植物生态学报 ›› 2013, Vol. 37 ›› Issue (8): 777-785.DOI: 10.3724/SP.J.1258.2013.00081
郑亚萍*,信彩云*,王才斌(),孙秀山,杨伟强,万书波,郑永美,冯昊,陈殿绪,孙学武,吴正锋
收稿日期:
2013-02-26
接受日期:
2013-06-17
出版日期:
2013-02-26
发布日期:
2013-08-07
通讯作者:
王才斌,孙秀山
基金资助:
ZHENG Ya-Ping*,XIN Cai-Yun*,WANG Cai-Bin(),SUN Xiu-Shan,YANG Wei-Qiang,WAN Shu-Bo,ZHENG Yong-Mei,FENG Hao,CHEN Dian-Xu,SUN Xue-Wu,WU Zheng-Feng
Received:
2013-02-26
Accepted:
2013-06-17
Online:
2013-02-26
Published:
2013-08-07
Contact:
WANG Cai-Bin,SUN Xiu-Shan
摘要:
采用池栽, 测定不同施磷量对花生(Arachis hypogaea)根系性状、生理特性及产量的影响。结果表明: (1)结荚中期, 根系总长度、体积、表面积及根尖数量均随施磷量的增加而增加, 在施磷30-90 kg·hm-2范围内, 施磷比不施磷4项指标分别增加3.5%-20.7%、9.3%-21.9%、9.7%-20.3%和12.6%-21.4%。特别是当施磷量超过60 kg·hm-2时, 上述4项指标均显著高于不施磷处理; 施磷可使根系中超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT) 3种酶活性分别提高12.7%-20.6%、14.8%-36.8%和17.0%-41.8%, 丙二醛(MDA)含量降低8.4%-19.5%, 根系活力和可溶性蛋白含量分别提高10.4%-25.0%、29.2%-53.5%; 同时, 施磷可使单株根瘤数量和鲜重分别增加10.7%-21.7%和22.6%-35.6%。(2)收获期, 除MDA含量随施磷量的增加而增加, SOD、POD和CAT活性, 根系活力和可溶性蛋白含量均随施磷量增加而呈降低趋势, 但多数指标施磷与不施磷及不同施磷量之间差异不显著。造成这一现象的原因与施磷后花生荚果库容增大, 对光合产物需求量增加, 导致植株和根系营养不良, 加速衰老有关。(3)花生单株结果数、生物产量、经济系数、出米率及产量均随施磷量的增加而增加, 其中产量的增加主要是通过生物产量和经济系数协同提高来实现的。
郑亚萍,信彩云,王才斌,孙秀山,杨伟强,万书波,郑永美,冯昊,陈殿绪,孙学武,吴正锋. 磷肥对花生根系形态、生理特性及产量的影响. 植物生态学报, 2013, 37(8): 777-785. DOI: 10.3724/SP.J.1258.2013.00081
ZHENG Ya-Ping,XIN Cai-Yun,WANG Cai-Bin,SUN Xiu-Shan,YANG Wei-Qiang,WAN Shu-Bo,ZHENG Yong-Mei,FENG Hao,CHEN Dian-Xu,SUN Xue-Wu,WU Zheng-Feng. Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea). Chinese Journal of Plant Ecology, 2013, 37(8): 777-785. DOI: 10.3724/SP.J.1258.2013.00081
肥料 Fertilizer | 处理 Treatment | |||
---|---|---|---|---|
P1 | P2 | P3 | P4 | |
KH2PO4 | 0 | 17.4 | 34.7 | 45.5 |
(NH4)2HPO4 | 0 | 0 | 0 | 6.5 |
K2SO4 | 21.8 | 13.5 | 5.1 | 0 |
CO(NH2)2 | 25.7 | 25.7 | 25.7 | 22.7 |
表1 主要元素用量
Table 1 Main element rate (g·pool-1)
肥料 Fertilizer | 处理 Treatment | |||
---|---|---|---|---|
P1 | P2 | P3 | P4 | |
KH2PO4 | 0 | 17.4 | 34.7 | 45.5 |
(NH4)2HPO4 | 0 | 0 | 0 | 6.5 |
K2SO4 | 21.8 | 13.5 | 5.1 | 0 |
CO(NH2)2 | 25.7 | 25.7 | 25.7 | 22.7 |
处理 Treatment | 单株结果数 Pod number per plant | 单株生物产量 Bioligical yield per plant (g) | 经济系数 Economic coefficient | 出米率 Shelling percentage (%) | 产量 Yield (kg·hm-2) |
---|---|---|---|---|---|
P1 | 9.8b | 30.0b | 0.49b | 64.3c | 3 643.0b |
P2 | 10.5ab | 31.6ab | 0.52ab | 68.0b | 3 947.2b |
P3 | 11.5ab | 33.0ab | 0.55a | 70.7ab | 4 174.1a |
P4 | 12.1a | 35.4a | 0.56a | 71.5a | 4 244.5a |
表2 不同磷水平对花生农艺性状和产量的影响
Table 2 Effect of different P levels on agronomy characteristics and yields of peanut
处理 Treatment | 单株结果数 Pod number per plant | 单株生物产量 Bioligical yield per plant (g) | 经济系数 Economic coefficient | 出米率 Shelling percentage (%) | 产量 Yield (kg·hm-2) |
---|---|---|---|---|---|
P1 | 9.8b | 30.0b | 0.49b | 64.3c | 3 643.0b |
P2 | 10.5ab | 31.6ab | 0.52ab | 68.0b | 3 947.2b |
P3 | 11.5ab | 33.0ab | 0.55a | 70.7ab | 4 174.1a |
P4 | 12.1a | 35.4a | 0.56a | 71.5a | 4 244.5a |
性状(每株) Item (per plant) | 根长(D)范围 Root length range (mm) | 结荚中期 Middle of pod filling stage | 收获期 Harvest stage | ||||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | ||
根系长度 Length of root (cm) | 0 < D≤1 | 1 831.8b | 1 879.9b | 2 203.5a | 2 184.6a | 1 627.0a | 1 342.1bc | 1 415.8b | 1 241.8c |
1 < D≤3 | 191.8c | 210.5b | 234.5a | 245.3a | 164.7a | 167.4a | 156.9a | 147.1a | |
D > 3 | 9.5c | 13.8b | 16.1ab | 17.2a | 8.2a | 10.3a | 9.7a | 10.7a | |
总和 Sum | 2 033.1b | 2 104.1b | 2 454.1a | 2 447.0a | 1 799.9a | 1 519.8bc | 1 582.3b | 1 399.5c | |
根系体积 Volume of root (cm3) | 0 < D≤1 | 2.2a | 2.4a | 2.6a | 2.6a | 2.0a | 1.7ab | 1.6ab | 1.6b |
1 < D≤3 | 3.8c | 4.2b | 4.3b | 4.7a | 3.2a | 3.2a | 3.0a | 3.0a | |
D > 3 | 2.2c | 2.4bc | 2.6ab | 2.8a | 1.4a | 1.4a | 1.5a | 1.4a | |
总和 Sum | 8.3c | 9.1bc | 9.5ab | 10.1a | 6.6a | 6.2a | 6.0a | 5.9a | |
根系表面积 Surface area of root (cm2) | 0 < D≤1 | 187.9b | 207.6ab | 219.7a | 224.2a | 163.3a | 144.9ab | 147.4ab | 133.4b |
1 < D≤3 | 85.9a | 91.6a | 91.0a | 97.1a | 80.4a | 65.1ab | 63.3b | 60.3b | |
D > 3 | 13.4bc | 15.8b | 19.1b | 24.3a | 11.3b | 12.0ab | 11.7ab | 14.4a | |
总和 Sum | 287.2c | 315.0b | 329.8ab | 345.5a | 254.9a | 222.0b | 219.4b | 211.0b | |
根尖数量 Tip numbers of root per plant | 0 < D≤1 | 2 798.1b | 3 153.0a | 3 176.5a | 3 399.9a | 2 604.8a | 2 590.0a | 2 294.5a | 2 295.5a |
1 < D≤3 | 56.0b | 60.0ab | 64.4ab | 65.4a | 29.2a | 23.4a | 21.0a | 14.3a | |
D > 3 | 3.5ab | 3.4b | 5.0a | 5.0a | 1.5a | 1.6a | 1.4a | 0.8a | |
总和 Sum | 2 857.5b | 3 216.4a | 3 245.9a | 3 470.3a | 2 666.3a | 2 627.3a | 2 339.3a | 2 326.0a | |
单株根瘤数 Nodules number per plant | 76.8b | 85.0ab | 93.5a | 90.0ab | 41.3a | 37.8ab | 30.5ab | 27.0b | |
根瘤鲜重 Fresh weight of nodule per plant (g) | 0.748b | 0.917ab | 1.042a | 1.014a | 0.240a | 0.283a | 0.243a | 0.221a |
表3 不同磷水平对花生根系形态的影响
Table 3 Effects of different P levels on root morphology of peanut
性状(每株) Item (per plant) | 根长(D)范围 Root length range (mm) | 结荚中期 Middle of pod filling stage | 收获期 Harvest stage | ||||||
---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | ||
根系长度 Length of root (cm) | 0 < D≤1 | 1 831.8b | 1 879.9b | 2 203.5a | 2 184.6a | 1 627.0a | 1 342.1bc | 1 415.8b | 1 241.8c |
1 < D≤3 | 191.8c | 210.5b | 234.5a | 245.3a | 164.7a | 167.4a | 156.9a | 147.1a | |
D > 3 | 9.5c | 13.8b | 16.1ab | 17.2a | 8.2a | 10.3a | 9.7a | 10.7a | |
总和 Sum | 2 033.1b | 2 104.1b | 2 454.1a | 2 447.0a | 1 799.9a | 1 519.8bc | 1 582.3b | 1 399.5c | |
根系体积 Volume of root (cm3) | 0 < D≤1 | 2.2a | 2.4a | 2.6a | 2.6a | 2.0a | 1.7ab | 1.6ab | 1.6b |
1 < D≤3 | 3.8c | 4.2b | 4.3b | 4.7a | 3.2a | 3.2a | 3.0a | 3.0a | |
D > 3 | 2.2c | 2.4bc | 2.6ab | 2.8a | 1.4a | 1.4a | 1.5a | 1.4a | |
总和 Sum | 8.3c | 9.1bc | 9.5ab | 10.1a | 6.6a | 6.2a | 6.0a | 5.9a | |
根系表面积 Surface area of root (cm2) | 0 < D≤1 | 187.9b | 207.6ab | 219.7a | 224.2a | 163.3a | 144.9ab | 147.4ab | 133.4b |
1 < D≤3 | 85.9a | 91.6a | 91.0a | 97.1a | 80.4a | 65.1ab | 63.3b | 60.3b | |
D > 3 | 13.4bc | 15.8b | 19.1b | 24.3a | 11.3b | 12.0ab | 11.7ab | 14.4a | |
总和 Sum | 287.2c | 315.0b | 329.8ab | 345.5a | 254.9a | 222.0b | 219.4b | 211.0b | |
根尖数量 Tip numbers of root per plant | 0 < D≤1 | 2 798.1b | 3 153.0a | 3 176.5a | 3 399.9a | 2 604.8a | 2 590.0a | 2 294.5a | 2 295.5a |
1 < D≤3 | 56.0b | 60.0ab | 64.4ab | 65.4a | 29.2a | 23.4a | 21.0a | 14.3a | |
D > 3 | 3.5ab | 3.4b | 5.0a | 5.0a | 1.5a | 1.6a | 1.4a | 0.8a | |
总和 Sum | 2 857.5b | 3 216.4a | 3 245.9a | 3 470.3a | 2 666.3a | 2 627.3a | 2 339.3a | 2 326.0a | |
单株根瘤数 Nodules number per plant | 76.8b | 85.0ab | 93.5a | 90.0ab | 41.3a | 37.8ab | 30.5ab | 27.0b | |
根瘤鲜重 Fresh weight of nodule per plant (g) | 0.748b | 0.917ab | 1.042a | 1.014a | 0.240a | 0.283a | 0.243a | 0.221a |
图1 不同磷水平对花生根系活性氧代谢的影响(平均值±标准偏差)。I, 结荚中期; II, 收获期。
Fig. 1 Effect of different P levels on active oxygen metabolism of peanut root (mean ± SD). I, middle of pod filling stage; II, harvest stage.
图2 不同磷水平对花生根系活力及可溶性蛋白含量的影响(平均值±标准偏差)。I, 生育中期; II, 收获期。
Fig. 2 Effect of different P levels on root activity and soluble protein content of peanut root (mean ± SD). I, middle growing stage; II, harvest stage. TTC, triphenyltetrazolium chloride.
[1] |
Abel S, Ticconi CA, Delatorre CA (2002). Phosphate sensing in higher plants. Physiologia Plantarum, 115, 1-8.
DOI URL PMID |
[2] |
Batten GD (1992). A review of phosphorus efficiency in wheat. Plant and Soil, 146, 163-168.
DOI URL |
[3] | Beijing Agricultural University (1980). Plant Physiology. Agricultural Press, Beijing. (in Chinese) |
[ 北京农业大学 (1980). 植物生理学. 农业出版社, 北京.] | |
[4] | Cao AQ, Yan SL (2001). Adaptation of soybean root architecture under different P conditions. Journal of South China Agricultural University, 22(1), 92. (in Chinese with English abstract) |
[ 曹爱琴, 严小龙 (2001). 不同供磷条件下大豆根构型的适应性变化. 华南农业大学学报, 22(1), 92.] | |
[5] |
Cao LX, Chen GL, Dun HX, Zhang K (2009). Effect of phosphorus deficiency on root growth and root exudates of Cucurbita ficifolia B. Acta Agriculturae Boreali-Sinica, 24(5), 164-169. (in Chinese with English abstract)
DOI URL |
[ 曹丽霞, 陈贵林, 敦惠霞, 张轲 (2009). 缺磷胁迫对黑籽南瓜幼苗根系生长和根系分泌物的影响. 华北农学报, 24(5), 164-169.]
DOI URL |
|
[6] | Chance B, Maehly A (1995). Assay of catalase and peroxidase. In: Colowick SP, Kaplan NO eds. Methods in Enzy- mology. Academic Press, New York. |
[7] |
Daimon H, Yoshioka M (2001). Responses of root nodule formation and nitrogen fixation activity to nitrate in a split-root system in peanut (Arachis hypogaea L.). Journal of Agronomy and Crop Science, 187, 89-95.
DOI URL |
[8] |
Daram P, Brunner S, Persson BL, Amrhein N, Bucher M (1998). Functional analysis and cell-specific expression of a phosphate transporter from tomato. Planta, 206, 225-233.
DOI URL PMID |
[9] | Dong XX, Wei JL, Yang G, Li Y, Tian Y, Guan LS, Cui RZ (2008). Studies on limiting nutrient elements of spring peanut and distribution of nitrogen, phosphorus and potassium in different parts when lack of nutrients. Chinese Agricultural Science Bulletin, 24, 277-281. (in Chinese with English abstract) |
[ 董晓霞, 魏建林, 杨果, 李彦, 田叶, 管力生, 崔荣宗 (2008). 春花生养分限制因子与缺肥时花生体内氮磷钾的分配研究. 中国农学通报, 24, 277-281.] | |
[10] |
Gahoonia TS, Care D, Nielsen NE (1997). Root hairs and phosphorus acquisition of wheat and barley cultivars. Plant and Soil, 191, 181-188.
DOI URL |
[11] | He JJ, Lin ZM, Hua YG, Luo W, Lin QH (2009). Effect on roots growth of rubber at different phosphorous fertilizer levels. Soil and Fertilizer Sciences in China,(1), 16-19, 30. (in Chinese with English abstract) |
[ 贺军军, 林钊沐, 华元刚, 罗微, 林清火 (2009). 不同施磷水平对橡胶树根系活力的影响. 中国土壤与肥料,(1), 16-19, 30.] | |
[12] | Hippler FWR, Moreira M, Dias NMS, Hermann ER (2011). Native mycorrhizal fungi and phosphate doses in the development of peanut RUNNER IAC 886. Revista Ciência Agronmica, 42, 605-610. |
[13] | Li FK, Zhai GY, Shen YX, Liu XB, Jiang HX (2005). Effect of superphosphate application and rhizobia inoculation on growth and forage quality of Medicago sativa in the Yellow River Delta. Acta Pratacultural Science, 14(3), 87-93. (in Chinese with English abstract) |
[ 李富宽, 翟桂玉, 沈益新, 刘信宝, 姜慧新 (2005). 施磷和接种根瘤菌对黄河三角洲紫花苜蓿生长及品质的影响. 草业学报, 14(3), 87-93.] | |
[14] | Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang W, Cui Z, Chen X, Shen X, Jiang R, Zheng F (2011). Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil, 348, 157-167. |
[15] | Li HS (2000). Principle and Technology of Plant Physiologial and Biochemiscal Experiment. Higher Education Press, Beijing. (in Chinese) |
[ 李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京.] | |
[16] | Liao H, Yan XL (2000). Adaptive changes and genotypic variation for root architecture of common bean in response to phosphorus deficiency. Acta Botanica Sinica, 42, 158-163. (in Chinese with English abstract) |
[ 廖红, 严小龙 (2000). 菜豆根构型对低磷胁迫的适应性变化及基因型差异. 植物学报, 42, 158-163.] | |
[17] | Liu Y, Wang R, Hua LM, Xie ZJ (2012). Effect of N application rates on leaf senescence and protective enzyme system at later stage of maize. Journal of Maize Sciences, 20(2), 124-127. (in Chinese with English abstract) |
[ 刘艳, 汪仁, 华利民, 解占军 (2012). 施氮量对玉米生育后期叶片衰老与保护酶系统的影响. 玉米科学, 20(2), 124-127.] | |
[18] | Pang X, Li CJ, Zhang FS (1999). Effect of P deficiency on translocation and redistribution of phosphate in intact plants of cucumber. Journal of Plant Nutrition and Fertilizer, 5, 137-143. (in Chinese with English abstract) |
[ 庞欣, 李春俭, 张福锁 (1999). 缺磷胁迫对黄瓜体内磷运输及再分配的影响. 植物营养与肥料学报, 5, 137-143.] | |
[19] | Pereira PAA, Bliss FA (1987). Nitrogen fixation and plant growth of common bean (Phaseolus vuigaris L.) at different levels of phosphorus availability. Plant and Soil, 104, 79-84. |
[20] | Plant Physiology Teaching and Research Group, Department of Biology, East China Normal University (1980). Plant Physiology Experiment Instruction. People’s Education Press, Beijing. 169-176. (in Chinese) |
[ 华东师范大学生物系植物生理教研组 (1980). 植物生理学实验指导. 人民教育出版社, 北京. 169-176.] | |
[21] |
Rausch C, Bucher M (2002). Molecular mechanisms of phosphate transport in plants. Planta, 216, 23-37.
URL PMID |
[22] |
Sa TM, Israel DW (1991). Energy status and functioning of phosphorus-deficient soybean nodules. Plant Physiology, 97, 928-935.
DOI URL PMID |
[23] | Sanginga N (2003). Role of biological nitrogen fixation in legume based cropping systems; a case study of West Africa farming systems. Plant and Soil, 252, 25-39. |
[24] |
Schachtman DP, Reid RJ, Ayling SM (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiology, 116, 447-453.
DOI URL PMID |
[25] |
Suh S, Yee S (2011). Phosphorus use-efficiency of agriculture and food system in the US. Chemosphere, 84, 806-813.
DOI URL PMID |
[26] | Wan SB (2003). Peanut Cultivation in China. Shanghai Scientific and Technical Publishers, Shanghai. (in Chinese) |
[ 万书波 (2003). 中国花生栽培学. 上海科学技术出版社, 上海.] | |
[27] | Wang CB, Sun YH, Tao SX, Liang YY, Niu ZR, Zheng YP (1992). Study on relationship of source and sink in peanut. Journal of Peanut Science,(1), 11-15. (in Chinese with English abstract) |
[ 王才斌, 孙彦浩, 陶寿祥, 梁裕元, 牛振荣, 郑亚萍 (1992). 花生源库关系的研究. 花生学报, (1), 11-15.] | |
[28] | Wang CB, Wan SB (2011). Peanut Physiological Ecology. China Agriculture Press, Beijing. (in Chinese) |
[ 王才斌, 万书波 (2011). 花生生理生态学. 中国农业出版社, 北京.] | |
[29] | Wang CB, Wu ZF, Cheng B, Zheng YP, Wan SB, Guo F, Chen DX (2007). Effect of continuous cropping on photosynthesis and metabolism of reactive oxygen in peanut. Acta Agronomica Sinica, 33, 1304-1309. (in Chinese with English abstract) |
[ 王才斌, 吴正锋, 成波, 郑亚萍, 万书波, 郭峰, 陈殿绪 (2007). 连作对花生光合特性和活性氧代谢的影响. 作物学报, 33, 1304-1309.] | |
[30] | Wang SQ, Han XZ, Yan J, Li XH, Qiao YF (2010). Impact of phosphorus deficiency stress on root morphology, nitrogen concentration and phosphorus accumulation of soybean (Glycine max L.). Chinese Journal of Soil Science, 41(3), 644-650. (in Chinese with English abstract) |
[ 王树起, 韩晓增, 严君, 李晓惠, 乔云发 (2010). 缺磷胁迫对大豆根系形态和氮磷吸收积累的影响. 土壤通报, 41(3), 644-650.] | |
[31] | Wang YF, Xu L, Zhao CX, Wang ML (2012). Effects of phosphorus application on nitrogen accumulation sources and yield of peanut. Chinese Journal of Soil Science, 43, 444-450. (in Chinese with English abstract) |
[ 王月福, 徐亮, 赵长星, 王铭伦 (2012). 施磷对花生积累氮素来源和产量的影响. 土壤通报, 43, 444-450.] | |
[32] | Wei ZQ, Shi YX, Kong FM (2002). The effect of phosphorus deficiency stress on acid phosphatase in peanut. Chinese Journal of Oil Crop Sciences, 24(3), 44-46. (in Chinese with English abstract) |
[ 魏志强, 史衍玺, 孔凡美 (2002). 缺磷胁迫对花生磷酸酶活性的影响. 中国粮油学报, 24(3), 44-46.] | |
[33] | Xi JG, Wu H, Liang MZ, Sun GM (2009). Effects of phosphorus on plant and root of sisal. Guangdong Agricultural Sciences, (11), 82-85. (in Chinese with English abstract) |
[ 习金根, 吴浩, 梁敏枝, 孙光明 (2009). 不同的磷水平对剑麻根系和植株生长的影响. 广东农业科学, (11), 82-85.] | |
[34] | Xu L, Wang YF, Cheng X, Kang YJ, Wang ML (2009). Effects of phosphorus application on root growth and development and yield of peanut (Arachis Hypogaea L.). Journal of Peanut Science, 38, 32-35. (in Chinese with English abstract) |
[ 徐亮, 王月福, 程曦, 康玉洁, 王铭伦 (2009). 施磷对花生根系生长发育和产量的影响. 花生学报, 38, 32-35.] | |
[35] | Yan WY, Ye SH, Dong YJ, Jin QS, Zhang XM (2010). Research progress related to plant leaf senescence. Crops,(4), 4-9. (in Chinese with English abstract) |
[ 严雯奕, 叶胜海, 董彦君, 金庆生, 张小明 (2010). 植物叶片衰老相关研究进展. 作物杂志, (4), 4-9.] | |
[36] | Zhao SJ, Xu CC, Zou Q, Meng QW (1994). Improvements of method for measurement of malondialdehvde in plant tissues. Acta Photophysiologica Sinica, 30(3), 207-210. (in Chinese with English abstract) |
[ 赵士杰, 许长成, 邹琦, 孟庆伟 (1994). 植物组织中丙二醛测定方法的改进. 植物生理学报, 30(3), 207-210.] | |
[37] |
Zhao XF, Wang WL, He DX (2010). Effects of phosphorus fertilizer application rates on root physiological and biochemical characteristics and grain protein content in wheat (Triticum aestivum L.). Journal of Triticeae Crops, 30, 870-874. (in Chinese with English abstract)
DOI URL |
[ 赵秀峰, 王文亮, 贺德先 (2010). 施磷水平对小麦根系生理及籽粒蛋白质含量的影响. 麦类作物学报, 30, 870-874.]
DOI URL |
|
[38] |
Zhou LY, Li XD, Tang X, Lin YJ, Li ZF (2007). Effects of different application amount of N, P, K fertilizers on physiological characteristics, yield and kernel quality of peanut. Chinese Journal of Applied Ecology, 18, 2468-2474. (in Chinese with English abstract)
URL PMID |
[ 周录英, 李向东, 汤笑, 林英杰, 李宗奉 (2007). 氮、磷、钾肥不同用量对花生生理特性及产量品质的影响. 生态学报, 18, 2468-2474.]
URL PMID |
[1] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[2] | 孙浩哲, 王襄平, 张树斌, 吴鹏, 杨蕾. 阔叶红松林不同演替阶段凋落物产量及其稳定性的影响因素[J]. 植物生态学报, 2021, 45(6): 594-605. |
[3] | 刘雪飞, 吴林, 王涵, 洪柳, 熊莉军. 鄂西南亚高山湿地泥炭藓的生长与分解[J]. 植物生态学报, 2020, 44(3): 228-235. |
[4] | 崔利, 郭峰, 张佳蕾, 杨莎, 王建国, 孟静静, 耿耘, 李新国, 万书波. 摩西斗管囊霉改善连作花生根际土壤的微环境[J]. 植物生态学报, 2019, 43(8): 718-728. |
[5] | 邹显花, 胡亚楠, 韦丹, 陈思同, 吴鹏飞, 马祥庆. 磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性[J]. 植物生态学报, 2019, 43(2): 139-151. |
[6] | 刘璐, 赵常明, 徐文婷, 申国珍, 谢宗强. 神农架常绿落叶阔叶混交林凋落物动态及影响因素[J]. 植物生态学报, 2018, 42(6): 619-628. |
[7] | 张鑫, 邢亚娟, 闫国永, 王庆贵. 细根对降水变化响应的meta分析[J]. 植物生态学报, 2018, 42(2): 164-172. |
[8] | 郑成岩, 邓艾兴, LATIFMANESHHojatollah, 宋振伟, 张俊, 王利, 张卫建. 增温对青藏高原冬小麦干物质积累转运及氮吸收利用的影响[J]. 植物生态学报, 2017, 41(10): 1060-1068. |
[9] | 王丹, 乔匀周, 董宝娣, 葛静, 杨萍果, 刘孟雨. 昼夜不对称性与对称性升温对大豆产量和水分利用的影响[J]. 植物生态学报, 2016, 40(8): 827-833. |
[10] | 邹长明, 王允青, 刘英, 张晓红, 唐杉. 四种豆科作物的光合生理和生长发育对弱光的响应[J]. 植物生态学报, 2015, 39(9): 909-916. |
[11] | 孟德云, 侯林琳, 杨莎, 孟静静, 郭峰, 李新国, 万书波. 外源多胺对盆栽花生盐胁迫的缓解作用[J]. 植物生态学报, 2015, 39(12): 1209-1215. |
[12] | 陈云玉, 熊德成, 黄锦学, 王韦韦, 胡双成, 邓飞, 许辰森, 冯建新, 史顺增, 钟波元, 陈光水. 中亚热带不同演替阶段的马尾松和米槠人工林的细根生产量研究[J]. 植物生态学报, 2015, 39(11): 1071-1081. |
[13] | 张佳蕾, 郭峰, 孟静静, 于晓霞, 杨莎, 张思斌, 耿耘, 李新国, 万书波. 酸性土施用钙肥对花生产量和品质及相关代谢酶活性的影响[J]. 植物生态学报, 2015, 39(11): 1101-1109. |
[14] | 周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应[J]. 植物生态学报, 2015, 39(1): 81-91. |
[15] | 厉广辉, 万勇善, 刘风珍, 张昆. 苗期干旱及复水条件下不同花生品种的光合特性[J]. 植物生态学报, 2014, 38(7): 729-739. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19