植物生态学报 ›› 2018, Vol. 42 ›› Issue (11): 1055-1070.DOI: 10.17521/cjpe.2018.0156
• 综述 • 下一篇
收稿日期:
2018-07-05
接受日期:
2018-11-04
出版日期:
2018-11-20
发布日期:
2019-03-13
通讯作者:
尹华军
基金资助:
Hua-Jun YIN1,*(),Zi-Liang ZHANG1,2,Qing LIU1
Received:
2018-07-05
Accepted:
2018-11-04
Online:
2018-11-20
Published:
2019-03-13
Contact:
Hua-Jun YIN
Supported by:
摘要:
植物根际过程与调控机理研究已成为当前土壤学最活跃、最敏感的研究领域, 而根系分泌物作为根系-土壤-微生物界面物质能量交换和信息传递的重要媒介物质, 是构成根际微生态系统活力与功能特征的内在驱动因素, 是根际概念与根际过程存在的重要前提和基础。然而, 由于传统的根际过程研究更强调以实际生产问题为导向, 加之农作物生长周期较短、操作便利等诸多因素, 以往对植物根系分泌物研究主要聚焦在农业生态系统, 而有关根系分泌物在森林生态系统中的重要作用与调控机理研究甚少, 认识相对零散和片段化。基于此, 该文结合作者实际研究工作中的主要成果和该领域国际前沿动态, 综述了森林根系分泌物的生态重要性, 重点论述了目前森林根系分泌物生态学研究中存在的主要问题与不足, 在此基础上展望了未来森林根系分泌物生态学研究中值得关注的重点方向和研究内容。
尹华军, 张子良, 刘庆. 森林根系分泌物生态学研究: 问题与展望. 植物生态学报, 2018, 42(11): 1055-1070. DOI: 10.17521/cjpe.2018.0156
Hua-Jun YIN, Zi-Liang ZHANG, Qing LIU. Root exudates and their ecological consequences in forest ecosystems: Problems and perspective. Chinese Journal of Plant Ecology, 2018, 42(11): 1055-1070. DOI: 10.17521/cjpe.2018.0156
图2 根系分泌物诱导的土壤碳(C)矿化或根际激发效应机理。A, 传统的微生物共代谢机理——根系分泌物输入后主要促进微生物生长和活性, 并伴随着土壤C矿化加快。B, 新提出的根际激发效应机理——大量土壤C由于矿物保护而不能被微生物直接利用, 根系分泌物输入后通过络合作用和溶解反应等非微生物过程打破或者降低有机-矿质复合体稳定性, 将保护态C释放出来而增加了保护态C的微生物可达性。
Fig. 2 Proposed mechanisms for the exudate-induced acceleration of the microbial mineralization of soil organic carbon in the rhizosphere (i.e., rhizosphere priming effects). A, The traditional view is that root exudate compounds stimulate microbial growth and activity via co-metabolism, and so increase the overall physiological potential of the decomposer community for carbon mineralization. B, The alternative mechanism proposed here takes into account that large quantities of soil C are inaccessible to microbes owing to associations with mineral phases. Root exudates that can act as ligands effectively liberate C through complexation and dissolution reactions with protective mineral phases, thereby promoting its accessibility to microbes and accelerating its loss from the system through microbial mineralization.
图3 调控闸门假说概念框架图。I阶段: 生物不利用土壤有机质(SOM)转化为生物可利用SOM; II阶段: 生物可利用SOM在微生物作用下发生的矿化分解过程。
Fig. 3 Diagrammatic representation of the Regulatory Gate Hypothesis. I phrase is the abiological transformation of non-bioavailable soil organic matter (SOM). II phrase is the biological mineralization of bioavailable SOM.
图4 森林生态系统地下根源碳(C)输入到土壤中两种途径的示意图。
Fig. 4 Two pathways of root-derived carbon (C) input (i.e., root- and mycelium-derived C) to soils in forest ecosystems. N, nitrogen.
图5 拓展和丰富以根际区功能属性为代表的地下功能性状指标体系。
Fig. 5 Broadening functional traits of root and microbe in rhizosphere and enriching the suite of belowground functional traits.
[1] | Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM ( 2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233-266. |
[2] |
Bardgett RD, Mommer L, de Vries FT ( 2014). Going underground: Root traits as drivers of ecosystem processes. Trends in Ecology & Evolution, 29, 692-699.
DOI URL PMID |
[3] |
Cairney JWG ( 2012). Extramatrical mycelia of ectomycorrhizal fungi as moderators of carbon dynamics in forest soil. Soil Biology & Biochemistry, 47, 198-208.
DOI URL |
[4] |
Cheng WX, Parton WJ, Gonzalez-Meler MA, Phillips R ( 2014). Synthesis and modeling perspectives of rhizosphere priming. New Phytologist, 201, 31-44.
DOI URL PMID |
[5] |
Cleveland CC, Houlton BZ, Smith WK, Marklein AR, Reed SC, Parton W, Del Grosso SJ, Running SW ( 2013). Patterns of new versus recycled primary production in the terrestrial biosphere. Proceedings of the National Academy of Sciences of the United States of America, 110, 12733-12737.
DOI URL PMID |
[6] | Cleveland CC, Liptzin D ( 2007). C:N:P stoichiometry in soil: Is there a “Redfield ratio” for the microbial biomass? Biogeochemistry, 85, 235-252. |
[7] |
Darrah PR ( 1991). Measuring the diffusion coefficient of rhizosphere exudates in soil. I. The diffusion of non-sorbing compounds. Journal of Soil Science, 42, 413-420.
DOI URL |
[8] |
Dessaux Y, Hinsinger P, Lemanceau P ( 2009). Rhizosphere: So many achievements and even more challenges. Plant and Soil, 321, 1-3.
DOI URL |
[9] |
Dijkstra FA, Carrillo Y, Pendall E, Morgan JA ( 2013). Rhizosphere priming: A nutrient perspective. Frontiers in Microbiology, 4, 1-4.
DOI URL PMID |
[10] |
Drake JE, Darby BA, Giasson MA, Kramer MA, Phillips RP, Finzi AC ( 2013). Stoichiometry constrains microbial response to root exudation-insights from a model and a field experiment in a temperate forest. Biogeosciences, 10, 821-838.
DOI URL |
[11] | Drake JE, Gallet-Budynek A, Hofmockel KS, Bernhardt ES, Billings SA, Jackson RB, Johnsen KS, Lichter J, McCarthy HR, McCormack ML, Moore DJP, Oren R, Palmroth S, Phillips RP, Pippen JS, Pritchard SG, Tresder KK, Schlesinger WH, DeLucia EH, Finzi AC ( 2011). Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO2. Ecology Letters, 14, 349-357. |
[12] |
Erktan A, McCormack ML, Roumet C ( 2018). Frontiers in root ecology: Recent advances and future challenges. Plant and Soil, 424, 1-9.
DOI URL |
[13] |
Finzi AC, Abramoff RZ, Spiller KS, Brzostek ER, Darby BA, Kramer MA, Phillips RP ( 2015). Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Global Change Biology, 21, 2082-2094.
DOI URL PMID |
[14] | Fuhrer T, Zamboni N ( 2015). High-throughput discovery metabolomics. Current Opinion in Biotechnology, 31, 73-78. |
[15] |
Guo DL, Li H, Mitchell RJ, Han WX, Hendricks JJ, Fahey TJ, Hendrick RL ( 2008). Fine root heterogeneity by branch order: Exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytologist, 177, 443-456.
DOI URL PMID |
[16] |
Guyonnet JP, Cantarel AAM, Simon L, Haichar FZ ( 2018). Root exudation rate as functional trait involved in plant nutrient-use strategy classification. Ecology and Evolution, 8, 8573-8581.
DOI URL |
[17] |
Haichar FE, Santaella C, Heulin T, Achouak W ( 2014). Root exudates mediated interactions belowground. Soil Biology & Biochemistry, 77, 69-80.
DOI URL |
[18] |
Hinsinger P, Gobran GR, Gregory PJ, Wenzel WW ( 2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist, 168, 293-303.
DOI URL PMID |
[19] | Högberg P, Read DJ ( 2006). Towards a more plant physiological perspective on soil ecology. Trends in Ecology and Evolution, 21, 548-554. |
[20] |
Holz M, Zarebanadkouki M, Kuzyakov Y, Pausch J, Carminati A ( 2018). Root hairs increase rhizosphere extension and carbon input to soil. Annals of Botany, 121, 61-69.
DOI URL PMID |
[21] |
Hu LF, Robert CAM, Cadot S, Zhang X, Ye M, Li B, Manzo D, Chervet N, Steinger T, van der Heijden MGA, Schlaeppi K, Erb M ( 2018). Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nature Communications, 9, 1-13.
DOI URL |
[22] |
Jilling A, Keiluweit M, Contosta AR, Frey S, Schimel J, Schnecker J, Smith RG, Tiemann L, Grandy AS ( 2018). Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry, 139, 103-122.
DOI URL |
[23] |
Keiluweit M, Bougoure JJ, Nico PS, Pett-Ridge J, Weber PK, Kleber M ( 2015). Mineral protection of soil carbon counteracted by root exudates. Nature Climate Change, 5, 588-595.
DOI URL |
[24] |
Kemmitt SJ, Lanyon CV, Waite IS, Wen Q, Addiscott TM, Bird NRA, O’Donnell AG, Brookes PC ( 2008). Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass a new perspective. Soil Biology & Biochemistry, 40, 61-73.
DOI URL |
[25] |
Klein T, Siegwolf RT, Körner C ( 2016). Belowground carbon trade among tall trees in a temperate forest. Science, 352, 342-344.
DOI URL PMID |
[26] | Kong CH, Li HB, Hu F ( 2006). Allelochemicals released by rice roots and residues in soil. Plant and Soil, 288, 47-56. |
[27] |
Kuzyakov Y ( 2002). Review: Factors affecting rhizosphere priming effects. Journal of Plant Nutrition and Soil Science, 165, 382-396.
DOI URL |
[28] |
Laliberté E ( 2017). Below-ground frontiers in trait-based plant ecology. New Phytologist, 213, 1597-1603.
DOI URL PMID |
[29] |
Li X, Dong JL, Chu WY, Chen YJ, Duan ZQ ( 2018). The relationship between root exudation properties and root morphological traits of cucumber grown under different nitrogen supplies and atmospheric CO2 concentrations. Plant and Soil, 425, 415-432.
DOI URL |
[30] |
Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Eastmond PJ ( 2017). Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science, 356, 1175-1178.
DOI URL PMID |
[31] |
Ma ZQ, Guo DL, Xu XL, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO ( 2018). Evolutionary history resolves global organization of root functional traits. Nature, 555, 94-97.
DOI URL PMID |
[32] |
Martinière A, Gibrata R, Sentenaca H, Dumonta X, Gaillarda I, Parisa N ( 2018). Uncovering pH at both sides of the root plasma membrane interface using noninvasive imaging. Proceedings of the National Academy of Sciences of the United States of America, 115, 6488-6493.
DOI URL |
[33] |
McCormack ML, Dickie IA, Eissenstat DM, Fahey TJ, Fernandez CW, Guo DL, Helmisaari HS, Hobbie EA, Iversen CM, Jackson RB, Leppälammi-Kujansuu J, Norby RJ, Phillips RP, Pregitzer KS, Pritchard SG, Rewald B, Zadworny M ( 2015). Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes. New Phytologist, 207, 505-518.
DOI URL PMID |
[34] |
Meier IC, Pritchard SG, Brzostek ER, McCormack ML, Phillips RP ( 2015). The rhizosphere and hyphosphere differ in their impacts on carbon and nitrogen cycling in forests exposed to elevated CO2. New Phytologist, 205, 1164-1174.
DOI URL PMID |
[35] |
Moore JAM, Jiang J, Patterson CM, Mayes MA, Wang G, Classen AT ( 2015). Interactions among roots, mycorrhizas and free-living microbial communities differentially impact soil carbon processes. Journal of Ecology, 103, 1442-1453.
DOI URL |
[36] |
Nakayama M, Tateno R ( 2018). Solar radiation strongly influences the quantity of forest tree root exudates. Trees, 32, 871-879.
DOI URL |
[37] |
Neumann G, George TS, Plassard C ( 2009). Strategies and methods for studying the rhizosphere—The plant science toolbox. Plant and Soil, 321, 431-456.
DOI URL |
[38] |
Oburge E, Jones DJ ( 2018). Sampling root exudates—Mission impossible? Rhizosphere, 6, 116-133.
DOI URL |
[39] |
Pérez-Hargunideguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, Ray P, Enrico L, Pausas JG, de Vos AC, Buchmann N, Funes G, Quétier F, Hodgson CJG, Thompson K, Morgan HD, ter Steege H, van der Heijden MGA, Sack L, Blonder B, Poschlod P, Vaieretti MV, Conti G, Staver AC, Aquino S, Cornelissen JHC ( 2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
DOI URL |
[40] |
Phillips RP, Erlitz Y, Bier R, Bernhardt ES ( 2008). A new approach for capturing soluble root exudates in forest soils. Functional Ecology, 22, 990-999.
DOI URL |
[41] |
Phillips RP, Finzi AC, Bernhardt ES ( 2011). Enhanced root exudation induces microbial feedbacks to N cycling in a pine forest under long-term CO2 fumigation. Ecology Letters, 14, 187-194.
DOI URL PMID |
[42] |
Preece C, Farré-Armengol G, Llusià J, Peñuelas J ( 2018). Thirsty tree roots exude more carbon. Tree Physiology, 38, 690-695.
DOI URL PMID |
[43] |
Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL ( 2002). Fine root architecture of nine North American trees. Ecological Monographs, 72, 293-309.
DOI URL |
[44] | Proctor C, He YH ( 2017). Quantifying root extracts and exudates of sedge and shrub in relation to root morphology. Soil Biology & Biochemistry, 114, 168-180. |
[45] |
Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao K, Stokes A ( 2016). Root structure-function relationships in 74 species: Evidence of a root economics spectrum related to carbon economy. New Phytologist, 210, 815-826.
DOI URL PMID |
[46] |
Sandnes A, Eldhuset TD, Wollebaek G ( 2005). Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biology & Biochemistry, 37, 259-269.
DOI URL |
[47] |
Shahzad T, Rashid MI, Maire V, Barot S, Perveen N, Alvarez G, Mougin C, Fontaine S ( 2018). Root penetration in deep soil layers stimulates mineralization of millennia old organic carbon. Soil Biology & Biochemistry, 124, 150-160.
DOI URL |
[48] |
Shipley B, Bello FD, Cornelissen JHC, Lalibert E, Laughlin DC, Reich PB ( 2016). Reinforcing loose foundation stones in trait-based plant ecology. Oecologia, 180, 923-931.
DOI URL |
[49] |
Singh BK, Millard P, Whiteley AS, Murrell JC ( 2004). Unravelling rhizosphere-microbial interactions: Opportunities and limitations. TRENDS in Microbiology, 12, 386-393.
DOI URL PMID |
[50] | Smith SE, Read D ( 2008). Mycorrhizal Symbiosis. 3rd edn. Academic Press, London. |
[51] | Strehmel N, Bottcher C, Schmidt S, Scheel D ( 2014). Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry, 108, 35-46. |
[52] |
Sun Y, Xu XL, Kuzyakov Y ( 2014). Mechanisms of rhizosphere priming effects and their ecological significance. Chinese Journal of Plant Ecology, 38, 62-75.
DOI URL |
[ 孙悦, 徐兴良 , Kuzyakov Y ( 2014). 根际激发效应的发生机制及其生态重要性. 植物生态学报, 38, 62-75.]
DOI URL |
|
[53] |
Sun L, Lu YF, Yu FW, Kronzucker HJ, Shi WM ( 2016). Biological nitrification inhibition by rice root exudates and its relationship with nitrogen-use efficiency. New Phytologist, 212, 646-656.
DOI URL PMID |
[54] |
Tan WB, Wang GA, Huang CH, Gao RT, Xi BD, Zhu B ( 2017). Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem. Science of the Total Environment, 598, 282-288.
DOI URL PMID |
[55] |
Terrer C, Vicca S, Stocker BD, Hungate BA, Phillips RP, Reich PB, Prentice IC ( 2018). Ecosystem responses to elevated CO2 governed by plant-soil interactions and the cost of nitrogen acquisition. New Phytologist, 217, 507-522.
DOI URL PMID |
[56] | Treseder KK, Holden SR ( 2013). Fungal carbon sequestration. Science, 339, 1528-1529. |
[57] |
Tückmantel T, Leuschner C, Preusser S, Kandeler E, Angst G, Mueller CW, Meier IC ( 2017). Root exudation patterns in a beech forest: Dependence on soil depth, root morphology, and environment. Soil Biology & Biochemistry, 107, 188-197.
DOI URL |
[58] | Uren NC ( 2000). Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinto R, Varanini Z, Nannipieri P eds. The Rhizosphere, Biochemistry and Organic Substances at the Soil-plant Interface. Marcel Dekker, New York. 19-40. |
[59] |
van Dam NM, Bouwmeester HJ ( 2016). Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends in Plant Science, 21, 256-265.
DOI URL PMID |
[60] |
Wallander H, Ekblad A, Bergh J ( 2011). Growth and carbon sequestration by ectomycorrhizal fungi in intensively fertilized Norway spruce forests. Forest Ecology and Management, 262, 999-1007.
DOI URL |
[61] |
Wallander H, Ekblad A, Godbold DL, Johnson D, Bahr A, Baldrian P, Bjork RG, Kieliszewska-Rokicka B, Kjoller R, Kraigher H, Plassard C, Rudawska M ( 2013). Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils—A review. Soil Biology & Biochemistry, 57, 1034-1047.
DOI URL |
[62] |
Warren CR ( 2016). Simultaneous efflux and uptake of metabolites by roots of wheat. Plant and Soil, 406, 359-374.
DOI URL |
[63] |
Wu LK, Lin XM, Lin WX ( 2014). Advances and perspective in research on plant-soil-microbe interactions mediated by root exudates. Chinese Journal of Plant Ecology, 38, 298-310.
DOI URL |
[ 吴林坤, 林向民, 林文雄 ( 2014). 根系分泌物介导下植物-土壤-微生物互作关系研究进展与展望. 植物生态学报, 38, 298-310.]
DOI URL |
|
[64] |
Wutzler T, Reichstein M ( 2013). Priming and substrate quality interactions in soil organic matter models. Biogeosciences, 10, 2089-2103.
DOI URL |
[65] |
Xia B, Zhou Y, Liu X, Xiao J, Liu Q, Gu YC, Ding LS ( 2012). Use of electrospray ionization ion-trap tandem mass spectrometry and principal component analysis to directly distinguish monosaccharides. Rapid Communications in Mass Spectrometry, 26, 1259-1264.
DOI URL PMID |
[66] |
Yin LM, Dijkstra FA, Wang P, Zhu B, Cheng WX ( 2018). Rhizosphere priming effects on soil carbon and nitrogen dynamics among tree species with and without intraspecific competition. New Phytologist, 218, 1036-1048.
DOI URL PMID |
[67] |
Yin HJ, Li YF, Xiao J, Cheng XY, Xu ZF, Liu Q ( 2013). Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming. Global Change Biology, 19, 2158-2167.
DOI URL PMID |
[68] |
Yin HJ, Phillips RP, Liang RB, Xu ZF, Liu Q ( 2016). Resource stoichiometry mediates soil C loss and nutrient transformations in forest soils. Applied Soil Ecology, 108, 248-257.
DOI URL |
[69] |
Yin HJ, Wheeler E, Phillips RP ( 2014). Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biology & Biochemistry, 78, 213-221.
DOI URL |
[70] |
Yuan YS, Zhao WQ, Zhang ZL, Xiao J, Li DD, Liu Q, Yin HJ ( 2018). Impacts of oxalic acid and glucose additions on N transformation in microcosms via artificial roots. Soil Biology & Biochemistry, 121, 16-23.
DOI URL |
[71] |
Zhang DD, Liang XH, Wang J ( 2014). A review of plant root exudates. Agricultural Science Bulletin, 30, 314-320.
DOI URL |
[ 张豆豆, 梁新华, 王俊 ( 2014). 植物根系分泌物研究综述. 中国农学通报, 30, 314-320.]
DOI URL |
|
[72] |
Zhang FS, Shen JB ( 1999). Preliminary development of the theoretical concept on rhizosphere micro-ecosystem. Review of China Agriculture Science and Technology, (4), 15-20.
DOI URL |
[ 张福锁, 申建波 ( 1999). 根际微生态系统理论框架的初步构建. 中国农业科技导报,( 4), 15-20.]
DOI URL |
|
[73] |
Zhang ZL, Phillips RP, Zhao WQ, Yuan YS, Liu Q, Yin HJ ( 2018 a). Mycelia-derived C contributes more to nitrogen cycling than root-derived C in ectomycorrhizal alpine forests. Functional Ecology, DOI: 10.1111/1365-2435.13236.
DOI URL |
[74] |
Zhang ZL, Xiao J, Yuan YS, Zhao CZ, Liu Q, Yin HJ ( 2018 b). Mycelium- and root-derived C inputs differ in their impacts on soil organic C pools and decomposition in forests. Soil Biology & Biochemistry, 123, 257-265.
DOI URL |
[75] |
Zhu B, Cheng WX ( 2012). Nodulated soybean enhances rhizosphere priming effects on soil organic matter decomposition more than non-nodulated soybean. Soil Biology & Biochemistry, 51, 56-65.
DOI URL |
[76] |
Zhu B, Gutknecht JLM, Herman DJ, Keck DC, Firestone MK, Cheng WX ( 2014). Rhizosphere priming effects on soil carbon and nitrogen mineralization. Soil Biology & Biochemistry, 76, 183-192.
DOI URL |
[1] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[2] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[3] | 张英, 张常洪, 汪其同, 朱晓敏, 尹华军. 氮沉降下西南山地针叶林根际和非根际土壤微生物养分限制特征差异[J]. 植物生态学报, 2022, 46(4): 473-483. |
[4] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[5] | 于海英 杨莉琳 付素静 张志敏 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量 累积变化的响应 [J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[6] | 周楷玲, 赵玉金, 白永飞. 基于Sentinel-2A数据的东北森林植物多样性监测方法研究[J]. 植物生态学报, 2022, 46(10): 1251-1267. |
[7] | 赵晏平, 王忠武, 温都日根, 赵玉金, 白永飞. 基于Sentinel-2数据的草地植物功能多样性遥感反演及其与生产力的关系[J]. 植物生态学报, 2022, 46(10): 1234-1250. |
[8] | 王嘉童, 牛春跃, 胡天宇, 李文楷, 刘玲莉, 郭庆华, 苏艳军. 三维辐射传输模型在森林生态系统研究中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1200-1218. |
[9] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[10] | 李孝龙, 周俊, 彭飞, 钟宏韬, Hans LAMBERS. 植物养分捕获策略随成土年龄的变化及生态学意义[J]. 植物生态学报, 2021, 45(7): 714-727. |
[11] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[12] | 薛鹏飞, 李文龙, 朱高峰, 周华坤, 刘陈立, 晏和飘. 黄河首曲玛曲县高寒湿地景观格局演变[J]. 植物生态学报, 2021, 45(5): 467-475. |
[13] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[14] | 李强, 黄迎新, 周道玮, 丛山. 土壤氮磷添加下豆科草本植物生物固氮与磷获取策略的权衡机制[J]. 植物生态学报, 2021, 45(3): 286-297. |
[15] | 贺露炎, 侯满福, 唐伟, 刘雨婷, 赵俊. 滇东菌子山喀斯特森林的植被类型及其特征[J]. 植物生态学报, 2021, 45(12): 1380-1390. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19