植物生态学报 ›› 2015, Vol. 39 ›› Issue (1): 81-91.DOI: 10.17521/cjpe.2015.0009
收稿日期:
2014-09-28
接受日期:
2014-12-09
出版日期:
2015-01-10
发布日期:
2015-01-22
通讯作者:
周洪华
作者简介:
# 共同第一作者
基金资助:
Received:
2014-09-28
Accepted:
2014-12-09
Online:
2015-01-10
Published:
2015-01-22
Contact:
Hong-Hua ZHOU
About author:
# Co-first authors
摘要:
解析植物木质部导水率对逆境的响应和适应对促进植物抗逆性机理研究和受损植被恢复具有重要意义。该文以荒漠河岸林建群种胡杨(Populus euphratica)为研究对象, 系统分析了胡杨幼株根、茎、叶水分传输通道对不同浓度盐胁迫的响应和适应。结果表明: (1)胡杨幼株根系对盐胁迫的敏感性高于茎和叶, 盐胁迫下根系生长和根尖数显著受到抑制, 根木质部易于发生栓塞, 导水率明显降低。(2)胡杨幼株茎木质部导水率对盐胁迫的响应依盐浓度而定, 轻度(0.05 mol·L-1 NaCl)和中度(0.15 mol·L-1 NaCl)盐胁迫下, 胡杨可以通过协调导管输水的有效性和安全性来调节木质部的导水率, 维持植物正常生长; 重度(0.30 mol·L-1 NaCl)盐胁迫下, 胡杨茎木质部导管输水有效性和安全性均明显降低, 木质部导水率显著下降, 并伴随叶片气孔导度的显著降低, 从而严重抑制了胡杨的光合和生长。
周洪华, 李卫红. 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 2015, 39(1): 81-91. DOI: 10.17521/cjpe.2015.0009
ZHOU Hong-Hua,LI Wei-Hong. Responses and adaptation of xylem hydraulic conductivity to salt stress in Populus euphratica. Chinese Journal of Plant Ecology, 2015, 39(1): 81-91. DOI: 10.17521/cjpe.2015.0009
图1 各浓度盐胁迫处理下胡杨幼株叶片气孔导度(Gs)日变化(平均值±标准误差)。不同小写字母表示差异显著(p < 0.05, LSD)。 Control, 对照 0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl。
Fig. 1 Diurnal changes in stomatal conductance (Gs) of leaves in Populus euphratica seedlings under different concentration salt stresses (mean ± SE). Different letters indicate significant differences (p < 0.05, LSD). Control, 0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl.
图2 各浓度盐胁迫处理下胡杨幼株根和茎木质部导水率(平均值±标准误差)。Ks0, 初始比导率; Ksmax, 最大比导率。不同小写字母表示差异显著(p < 0.05, LSD)。Control, 对照0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl。
Fig. 2 Hydraulic conductivity of roots and stems of Populus euphratica seedlings under different concentration salt stresses (mean ± SE). Ks0, initial hydraulic conductivity per unit volume. Ksmax, maximum hydraulic conductivity. Different letters indicate significant differences (p < 0.05, LSD). Control, 0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl.
图3 各浓度盐胁迫处理下胡杨根和茎木质部栓塞度脆弱性曲线(平均值±标准误差)。PLC, 导水损失率。Control, 对照0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl。
Fig. 3 Curves of xylem vulnerability to cavitation in roots and stems of Populus euphratica seedlings under different concentration salt stresses (mean ± SE). PLC, percentage loss of hydraulic conductivity. Control, 0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl.
图4 各浓度盐胁迫处理下胡杨幼株茎木质部导管显微结构特征(平均值±标准误差)。Control, 对照0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl。
Fig. 4 Anatomical structure of stem xylem vessels in Populus euphratica seedlings under different concentration salt stresses (mean ± SE). Control, 0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl.
图5 各浓度盐胁迫处理下胡杨幼株根形态生长与分布。A, 对照处理(0 mol·L-1 NaCl溶液处理水平); B, S1处理(0.05 mol·L-1 NaCl溶液处理水平); C, S2处理(0.15 mol·L-1 NaCl溶液处理水平); D, S3处理(0.30 mol·L-1 NaCl 溶液处理水平。
Fig. 5 Root morphology and distribution of Populus euphratica seedlings under different concentration salt stresses. A, control level (0 mol·L-1 NaCl solution); B, S1 level (0.05 mol·L-1 NaCl solution); C, S2 level (0.15 mol·L-1 NaCl solution); D, S3 level (0.30 mol·L-1 NaCl solution).
图6 各浓度盐胁迫处理下胡杨幼株根系特征(平均值±标准误差)。Control, 对照0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl。
Fig. 6 Root characteristics of Populus euphratica seedlings under different concentration salt stresses (mean ± SE). Control, 0 mol·L-1 NaCl; S1, 0.05 mol·L-1 NaCl; S2, 0.15 mol·L-1 NaCl; S3, 0.30 mol·L-1 NaCl.
总根长 Total root length | 总根尖数 No. of total root tips | 0-5 mm根长 0-5 mm root length | 0-5 mm根尖数 No. of 0-5 mm root tips | 5-10 mm根长 5-10 mm root length | 5-10 mm根尖数 No. of 5-10 mm root tips | |
---|---|---|---|---|---|---|
最大比导率 ksmax | 0.567* | 0.841* | 0.631* | 0.854* | 0.604* | 0.538* |
初始比导率 ks0 | 0.494 | 0.800* | 0.565* | 0.815* | 0.538* | 0.460 |
表1 根系形态与水分传导能力的Pearson相关性
Table 1 Pearson correlation between root characteristics and hydraulic conductivity
总根长 Total root length | 总根尖数 No. of total root tips | 0-5 mm根长 0-5 mm root length | 0-5 mm根尖数 No. of 0-5 mm root tips | 5-10 mm根长 5-10 mm root length | 5-10 mm根尖数 No. of 5-10 mm root tips | |
---|---|---|---|---|---|---|
最大比导率 ksmax | 0.567* | 0.841* | 0.631* | 0.854* | 0.604* | 0.538* |
初始比导率 ks0 | 0.494 | 0.800* | 0.565* | 0.815* | 0.538* | 0.460 |
1 | Apostol KG, Zwiazek JJ (2003). Hypoxia affects root sodium and chloride concentrations and alters water conductance in salt-treated jack pine (Pinus banksiana) seedlings. Trees, 17, 251-257. |
2 | Apostol KG, Zwiazek JJ, MacKinnon MD (2004). Naphthenic acids affect plant water conductance but do not alter shoot Na+ and Cl- concentrations in jack pine (Pinus banksiana) seedlings. Plant and Soil, 263, 183-190. |
3 | Aroca R, Porcel R, Ruiz-Lozano JM (2012). Regulation of root water uptake under abiotic stress conditions. Journal of Experimental Botany, 63, 43-47. |
4 | Bass P (1982). New Perspectives in Wood Anatomy. The Hague, Nijhoff, Junk. 252-263. |
5 | Boursiac Y, Boudet J, Postaire O, Luu DT, Tournaire-Roux C, Maurel C (2008). Stimulus-induced downregulation of root water transport involves reactive oxygen species- activated cell signalling and plasma membrane intrinsic protein internalization. The Plant Journal, 56, 207-218. |
6 | Calvo-Polanco M, Sánchez-Romera B, Aroca R (2014). Mild salt stress conditions induce different responses in root hydraulic conductivity of Phaseolus vulgaris over-time. PLoS ONE, 9, e90631. |
7 | Cowan IR (1982). Regulation of water use in relation to carbon gain in higher plants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H eds. Physiological Plant Ecology Ⅱ Water Relations and Carbon Assimilation. Springer-Verlag, Berlin. 589-613. |
8 | Cramer GR, Läuchli A, Epstein E (1986). Effects of NaCl and CaCl2 on ion activities in complex nutrient solutions and root growth of cotton. Plant Physiology, 81, 792-797. |
9 | Evelin H, Kapoor R, Giri B (2009). Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Annals of Botany, 104, 1263-1280. |
10 | Gao GL, Jiang WB, Yu KJ, Wang LJ (2003). A review of studies on effect of salt stress on photosynthesis in fruit crops. Journal of Fruit Science, 20, 493-497. |
(in Chinese with English abstract) [高光林, 姜卫兵, 俞开锦, 汪良驹 (2003). 盐胁迫对果树光合生理的影响. 果树学报, 20, 493-497.] | |
11 | García-Sánchez F, Carvajal M, Sanchez-Pina MA, Martínea V, Cerdá A (2000). Salinity resistance of Citrus seedlings in relation to hydraulic conductance, plasma membrane ATPase and anatomy of the roots. Journal of Plant Physiology, 156, 724-730. |
12 | Guo L, Wang ZY, Lin H, Cui WE, Chen J, Liu M, Chen ZL, Qu LJ, Gu H (2006). Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research, 16, 277-286. |
13 | Guo SR (2003). Soilless Culture. China Agriculture Press, Beijing. 20-35, 114. |
(in Chinese) [郭世荣 (2003). 无土栽培学. 中国农业出版社, 北京. 20-35, 114.] | |
14 | Haeussler S, Kabzems R (2006). Aspen plant community response to organic matter removal and soil compaction. Canadian Journal of Forest Research, 35, 2030-2044. |
15 | Horie T, Kneko T, Sugimoto G, Sasano S, Panda SK, Shibasaka M, Katsuhara M (2011). Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant and Cell Physiology, 52, 663-675. |
16 | Kang SZ, Zhang JH (2004). Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. Journal of Experimental Botany, 55, 2437-2446. |
17 | López-Berenguer C, García-Viguera C, Carvajal M (2006). Are root hydraulic conductivity responses to salinity controlled by aquaporins in broccoli plants?Plant and Soil, 279, 13-23. |
18 | López-Pérez L, Fernández-García N, Olmos E, Carvajal M (2007). The phi thickening in roots of broccoli plants: An acclimation mechanism to salinity?International Journal of Plant Sciences, 168, 1141-1149. |
19 | Lu YF, Feng LT (1999). Effects of NaCl stress on water and photosynthetic gas exchange of spinach leaves. Plant Physiology Communications, 35, 290-292. |
(in Chinese) [卢元芳, 冯立田 (1999). NaCl 胁迫对菠菜叶片中水分和光合气体交换的影响. 植物生理学通讯, 35, 290-292.] | |
20 | Mansour MMF (1997). Cell permeability under salt stress. In: Jaiwal PK, Singh RP, Gulati A eds. Strategies for Improving Salt Tolerance in Higher Plants. Science Publishers, Boca Raton, USA. 87-110. |
21 | Mariani L, Chang SX, Kabzems R (2006). Effects of tree harvesting, forest floor removal, and compaction on soil microbial biomass, microbial respiration, and N availability in a boreal aspen forest in British Columbia. Soil Biology & Biochemistry, 38, 1734-1774. |
22 | Martínez-Ballesta MC, Aparicio F, Pallás V, Martínez V, Carvajal M (2003). Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. Journal of Plant Physiology, 160, 689-697. |
23 | Martínez-Ballesta MDC, Bastías E, Zhu CF, Schäffner AR, González-Moro B, González-Murua C, Carvajal M (2008). Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and Zm PIP2, and plasm a membrane H+-ATPase, in relation to water and nutrient uptake. Physiologia Plantarum, 132, 479-490. |
24 | Martínez-Ballesta MDC, Martínez V, Carvajal M (2000). Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions. Australian Journal of Plant Physiology, 27, 685-691. |
25 | Maurel C (1997). Aquaporins and water permeability of plant membranes. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 399-429. |
26 | Munns R (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239-250. |
27 | Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. |
28 | Muries B, Faize M, Carvajal M, Martínez-Ballesta C (2011). Identification and differential induction of the expression of aquaporins by salinity in broccoli plants. Molecular Biosystems, 7, 1322-1335. |
29 | Nastou A, Chartaoulakis K, Atherios I (1999). Leaf anatomical responses, ion content and CO2 assimilation in three lemon cultivars under NaCl salinity. Advances in Horticultural Science, 13, 61-67. |
30 | Navarro A, Bañon S, Olmos E, Sánchez-Blanco MJ (2007). Effects of sodium chloride on water potential components, hydraulic conductivity, gas exchange and leaf ultrastructure of Arbutus unedo plants. Plant Science, 172, 473-480. |
31 | Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schaffner AR, Maurel C (2010). A PIPı aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette ofArabidopsis. Plant Physiology, 152, 1418-1430. |
32 | Qi CH, Chen M, Song J, Wang BS (2009). Increase in aquaporin activity is involved in leaf succulence of the euhalophyte Suaeda salsa, under salinity. Plant Science, 176, 200-205. |
33 | Rahnama A, James RA, Pustini K, Munns R (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37, 225-263. |
34 | Redfield E, Croser C, Zwiazek JJ, MacKinnon MD, Qualizza C (2003). Responses of red-osier dogwood to oil sands tailings treated with gypsum or alum. Journal of Environment Quality, 32, 1008-1014. |
35 | Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012). Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: New challenges in physiological and molecular studies. Journal of Experimental Botany, 63, 4033-4044. |
36 | Schachtman DP, Goodger JQD (2008). Chemical root to shoot signaling under drought. Trends in Plants Science, 13, 281-287. |
37 | Silva C, Martínez V, Carvajal M (2008). Osmotic versus toxic effects of NaCl on pepper plants. Biologia Plantarum, 52, 72-79. |
38 | Sobrado MA (2001). Hydraulic properties of a mangrove Avicennia germinans as affected by NaCl. Biologia Plantrum, 44, 435-438. |
39 | Sutka M, Li G, Boudet J, Boursiac Y, Doumas P, Maurel C (2011). Natural variation of root hydraulics in Arabidopsis grown in normal and salt-stressed conditions. Plant Physiology, 155, 1264-1276. |
40 | TrifiIò P, Lo Gullo MA, Nardini A, Pernice F, Salleo S (2007). Rootstock effects on xylem conduit dimensions and vulnerability to cavitation of Olea europaea L. Trees, 21, 549-556. |
41 | Wang SP, Guo SR, Li J, Hu XH, Jiao YS (2006). Effects of salt stress on the growth of root system and water use efficiency of cucumber seedlings. Chinese Journal of Applied Ecology, 17, 1883-1888. |
(in Chinese with English abstract) [王素平, 郭世荣, 李璟, 胡晓辉, 焦彦生 (2006). 盐胁迫对黄瓜幼苗根系生长和水分利用的影响. 应用生态学报, 17, 1883-1888. ] | |
42 | Xue YF, Liu ZP (2008). Effects of NaCl and Na2CO3 stresses on photosynthesis and parameters of chlorophyll fluorescence in Helianthus tuberosus seedlings. Journal of Plant Ecology (Chinese Version), 32, 161-167(in Chinese with English abstract) . |
[薛延丰, 刘兆普 (2008). 不同浓度NaCl和Na2CO3处理对菊芋幼苗光合及叶绿素荧光的影响. 植物生态学报, 32, 161-167.] | |
43 | Yang QL, Zhang FC, Liu XG, Yang ZL (2009). Effects of drip irrigation mode and NaCl concentration on growth and hydraulic conductance of apple seedlings. Chinese Journal of Plant Ecology, 33, 824-832. |
(in Chinese with English abstract) [杨启良, 张富仓, 刘小刚, 杨振宇 (2009). 不同滴灌方式和NaCl处理对苹果幼树生长和水分传导的影响. 植物生态学报, 33, 824-832.] | |
44 | Yao LM, Li FS, Shen XJ, Tong L (2011). Research progress on soil factors affecting root hydraulic conductance. Journal of Northwest A&F University(Natural Science Edition), 39, 65-72. |
(in Chinese with English abstract) [姚立民, 李伏生, 申孝军, 佟玲 (2011). 土壤因素对根系导水率影响的研究进展. 西北农林科技大学学报(自然科学版), 39, 65-72.] | |
45 | Yi LP, Wang ZW (2011). Root system characters in growth and distribution among three littoral halophytes. Acta Ecologica Sinica, 31, 1195-1202. |
(in Chinese with English abstract) [弋良朋, 王祖伟 (2011). 盐胁迫下3种滨海盐生植物的根系生长和分布. 生态学报, 31, 1195-1202.] | |
46 | Yuan L, Karim A, Zhang LQ (2005). Effects of NaCl stress on active oxygen metabolism and membrane stability in Pistacia vera seedlings. Acta Phytoecologica Sinica, 29, 985-991. |
(in Chinese with English abstract) [袁琳, 克热木·伊力, 张利权 (2005). NaCl胁迫对阿月浑子实生苗活性氧代谢与细胞膜稳定性的影响. 植物生态学报, 29, 985-991.] | |
47 | Zhang JH, Zhang XP, Liang JS (2003). Exudation rate and hydraulic conductivity of maize roots are enhanced by soil drying and abscisic acid treatment. New Phytologist, 131, 329-336. |
48 | Zhang XC, Zhuang BC, Li ZC (2002). Advances in study of salt-stress tolerance in plants. Journal of Maize Sciences, 10(1), 50-56. |
(in Chinese with English abstract) [张新春, 庄炳昌, 李自超 (2002). 植物耐盐性研究进展. 玉米科学, 10(1), 50-56.] | |
49 | Zhou HH, Chen YN, Li WH, Ayup M (2013). Xylem hydraulic conductivity and embolism in riparian plants and their responses to drought stress in desert of Northwest China. Ecohydrology, 6, 984-993. |
50 | Zimmermann MH (1983). Xylem Structure and the Ascent of Sap. Springer, Berlin. |
[1] | 常晨晖 朱彪 朱江玲 吉成均 杨万勤. 森林粗木质残体分解研究进展[J]. 植物生态学报, 2024, 48(5): 541-560. |
[2] | 白雨鑫, 苑丹阳, 王兴昌, 刘玉龙, 王晓春. 东北地区3种桦木木质部导管特征对气候变化响应的趋同与差异[J]. 植物生态学报, 2023, 47(8): 1144-1158. |
[3] | 张敏, 桑英, 宋金凤. 水培富贵竹的根压及其影响因素[J]. 植物生态学报, 2023, 47(7): 1010-1019. |
[4] | 王嘉仪, 王襄平, 徐程扬, 夏新莉, 谢宗强, 冯飞, 樊大勇. 北京市行道树绒毛梣的水力结构对城市不透水表面比例的响应[J]. 植物生态学报, 2023, 47(7): 998-1009. |
[5] | 路晨曦, 徐漫, 石学瑾, 赵成, 陶泽, 李敏, 司炳成. 基于贝叶斯模型MixSIAR的不同水同位素输入方法对苹果园吸水特征分析结果的影响[J]. 植物生态学报, 2023, 47(2): 238-248. |
[6] | 张志山, 韩高玲, 霍建强, 黄日辉, 薛书文. 固沙灌木柠条锦鸡儿和中间锦鸡儿木质部导水与叶片光合能力对土壤水分的响应[J]. 植物生态学报, 2023, 47(10): 1422-1431. |
[7] | 朱明阳, 林琳, 佘雨龙, 肖城材, 赵通兴, 胡春相, 赵昌佑, 王文礼. 云南轿子山不同海拔急尖长苞冷杉径向生长动态及其低温阈值[J]. 植物生态学报, 2022, 46(9): 1038-1049. |
[8] | 韩旭丽, 赵明水, 王忠媛, 叶琳峰, 陆世通, 陈森, 李彦, 谢江波. 三种裸子植物木质部结构与功能对不同生境的适应[J]. 植物生态学报, 2022, 46(4): 440-450. |
[9] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[10] | 任金培, 李俊鹏, 王卫锋, 代永欣, 王林. 八个树种叶水力性状对水分条件的响应及其驱动因素[J]. 植物生态学报, 2021, 45(9): 942-951. |
[11] | 罗丹丹, 王传宽, 金鹰. 木本植物水力系统对干旱胁迫的响应机制[J]. 植物生态学报, 2021, 45(9): 925-941. |
[12] | 郑景明, 刘洪妤. 采用Strauss-Hardcore模型研究不同导管构型被子植物的导管空间分布特征[J]. 植物生态学报, 2021, 45(9): 1024-1032. |
[13] | 方菁, 叶琳峰, 陈森, 陆世通, 潘天天, 谢江波, 李彦, 王忠媛. 自然和人工生境被子植物枝木质部结构与功能差异[J]. 植物生态学报, 2021, 45(6): 650-658. |
[14] | 倪鸣源, ARITSARA Amy Ny Aina, 王永强, 黄冬柳, 项伟, 万春燕, 朱师丹. 中亚热带喀斯特常绿落叶阔叶混交林典型树种的木质部解剖与功能特征分析[J]. 植物生态学报, 2021, 45(4): 394-403. |
[15] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19