植物生态学报 ›› 2014, Vol. 38 ›› Issue (7): 740-748.DOI: 10.3724/SP.J.1258.2014.00069
吴正锋1, 孙学武1, 王才斌1,**(), 郑亚萍1,**(), 万书波2, 刘俊华3, 郑永美1, 吴菊香1, 冯昊1, 于天一1
收稿日期:
2014-02-26
接受日期:
2014-04-01
出版日期:
2014-02-26
发布日期:
2014-07-10
通讯作者:
王才斌,郑亚萍
作者简介:
ypzheng62@126.com;共同通讯作者* 共同第一作者
基金资助:
WU Zheng-Feng1, SUN Xue-Wu1, WANG Cai-Bin1,**(), ZHENG Ya-Ping1,**(), WAN Shu-Bo2, LIU Jun-Hua3, ZHENG Yong-Mei1, WU Ju-Xiang1, FENG Hao1, YU Tian-Yi1
Received:
2014-02-26
Accepted:
2014-04-01
Online:
2014-02-26
Published:
2014-07-10
Contact:
WANG Cai-Bin,ZHENG Ya-Ping
About author:
First author contact:* Co-first author
摘要:
间作套种是我国主要的花生(Arachis hypogaea)种植方式之一。然而, 与单作相比, 在间作套种体系中, 花生截获的光能较少, 生长发育差, 产量低, 研究不同品种耐阴机理对选择适宜间作套种的花生品种具有重要意义。该研究用耐阴性不同的两个花生品种‘花育22号’ (强耐阴性)和‘白沙1016’ (弱耐阴性)为材料, 在大田条件下采用不同透光率遮阴网设置50%自然光强(中度弱光胁迫)和15%自然光强(严重弱光胁迫) 2个弱光处理, 从出苗期开始遮阴40天, 以自然光强为对照, 研究了弱光胁迫对花生功能叶片RuBP羧化酶活性和叶绿体超微结构的影响。结果表明: 光强为自然光照50%和15%的处理, ‘花育22号’ RuBP羧化酶活性与对照相比虽有降低, 但差异不显著, 而‘白沙1016’分别比对照低40.1%和59.4%, 显著低于对照。与对照相比, 50%自然光强下‘花育22号’叶绿体数不变, 叶绿体基粒数和基粒片层数显著增多, 叶绿体变长且发育完好, 15%自然光强下, 叶绿体数、基粒数和淀粉粒数显著减少, 叶绿体膜和基粒片层出现破损, 但叶绿体变长, 基粒片层数增加; ‘白沙1016’在50%自然光强下, 叶绿体数目和超微结构变化同‘花育22号’相似, 在15%自然光强下叶绿体变圆, 基粒数的降幅和基粒片层破损程度大于‘花育22号’且基粒片层数减少, 淀粉粒数增多。因此, 弱光胁迫特别是严重弱光胁迫条件下, 功能叶RuBP羧化酶活性降低幅度小、叶绿体超微结构受损程度低是‘花育22号’耐阴的光合生理基础。
吴正锋, 孙学武, 王才斌, 郑亚萍, 万书波, 刘俊华, 郑永美, 吴菊香, 冯昊, 于天一. 弱光胁迫对花生功能叶片RuBP羧化酶活性及叶绿体超微结构的影响. 植物生态学报, 2014, 38(7): 740-748. DOI: 10.3724/SP.J.1258.2014.00069
WU Zheng-Feng, SUN Xue-Wu, WANG Cai-Bin, ZHENG Ya-Ping, WAN Shu-Bo, LIU Jun-Hua, ZHENG Yong-Mei, WU Ju-Xiang, FENG Hao, YU Tian-Yi. Effects of low light stress on rubisco activity and the ultrastructure of chloroplast in functional leaves of peanut. Chinese Journal of Plant Ecology, 2014, 38(7): 740-748. DOI: 10.3724/SP.J.1258.2014.00069
处理 Treatment | CO2浓度 CO2 concentration (μmol·mol-1) | 光照强度 Light intensity (μmol·m-2·s-1) | 冠层温度 Canopy temperature (℃) |
---|---|---|---|
对照 CK | 361.3 ± 2.3a | 1 596.4 ± 4.9a | 31.9 ± 0.5a |
50% NLI | 363.0 ± 0.9a | 793.6 ± 3.6b | 29.3 ± 0.3b |
15% NLI | 361.6 ± 2.6a | 234.4 ± 4.3c | 30.0 ± 0.6b |
表1 遮光处理对花生群体小气候的影响(平均值±标准偏差)
Table 1 Effects of shading treatment on microclimate of peanut population (mean ± SD)
处理 Treatment | CO2浓度 CO2 concentration (μmol·mol-1) | 光照强度 Light intensity (μmol·m-2·s-1) | 冠层温度 Canopy temperature (℃) |
---|---|---|---|
对照 CK | 361.3 ± 2.3a | 1 596.4 ± 4.9a | 31.9 ± 0.5a |
50% NLI | 363.0 ± 0.9a | 793.6 ± 3.6b | 29.3 ± 0.3b |
15% NLI | 361.6 ± 2.6a | 234.4 ± 4.3c | 30.0 ± 0.6b |
图1 弱光对花生功能叶片RuBP羧化酶活性的影响(平均值±标准偏差)。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Effects of weak light on rubisco activity in functional leaves of peanut (mean ± SD). NLI, natural light intensity. Different lowercase letters indicate significant differences (p < 0.05).
品种 Cultivar | 处理 Treatment | 每个细胞的叶绿体数 Number of chloroplasts per cell | 叶绿体长度 Chloroplast length (μm) | 叶绿体宽度 Chloroplast width (μm) |
---|---|---|---|---|
‘白沙1016’ ‘Baisha 1016’ | 对照 CK | 14.5 ± 2.6a | 5.6 ± 1.4b | 2.4 ± 0.4b |
50% NLI | 14.3 ± 2.1a | 6.7 ± 1.3a | 2.7 ± 0.4b | |
15% NLI | 11.8 ± 2.1b | 5.6 ± 1.0b | 3.3 ± 0.8a | |
‘花育22号’ ‘Huayu 22’ | 对照 CK | 15.9 ± 2.5a | 5.1 ± 1.6b | 2.8 ± 0.6a |
50% NLI | 14.6 ± 2.4a | 6.1 ± 1.1a | 2.6 ± 0.5ab | |
15% NLI | 12.2 ± 3.4b | 6.3 ± 1.0a | 2.4 ± 0.7b |
表2 遮光对花生叶片(倒3叶)叶绿体数目和形状的影响(平均值±标准偏差)
Table 2 Effects of shading on the number and shape of chloroplasts in peanut leaves (mean ± SD)
品种 Cultivar | 处理 Treatment | 每个细胞的叶绿体数 Number of chloroplasts per cell | 叶绿体长度 Chloroplast length (μm) | 叶绿体宽度 Chloroplast width (μm) |
---|---|---|---|---|
‘白沙1016’ ‘Baisha 1016’ | 对照 CK | 14.5 ± 2.6a | 5.6 ± 1.4b | 2.4 ± 0.4b |
50% NLI | 14.3 ± 2.1a | 6.7 ± 1.3a | 2.7 ± 0.4b | |
15% NLI | 11.8 ± 2.1b | 5.6 ± 1.0b | 3.3 ± 0.8a | |
‘花育22号’ ‘Huayu 22’ | 对照 CK | 15.9 ± 2.5a | 5.1 ± 1.6b | 2.8 ± 0.6a |
50% NLI | 14.6 ± 2.4a | 6.1 ± 1.1a | 2.6 ± 0.5ab | |
15% NLI | 12.2 ± 3.4b | 6.3 ± 1.0a | 2.4 ± 0.7b |
图2 不同光照强度对花生叶绿体超微结构的影响。A, ‘白沙1016’, 对照。B, ‘白沙1016’, 50%自然光强。C, ‘白沙1016’, 15%自然光强。D, ‘花育22号’, 对照。E, ‘花育22号’, 50%自然光强。F, ‘花育22号’, 15%自然光强。Chl, 叶绿体; GL, 基粒片层; O, 嗜锇颗粒; S, 淀粉粒。
Fig. 2 Effects of light level on the ultrastructure of chloroplasts in leaves of peanut. A, ‘Baisha 1016’, CK. B, ‘Baisha 1016’, 50% nature light intensity. C, ‘Baisha 1016’, 15% nature light intensity. D, ‘Huayu 22’, CK. E, ‘Huayu 22’, 50% nature light intensity. F, ‘Huayu 22’, 15% nature light intensity. Chl, chloroplast; GL, grana lamellae; O, osmiophilic granule; S, starch grain.
品种 Cultivar | 处理 Treatment | 每个叶绿体的基粒数 Number of grana per chloroplast | 基粒片层数 Number of granum lamellae |
---|---|---|---|
‘白沙1016’ ‘Baisha 1016’ | 对照 CK | 36.6 ± 8.2b | 3.6 ± 1.1b |
50% NLI | 46.6 ± 5.2a | 4.2 ± 1.4a | |
15% NLI | 26.4 ± 6.9c | 2.2 ± 0.8c | |
‘花育22号’ ‘Huayu 22’ | 对照 CK | 37.6 ± 9.0a | 2.3 ± 0.7c |
50% NLI | 40.9 ± 9.1a | 3.4 ± 0.8b | |
15% NLI | 31.7 ± 4.9b | 5.1 ± 2.1a |
表3 遮光对花生叶片(倒3叶)基粒和基粒片层数的影响(平均值±标准偏差)
Table 3 Effects of shading on the number of grana and granum lamella in peanut leaves (mean ± SD)
品种 Cultivar | 处理 Treatment | 每个叶绿体的基粒数 Number of grana per chloroplast | 基粒片层数 Number of granum lamellae |
---|---|---|---|
‘白沙1016’ ‘Baisha 1016’ | 对照 CK | 36.6 ± 8.2b | 3.6 ± 1.1b |
50% NLI | 46.6 ± 5.2a | 4.2 ± 1.4a | |
15% NLI | 26.4 ± 6.9c | 2.2 ± 0.8c | |
‘花育22号’ ‘Huayu 22’ | 对照 CK | 37.6 ± 9.0a | 2.3 ± 0.7c |
50% NLI | 40.9 ± 9.1a | 3.4 ± 0.8b | |
15% NLI | 31.7 ± 4.9b | 5.1 ± 2.1a |
图3 不同光照强度对花生叶绿体超微结构的影响。A, ‘白沙1016’, 对照。B, ‘白沙1016’, 50%自然光强。C, ‘白沙1016’, 15%自然光强。D, ‘花育22号’, 对照。E, ‘花育22号’, 50%自然光强。F, ‘花育22号’, 15%自然光强。Chl, 叶绿体; GL, 基粒片层; O, 嗜锇颗粒; S, 淀粉粒。
Fig. 3 Effects of light level on the ultrastructure of chloroplasts in leaves of peanut. A, ‘Baisha 1016’, CK. B, ‘Baisha 1016’, 50% nature light intensity. C, ‘Baisha 1016’, 15% nature light intensity. D, ‘Huayu 22’, CK. E, ‘Huayu 22’, 50% nature light intensity. F, ‘Huayu 22’, 15% nature light intensity. Chl, chloroplast; GL, grana lamellae; O, osmiophilic granule; S, starch grain.
品种 Cultivar | 处理 Treatment | 每个叶绿体的淀粉粒数 Number of starch grains per chloroplast | 淀粉粒长度 Starch grain length (μm) | 淀粉粒宽度 Starch grain width (μm) |
---|---|---|---|---|
‘白沙1016’ ‘Baisha 1016’ | 对照 CK | 19.2 ± 5.2b | 2.1 ± 0.9b | 0.9 ± 0.4b |
50% NLI | 19.7 ± 5.9b | 1.7 ± 0.9b | 0.4 ± 0.2c | |
15% NLI | 29.9 ± 6.6a | 2.8 ± 0.9a | 1.3 ± 0.6a | |
‘花育22号’ ‘Huayu 22’ | 对照 CK | 22.2 ± 5.3a | 1.3 ± 0.5b | 0.6 ± 0.2a |
50% NLI | 17.9 ± 5.9b | 2.0 ± 1.1a | 0.5 ± 0.2ab | |
15% NLI | 15.2 ± 5.5b | 1.0 ± 0.3b | 0.5 ± 0.1b |
表4 遮光对花生叶片(倒3叶)淀粉粒数目和形状的影响(平均值±标准偏差)
Table 4 Effects of shading on the number and shape of starch grain in peanut leaves (mean ± SD)
品种 Cultivar | 处理 Treatment | 每个叶绿体的淀粉粒数 Number of starch grains per chloroplast | 淀粉粒长度 Starch grain length (μm) | 淀粉粒宽度 Starch grain width (μm) |
---|---|---|---|---|
‘白沙1016’ ‘Baisha 1016’ | 对照 CK | 19.2 ± 5.2b | 2.1 ± 0.9b | 0.9 ± 0.4b |
50% NLI | 19.7 ± 5.9b | 1.7 ± 0.9b | 0.4 ± 0.2c | |
15% NLI | 29.9 ± 6.6a | 2.8 ± 0.9a | 1.3 ± 0.6a | |
‘花育22号’ ‘Huayu 22’ | 对照 CK | 22.2 ± 5.3a | 1.3 ± 0.5b | 0.6 ± 0.2a |
50% NLI | 17.9 ± 5.9b | 2.0 ± 1.1a | 0.5 ± 0.2ab | |
15% NLI | 15.2 ± 5.5b | 1.0 ± 0.3b | 0.5 ± 0.1b |
[1] | Afsharnia M, Aliasgharzad N, Hajiboland R, Oustan S (2013). The effect of light intensity and zinc deficiency on antioxidant enzyme activity, photosynthesis of corn. International Journal of Agronomy and Plant Production, 4, 425-428. |
[2] | Ai XZ, Guo YK, Ma XZ, Xing YX (2004). Photosynthetic characteristics and ultrastructure of chloroplast of cucumber under low light intensity in solar greenhouse. Scientia Agricultura Sinica, 37, 268-273. (in Chinese with English abstract) |
[艾希珍, 郭延奎, 马兴庄, 邢禹贤 (2004). 弱光条件下日光温室黄瓜需光特性及叶绿体超微结构. 中国农业科学, 37, 268-273.] | |
[3] |
Awal MA, Koshi H, Ikeda T (2006). Radiation interception and use by maize/peanut intercrop canopy. Agricultural and Forest Meteorology, 139, 74-83.
DOI URL |
[4] | Bohning RH, Burnside CA (1956). The effect of light intensity on rate of apparent photosynthesis in leaves of sun and shade plants. American Journal of Botany, 43, 557-561. |
[5] | Evans JR, Poorter H (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant, Cell & Environment, 24, 755-767. |
[6] |
Evans JR, Seemann JR (1984). Differences between wheat genotypes in specific activity of ribulose-1,5-bisphosphate carboxylase and the relationship to photosynthesis. Plant Physiology, 74, 759-765.
DOI URL PMID |
[7] | George S, Nair RV (1990). Effect of shading on leaf development and chlorophyll content in groundnut ( Arachis hypogaea L.). Legume Research, 13, 130-132. |
[8] | Guo F, Wan SB, Wang CB, Li XG, Meng JJ, Cheng B (2008). Micro-climatic effects of intercropped peanut with wheat and its influence on peanut growth and development. Chinese Journal of Agrometeorology, 29, 285-289. (in Chinese with English abstract) |
[郭峰, 万书波, 王才斌, 李新国, 孟静静, 成波 (2008). 宽幅麦田套种田间小气候效应及对花生生长发育的影响. 中国农业气象, 29, 285-289.] | |
[9] | Huang D, Wu L, Chen JR, Dong L (2011). Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica, 49, 611-618. |
[10] | Ivanova LA, Ivanov LA, Ronzhina DA, Pyankov VI (2008). Shading-induced changes in the leaf mesophyll of plants of different functional types. Russian Journal of Plant Physiology, 55, 211-219. |
[11] |
Ketring DL (1979). Light effects on development of an indeterminate plant. Plant Physiology, 64, 665-667.
URL PMID |
[12] |
Königer M, Bollinger N (2012). Chloroplast movement behavior varies widely among species and does not correlate with high light stress tolerance. Planta, 236, 411-426.
DOI URL PMID |
[13] |
Kumar S, Singh B (2009). Effect of water stress on carbon isotope discrimination and Rubisco activity in bread and durum wheat genotypes. Physiology and Molecular Biology of Plants, 15, 281-286.
DOI URL PMID |
[14] | Ladlow MM (1976). Physiology of growth and chemical composition. In Shaw Australian Journal of Biological Sciences, 24, 1065-1075. |
[15] | Li ZJ, Li FC, Zhao BQ (1998). Studies on light and heat resource use efficiency and yield effect of wheat/corn/corn intercropping system. Journal of Shandong Agricultural University, 29, 419-426. (in Chinese with English abstract) |
[李增嘉, 李凤超, 赵秉强 (1998). 小麦玉米玉米间作套种的产量效应与光热资源利用率的研究. 山东农业大学学报, 29, 419-426.] | |
[16] |
Lichtenthaler HK, Buschmann C, Döll M, Fietz HJ, Bach T, Kozel U, Meier D, Rahmsdorf U (1981). Photosynthetic activity, chloroplast ultrastructure, and leaf characteristics of high-light and low-light plants and of sun and shade leaves. Photosynthesis Research, 2, 115-141.
URL PMID |
[17] | Lilley RM, Walker DA (1974). An improved spectrophoto- metric assay for ribulosebisphosphate carboxylase. Bio-chimica et Biophysica Acta(BBA)—Enzymology, 358, 226-229. |
[18] |
Murakami K, Matsuda R, Fujiwara K (2014). Light-induced systemic regulation of photosynthesis in primary and trifoliate leaves of Phaseolus vulgaris: effects of photosynthetic photon flux density (PPFD) versus spectrum. Plant Biology, 16, 16-21.
URL PMID |
[19] | Niinemets Ü (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25, 693-714. |
[20] |
Omoto E, Taniguchi M, Miyake H (2012). Adaptation responses in C4 photosynthesis of maize under salinity. Journal of Plant Physiology, 169, 469-477.
URL PMID |
[21] | Rao LJ, Mittra BN (1988). Growth and yield of peanut as influenced by degree and duration of shading. Journal of Agronomy and Crop Science, 160, 260-265. |
[22] | Skene DS (1974). Chloroplast structure in mature apple leaves grown under different levels of illumination and their response to changed illumination. Proceedings of the Royal Society B: Biological Sciences, 186, 75-78. |
[23] | Taiz L, Zeiger E (Translated by Song CP, Wang XL et al.) (2009). Plant Physiology. 4th edn. Science Press, Beijing. 106-135. (in Chinese) |
[宋纯鹏, 王学路等 (译) (2009). 植物生理学. 第四版. 科学出版社, 北京. 106-135.] | |
[24] | Tanwar SPS, Rao SS, Regar PL, Datt S, Kumar P, Jodha BS, Santra P, Kumar R, Ram R (2014). Improving water and land use efficiency of fallow-wheat system in shallow lithic calciorthid soils of arid region: introduction of bed planting and rainy season sorghum-legume intercropping. Soil and Tillage Research, 138, 44-55. |
[25] |
Wada M, Kagawa T, Sato Y (2003). Chloroplast movement. Annual Review of Plant Biology, 54, 455-468.
DOI URL PMID |
[26] | Wang CB, Wan SB (2009). The Cultural Theory and Technology for High-yielding Peanut Under Wheat-Peanut Cropping System. Science Press, Beijing. (in Chinese) |
[王才斌, 万书波 (2009). 麦油两熟制花生高产栽培理论与技术. 科学出版社, 北京.] | |
[27] | Wang QM, Hou FY, Dong SX, Xie BT, Li AX, Zhang HY, Zhang LM (2014). Effects of shading on the photosynthetic capacity, endogenous hormones and root yield in purple-fleshed sweetpotato ( Ipomoea batatas (L.) Lam). Plant Growth Regulation, 72, 113-122. |
[28] | Wang XW, Wang YJ, Fu QS, Zhao B, Guo YD (2009). Effects of low light stress on morphological trait, physiological characters and leaf ultrastructure of tomato ( Lycopersicon esculentum L.) seedlings. Acta Agriculturae Boreali- Sinica, 24(5), 144-149. (in Chinese with English abstract) |
[王学文, 王玉珏, 付秋实, 赵冰, 郭仰东 (2009). 弱光逆境对番茄幼苗形态、生理特征及叶片超微结构的影响. 华北农学报, 24(5), 144-149.] | |
[29] |
Wareing PF, Khalifa MM, Treharneet KJ (1968). Rate-limiting processes in photosynthesis at saturating light intensities. Nature, 220, 453-457.
DOI URL PMID |
[30] | Wu ZF, Liu JH, Wan SB, Sun KX, Sun XW, Feng H, Wang CB (2011). Effect of shading duration on pod yield and quality of peanut. Shandong Agricultural Sciences, ( 2), 30-33. (in Chinese with English abstract) |
[吴正锋, 刘俊华, 万书波, 孙奎香, 孙学武, 冯昊, 王才斌 (2011). 遮光持续时间对花生荚果产量和品质的影响. 山东农业科学, (2), 30-33.] | |
[31] | Wu ZF, Wang CB, Li X G, Wang FH, Wan SB, Liu JH, Zheng YP, Sun KX (2009). Effects of shading at seedling stage on photosynthetic characteristics of Arachis hypogaea L. leaves. Acta Ecologica Sinica, 29, 1366-1373. (in Chinese with English abstract) |
[吴正锋, 王才斌, 李新国, 王法宏, 万书波, 刘俊华, 郑亚萍, 孙奎香 (2009). 苗期遮阴对花生(Arachis hypogaea L.)光合生理特性的影响. 生态学报, 29, 1366-1373.] | |
[32] | Wu ZF, Wang CB, Wan GB, Yang NH, Wan SB, Sun KX, Sun XW, Feng H (2008). Effects of weak light stress on development and pod yield of peanut ( Arachis hypogaea L.) during seedling stage. Journal of Peanut Science, 37(4), 27-31. (in Chinese with English abstract) |
[吴正锋, 王才斌, 万更波, 杨年华, 万书波, 孙奎香, 孙学武, 冯昊 (2008). 弱光胁迫对两个不同类型花生生长发育及产量的影响. 花生学报, 37(4), 27-31.] | |
[33] | Yamazaki J, Shinomiya Y (2013). Effect of partial shading on the photosynthetic apparatus and photosystem stoichiometry in sunflower leaves. Photosynthetica, 51, 3-12. |
[34] | Yao YC, Wang SH, Kong Y (2007). Characteristics of photosynthesis mechanism in different peach species under low light intensity. Scientia Agricultura Sinica, 40, 855-863. (in Chinese with English abstract) |
[姚允聪, 王绍辉, 孔云 (2007). 弱光条件下桃叶片结构及光合特性与叶绿体超微结构变化. 中国农业科学, 40, 855-863.] | |
[35] | Zhang JW, Dong ST, Wang KJ, Hu CH, Liu P (2007). Effects of shading in field on photosynthetic characteristics in summer corn. Acta Agronomica Sinica, 33, 216-222. (in Chinese with English abstract) |
[张吉旺, 董树亭, 王空军, 胡昌浩, 刘鹏 (2007). 大田遮阴对夏玉米光合特性的影响. 作物学报, 33, 216-222.] | |
[36] | Zhang K, Wan YS, Liu FZ (2010). Effects of weak light on photosynthetic characteristics of peanut seedlings. Scientia Agricultura Sinica, 43, 65-71. (in Chinese with English abstract) |
[张昆, 万勇善, 刘风珍 (2010). 苗期弱光对花生光合特性的影响. 中国农业科学, 43, 65-71.] | |
[37] | Zhang ZX, Guo YK, Zou Q (1999). Effects of shading on ultrastructure of chloroplast and microstructure of ginger leaves. Acta Horticulturae Sinica, 26, 96-100. (in Chinese with English abstract) |
[张振贤, 郭延奎, 邹琦 (1999). 遮阴对生姜叶片显微结构及叶绿体超微结构的影响. 园艺学报, 26, 96-100.] | |
[38] | Zhen W, Zhang FM (2000). The effects of low light intensity on photosynthetic characteristics and ultrastructure of cucumber functional leaves. Acta Horticulturae Sinica, 27, 290-292. (in Chinese with English abstract) |
[甄伟, 张福墁 (2000). 弱光对黄瓜功能叶片光合特性及超微结构的影响. 园艺学报, 27, 290-292.] | |
[39] | Zhou SM, Ma SQ, Li W, Zhang ST (1998). Analysis of superiority of maize and peanut row intercropping. Acta Agriculturae Universitatis Henanensis, 32, 17-22. (in Chinese with English abstract) |
[周苏玫, 马淑琴, 李文, 张石头 (1998). 玉米花生间作系统优势分析. 河南农业大学学报, 32, 17-22.] |
[1] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[2] | 孟德云, 侯林琳, 杨莎, 孟静静, 郭峰, 李新国, 万书波. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015, 39(12): 1209-1215. |
[3] | 张佳蕾, 郭峰, 孟静静, 于晓霞, 杨莎, 张思斌, 耿耘, 李新国, 万书波. 酸性土施用钙肥对花生产量和品质及相关代谢酶活性的影响[J]. 植物生态学报, 2015, 39(11): 1101-1109. |
[4] | 厉广辉, 万勇善, 刘风珍, 张昆. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报, 2014, 38(7): 729-739. |
[5] | 郑亚萍,信彩云,王才斌,孙秀山,杨伟强,万书波,郑永美,冯昊,陈殿绪,孙学武,吴正锋. 磷肥对花生根系形态、生理特性及产量的影响[J]. 植物生态学报, 2013, 37(8): 777-785. |
[6] | 张佳蕾,李向东,杨传婷,高芳,张凤,王媛媛,孙莲强. 两种品质类型花生品质形成与子叶细胞超微结构的关系[J]. 植物生态学报, 2013, 37(8): 768-776. |
[7] | 贾立华,赵长星,王月福,王铭伦. 不同质地土壤对花生根系生长、分布和产量的影响[J]. 植物生态学报, 2013, 37(7): 684-690. |
[8] | 慈敦伟,戴良香,宋文武,张智猛. 花生萌发至苗期耐盐胁迫的基因型差异[J]. 植物生态学报, 2013, 37(11): 1018-1027. |
[9] | 焦念元,杨萌珂,宁堂原,尹飞,徐国伟,付国占,李友军. 玉米花生间作和磷肥对间作花生光合特性及产量的影响[J]. 植物生态学报, 2013, 37(11): 1010-1017. |
[10] | 戴攀峰, 谭敦炎. 雪莲的开花生物学特性及其生态适应意义[J]. 植物生态学报, 2011, 35(1): 56-65. |
[11] | 张智猛, 万书波, 戴良香, 宋文武, 陈静, 石运庆. 花生抗旱性鉴定指标的筛选与评价[J]. 植物生态学报, 2011, 35(1): 100-109. |
[12] | 贾士芳, 李从锋, 董树亭, 张吉旺. 弱光胁迫影响夏玉米光合效率的生理机制初探[J]. 植物生态学报, 2010, 34(12): 1439-1447. |
[13] | 杨淑霞, 高江云. 心叶凹唇姜的开花格局和雄性先熟机制[J]. 植物生态学报, 2009, 33(3): 449-459. |
[14] | 张智猛, 万书波, 宁堂原, 戴良香. 氮素水平对花生氮素代谢及相关酶活性的影响[J]. 植物生态学报, 2008, 32(6): 1407-1416. |
[15] | 张金菊, 叶其刚, 姚小洪, 张胜菊, 黄宏文. 片断化生境中濒危植物黄梅秤锤树的开花生物学、繁育系统与生殖成功的因素[J]. 植物生态学报, 2008, 32(4): 743-750. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19