on vessel diameter. Plant, Cell & Environment, 33, 1234-1238.
DOI URL PMID |
[12] |
Choat B, Cobb AR, Jansen S ( 2008). Structure and function of bordered pits: New discoveries and impacts on whole- plant hydraulic function. New Phytologist, 177, 608-625.
DOI URL |
[13] | Choat B, Drayton WM, Brodersen C, Matthews MA, Shackel KA, Wada H, Mcelrone AJ ( 2010). Measurement of vulnerability to water stress-induced cavitation in grapevine: A comparison of four techniques applied to a long-vesseled species. Plant, Cell & Environment, 33, 1502-1512. |
[14] |
Choat B, Jansen S, Brodribb TJ, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE ( 2012). Global convergence in the vulnerability of forests to drought. Nature, 491, 752-755.
DOI URL |
[15] |
Christman MA, Sperry JS, Smith DD ( 2012). Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytologist, 193, 713-720.
DOI URL |
[16] |
Cochard H ( 2002). A technique for measuring xylem hydraulic conductance under high negative pressures. Plant, Cell & Environment, 25, 815-819.
DOI URL |
[17] |
Cochard H, Badel E, Herbette S, Delzon S, Choat B, Jansen S ( 2013). Methods for measuring plant vulnerability to cavitation: A critical review. Experimental Botany, 64, 4779-4791.
DOI URL PMID |
[18] |
Cochard H, Cruizat P, Tyree MT ( 1992). Use of positive pressures to establish vulnerability curves: Further support for the air-seeding hypothesis and implications for pressure- volume analysis. Plant Physiology, 100, 205-209.
DOI URL |
[19] |
Cochard H, Damour G, Bodet C, Tharwat I, Poirier M, Améglio T ( 2005). Evaluation of a new centrifuge technique for rapid generation of xylem vulnerability curves. Physiologia Plantarum, 124, 410-418.
DOI URL |
[20] | Cochard H, Herbette S, Barigah T, Badel E, Ennajeh M, Vilagrosa A ( 2010). Does sample length influence the shape of xylem embolism vulnerability curves? A test with the Cavitron spinning technique. Plant, Cell & Environment, 33, 1543-1552. |
[21] |
Cohen S, Bennink J, Tyree MT ( 2003). Air method measurements of apple vessel length distributions with improved apparatus and theory. Journal of Experimental Botany, 54, 1889-1897.
DOI URL PMID |
[22] |
Comstock JP, Sperry JS ( 2000). Theoretical considerations of optimal conduit length for water transport in vascular plants. The New Phytologist, 148, 195-218.
DOI URL |
[23] |
Ellmore GS, Ewers FW ( 1986). Fluid flow in the outermost xylem increment of a ring-porous tree, Ulmus americana. American Journal of Botany, 73, 1771-1774.
DOI URL |
[24] |
Ennajeh M, Simoes F, Khemira H, Cochard H ( 2011). How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms? Physiologia Plantarum, 142, 205-210.
DOI URL |
[25] |
Espino S, Schenk HJ ( 2009). Hydraulically integrated or modular? Comparing whole-plant-level hydraulic systems between two desert shrub species with different growth forms. New Phytologist, 183, 142-152.
DOI URL |
[26] |
Ewers FW, Fisher JB ( 1989a). Techniques for measuring vessel lengths and diameters in stems of woody plants. American Journal of Botany, 76, 645-656.
DOI URL |
[27] |
Ewers FW, Fisher JB ( 1989b ). Variation in vessel length and diameter in stems of six tropical and subtropical lianas. American Journal of Botany, 76, 1452-1459.
DOI URL |
[28] |
Ewers FW, Fisher JB, Chiu S ( 1990). A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia, 84, 544-552.
DOI URL PMID |
[29] |
Frost FH ( 1930). Specialization in secondary xylem of dicotyledons. I. Origin of vessel. Botanical Gazette, 89, 67-94.
DOI URL |
[30] |
Gleason SM, Butler DW, Zieminska K, Waryszak P, Westoby M ( 2012). Stem xylem conductivity is key to plant water balance across Australian angiosperm species. Functional Ecology, 26, 343-352.
DOI URL |
[31] |
Gleason SM, Westoby M, Jansen S, Choat B, Hacke HG, Pratt RB, Bhaskar R, Brodribb TJ, Bucci SJ, Cao KF, Chchard H, Delzon S, Domec JC, Fan ZX, Feild TS, Jacobsen AL, Johnson DM, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, McCulloh KA, Mencuccini M, Mitchell PJ, Morris H, Nardini A, Pittermann J, Plavcová L, Schreiber SG, Sperry JS, Wright IJ, Zanne AE ( 2016). Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. New Phytologist, 209, 123-136.
DOI URL |
[32] |
Hacke UG, Jansen S ( 2009). Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist, 182, 675-686.
DOI URL |
[33] |
Hacke UG, Sperry JS, Field TS, Sano Y, Skkema EH, Pittermann J ( 2007). Water transport in vesselless angiosperms: Conducting efficiency and cavitation safety. International Journal of Plant Sciences, 168, 1113-1126.
DOI URL |
[34] |
Hacke UG, Sperry JS, Wheeler JK, Castro L ( 2006). Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26, 689-701.
DOI URL PMID |
[35] |
Hacke UG, Venturas MD, MacKinnon ED, Jacobsen AL, Sperry JS, Pratt RB ( 2015). The standard centrifuge method accurately measures vulnerability curves of long- vesselled olive stems. New Phytologist, 205, 116-127.
DOI URL |
[36] | Jacobsen AL, Pratt RB ( 2012). No evidence for an open vessel effect in centrifuge-based vulnerability curves of a long- vesselled liana ( Vitis vinifera). New Phytologist, 194, 982-990. |
[37] |
Jacobsen AL, Pratt RB, Tobin MF, Hacke UG, Ewers FW ( 2012). A global analysis of xylem vessel length in woody plants. American Journal of Botany, 99, 1583-1591.
DOI URL |
[38] | Jacobsen AL, Tobin MF, Toschi HS, Percolla MI, Pratt RB ( 2016). Structural determinants of increased susceptibility to dehydration-induced cavitation in post-fire resprouting chaparral shrubs. Plant, Cell & Environment, 39, 2473-2485. |
[39] |
Jansen S, Choat B, Pletsers A ( 2009). Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96, 409-419.
DOI URL |
[40] | Kolb KJ, Sperry JS ( 1999). Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant, Cell & Environment, 22, 925-936. |
[41] |
Lens F, Sperry JS, Christamn MA, Choat B, Rabaey D, Jansen S ( 2011). Testing the hypotheses that link wood anatomy to cavitation resistance and hydraulic conductivity in the genus Acer. New Phytologist, 190, 709-723.
DOI URL |
[42] |
Li HF, Tian XH, Ren Y ( 2005). Research progress in vessel and perforation plate of vascular plants and some considerations for future research. Acta Botanica Boreali-?Occidentalia Sinica, 25, 419-424.
DOI URL |
[ 李红芳, 田先华, 任毅 ( 2005). 维管植物导管及其穿孔板的研究进展. 西北植物学报, 25, 419-424.]
DOI URL |
|
[43] |
Li R, Jiang ZM, Zhang SX, Cai J ( 2015). A review of new research progress on the vulnerability of xylem embolism of woody plants. Chinese Journal of Plant Ecology, 39, 838-848.
DOI URL |
[ 李荣, 姜在民, 张硕新, 蔡靖 ( 2015). 木本植物木质部栓塞脆弱性研究新进展. 植物生态学报, 39, 838-848.]
DOI URL |
|
[44] | Limousin J, Longepierre MD, Rambal S ( 2010). Change in hydraulic traits of Mediterranean Quercus ilex subjected to longterm throughfall exclusion. Tree Physiology, 30, 1026-1036. |
[45] |
Loepfe L, Vilalta JM, Ponol J, Mencuccini M ( 2007). The relevance of xylem network structure for plant hydraulic efficiency and safety. Journal of Theoretical Biology, 247, 788-803.
DOI URL PMID |
[46] |
Maherali H, Pockman WT, Jackson RB ( 2004). Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology, 85, 2184-2199.
DOI URL |
[47] | Martín JA, Solla A, Ruiz-Villar M, Gil L ( 2013). Vessel length and conductivity of Ulmus branches: Ontogenetic changes and relation to resistance to Dutch elm disease. Tree, 27, 1239-1248. |
[48] |
Martínez-Cabrera HI, Schenk HJ, Cevallos-Ferriz SR, Jones CS ( 2011). Integration of vessel traits, wood density, and height in angiosperm shrubs and trees. American Journal of Botany, 98, 915-922.
DOI URL PMID |
[49] |
McCulloh KA, Johnson DM, Petitmermet J, McNellis B, Meinzer FC, Lachenbruch B ( 2015). A comparison of hydraulic architecture in three similarly sized woody species differing in their maximum potential height. Tree Physiology, 35, 723-731.
DOI URL |
[50] |
Pan RH, Geng J, Cai J, Tyree MT ( 2015). A comparison of two methods for measuring vessel length in woody plants. Plant, Cell & Environment, 38, 2519-2526.
DOI URL PMID |
[51] |
Pockman WT, Sperry JS, O’Leary JW ( 1995). Sustained and significant negative water pressure in xylem. Nature, 378, 715-716.
DOI URL |
[52] | Salleo S, Hinckley TM, Kikuta SB, Lo Gullo MA, Weilgony P, Yoon TM, Richter H ( 1992). A method for inducing xylem emboli in situ: Experiments with a field-grown tree. Plant, Cell & Environment, 15, 491-497. |
[53] |
Schreiber SG, Hacke UG, Hamann A ( 2011). Genetic variation of hydraulic and wood anatomical traits in hybrid poplar and trembling aspen. New Phytologist, 190, 150-160.
DOI URL PMID |
[54] | Skene DS, Balodis V ( 1968). A study of vessel length in Eucalyptus oblique L’Hérit. Journal of Experimental Botany, 19, 825-830. |
[55] | Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD ( 2012). Vulnerability curves by centrifugation: Is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid? Plant, Cell & Environment, 35, 601-610. |
[56] |
Sperry JS, Donnelly JR, Tyree MT ( 2010). A method for measuring hydraulic conductivity and embolism in xylem. Plant, Cell & Environment, 11, 35-40.
DOI URL |
[57] |
Sperry JS, Hacke UG, Field TS, Sano Y, Sikkema EH ( 2007). Hydraulic consequences of vessel evolution in angiosperms. International Journal of Plant Sciences, 168, 1127-1139.
DOI URL |
[58] |
Sperry JS, Hacke UG, Wheeler JK ( 2005). Comparative analysis of end wall resistivity in xylem conduits. Plant, Cell & Environment, 28, 456-465.
DOI URL |
[59] | Sperry JS, Saliendra NZ ( 1994). Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant, Cell & Environment, 17, 1233-1241. |
[60] |
Sperry JS, Tyree MT ( 1988). Mechanism of water stress-?induced xylem embolism. Plant Physiology, 88, 581-587.
DOI URL |
[61] | Tyree MT ( 1993). Theory of vessel-length determination: The problem of nonrandom vessel ends. American Journal of Botany, 71, 297-302. |
[62] |
Tyree MT, Dixon MA ( 1986). Water stress induced cavitation and embolism in some woody plants. Physiologia Plantarum, 66, 397-405.
DOI URL |
[63] |
Tyree MT, Sperry JS ( 1989). Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 19-38.
DOI URL |
[64] | Tyree MT, Zimmermann MH ( 2002). Xylem Structure and the Ascent of Sap. 2nd edn. Springer, Berlin. |
[65] |
Venturas MD, Rodriguez-Zaccaro FD, Percolla MI, Crous CJ, Jacobsen AL, Pratt RB ( 2016). Single vessel air injection estimites of xylem resistance to cavitation are affected by vessel network characteristics and sample length. Tree physiology, 36, 1247-1259.
DOI URL |
[66] | Wheeler JK, Huggett BA, Tofte AN, Rockwell FE, Holbrook NM ( 2013). Cutting xylem under tension or supersaturated with gas can generate PLC and the appearance of rapid recovery from embolism. Plant, Cell & Environment, 36, 1938-1949. |
[67] | Wheeler JK, Sperry JS, Hacke UG, Hoang N ( 2005). Inter-?vessel pitting and cavitation in woody Rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28, 800-812. |
[68] |
Zhang FP, Brodribb TJ ( 2017). Are flowers vulnerable to xylem cavitation during drought? Proceedings Biological Science, 284, 20162642. DOI: 10.1098/rspb.2016.2642.
DOI URL PMID |
[69] |
Zhu SD, Cao KF ( 2009). Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecology, 204, 295-304.
DOI URL |
[70] | Zimmermann MH, Jeje AA ( 1981). Vessel-length distribution in stems of some American woody plants. American Journal of Botany, 59, 1882-1892. |
[71] |
Zimmermann MH, Potter D ( 1982). Vessel-length distribution in branches, stem and roots of Acer rubrum L. International Association of Wood Anatomists Bulletin, 3, 103-109.
DOI URL |
[1] | 李荣, 党维, 蔡靖, 张硕新, 姜在民. 6个耐旱树种木质部结构与栓塞脆弱性的关系[J]. 植物生态学报, 2016, 40(3): 255-263. |
[2] | 张翠萍, 孟平, 李建中, 万贤崇. 磷元素和土壤酸化交互作用对核桃幼苗光合特性的影响[J]. 植物生态学报, 2014, 38(12): 1345-1355. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19