植物生态学报 ›› 2015, Vol. 39 ›› Issue (1): 92-103.DOI: 10.17521/cjpe.2015.0010
所属专题: 入侵生态学
胡楚琦, 刘金珂, 王天弘, 王文琳, 卢山, 周长芳*()
收稿日期:
2014-07-21
接受日期:
2014-12-09
出版日期:
2015-01-10
发布日期:
2015-01-22
通讯作者:
周长芳
作者简介:
# 共同第一作者
基金资助:
HU Chu-Qi, LIU Jin-Ke, WANG Tian-Hong, WANG Wen-Lin, LU Shan, ZHOU Chang-Fang*()
Received:
2014-07-21
Accepted:
2014-12-09
Online:
2015-01-10
Published:
2015-01-22
Contact:
Chang-Fang ZHOU
About author:
# Co-first authors
摘要:
互花米草(Spartina alterniflora)的入侵给海岸带盐沼生态系统的结构和功能带来了显著影响。互花米草盐沼中的硫含量高于附近的土著芦苇(Phragmites australis)盐沼。为探讨硫元素对互花米草和芦苇竞争过程的可能影响及其作用机制, 以50 mmol·L-1的Na2SO4和Na2S对互花米草和芦苇进行处理, 分析处理前后5天内两种植物光合气体交换和叶绿素荧光指标变化的差异, 实验另设等Na+浓度的NaCl处理作为比较。研究发现: Na2S对互花米草和芦苇光合作用影响的差异最大, NaCl次之, Na2SO4最小。Na2S处理后, 互花米草净光合速率(Pn)出现显著上升, 芦苇Pn值大幅度下降。互花米草的光饱和点(Isat)上升而芦苇的Isat值无变化。表明Na2S处理对互花米草的光合能力有促进作用, 但对芦苇的光合能力有抑制作用。NaCl处理后互花米草Pn值也出现小幅上升, 而芦苇Pn值略有下降。Na2SO4处理对互花米草和芦苇的Pn值均无显著影响。除Na2SO4处理的互花米草外, 不同盐处理后的互花米草和芦苇非光化学淬灭(NPQ)均出现上升趋势。研究结果表明互花米草对环境硫胁迫的适应能力显著高于芦苇, 暗示盐沼高硫环境尤其是硫化物有助于互花米草相对于芦苇的竞争, 也很可能是其形成单一植被的重要原因之一。
胡楚琦, 刘金珂, 王天弘, 王文琳, 卢山, 周长芳. 三种盐胁迫对互花米草和芦苇光合作用的影响. 植物生态学报, 2015, 39(1): 92-103. DOI: 10.17521/cjpe.2015.0010
HU Chu-Qi,LIU Jin-Ke,WANG Tian-Hong,WANG Wen-Lin,LU Shan,ZHOU Chang-Fang. Influence of three types of salt stress on photosynthesis in Spartina alterniflora and Phragmites australis. Chinese Journal of Plant Ecology, 2015, 39(1): 92-103. DOI: 10.17521/cjpe.2015.0010
图1 Na2SO4处理对互花米草和芦苇净光合效率(A、B)、实际光化学量子产量(C、D)、光化学淬灭(E、F)及非光化学淬灭(G、H)的影响。
Fig. 1 Influence of Na2SO4 on net photosynthetic rate (A, B), quantum yield of PSII (C, D), photochemical quenching (E, F) and non-photochemical quenching (G, H) in Spartina alterniflora and Phragmites australis.
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | NaCl | ||
0 | 19.92 ± 1.44a | 21.25 ± 0.58a | 16.53 ± 1.33a | 17.89 ± 1.90a | 17.98 ± 2.50a | 15.65 ± 0.24a | |
1 | 18.43 ± 1.30a | 23.61 ± 1.67ab | 16.16 ± 0.91a | 16.36 ± 2.75a | 14.03 ± 3.19a | 15.76 ± 2.20a | |
2 | 18.67 ± 1.80a | 25.39 ± 1.16b | 18.11 ± 1.48a | 16.81 ± 2.21a | 15.08 ± 2.52a | 14.54 ± 0.12a | |
3 | 20.36 ± 1.12a | 24.41 ± 0.58ab | 19.33 ± 1.42a | 17.47 ± 2.27a | 13.54 ± 2.43a | 13.07 ± 1.44a | |
4 | 22.07 ± 2.05a | 26.11 ± 0.43b | 17.60 ± 1.31a | 16.93 ± 2.42a | 11.64 ± 3.81a | 12.42 ± 1.07a |
表1 不同盐处理对互花米草和芦苇最大净光合速率的影响(μmol·m-2·s-1) (平均值±标准误差, n = 3)
Table 1 Influence of different salt treatments on maximum net photosynthetic rate in Spartina alterniflora and Phragmites australis (μmol·m-2·s-1) (mean ± SE, n = 3)
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | NaCl | ||
0 | 19.92 ± 1.44a | 21.25 ± 0.58a | 16.53 ± 1.33a | 17.89 ± 1.90a | 17.98 ± 2.50a | 15.65 ± 0.24a | |
1 | 18.43 ± 1.30a | 23.61 ± 1.67ab | 16.16 ± 0.91a | 16.36 ± 2.75a | 14.03 ± 3.19a | 15.76 ± 2.20a | |
2 | 18.67 ± 1.80a | 25.39 ± 1.16b | 18.11 ± 1.48a | 16.81 ± 2.21a | 15.08 ± 2.52a | 14.54 ± 0.12a | |
3 | 20.36 ± 1.12a | 24.41 ± 0.58ab | 19.33 ± 1.42a | 17.47 ± 2.27a | 13.54 ± 2.43a | 13.07 ± 1.44a | |
4 | 22.07 ± 2.05a | 26.11 ± 0.43b | 17.60 ± 1.31a | 16.93 ± 2.42a | 11.64 ± 3.81a | 12.42 ± 1.07a |
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | NaCl | ||
0 | 0.048 ± 0.004a | 0.050 ± 0.001a | 0.041 ± 0.000a | 0.038 ± 0.003a | 0.037 ± 0.001a | 0.036 ± 0.002ab | |
1 | 0.047 ± 0.002a | 0.045 ± 0.002ab | 0.045 ± 0.000ab | 0.039 ± 0.001a | 0.026 ± 0.005a | 0.038 ± 0.002ab | |
2 | 0.048 ± 0.004a | 0.040 ± 0.002b | 0.043 ± 0.003ab | 0.039 ± 0.004a | 0.028 ± 0.005a | 0.034 ± 0.003a | |
3 | 0.054 ± 0.002a | 0.042 ± 0.003ab | 0.045 ± 0.003ab | 0.038 ± 0.003a | 0.030 ± 0.006a | 0.041 ± 0.001b | |
4 | 0.050 ± 0.001a | 0.046 ± 0.003ab | 0.050 ± 0.003b | 0.037 ± 0.001a | 0.027 ± 0.006a | 0.038 ± 0.001ab |
表2 不同盐处理对互花米草和芦苇初始量子效率的影响(平均值±标准误差, n = 3)
Table 2 Influence of different salt treatments on initial quantum yield in Spartina alterniflora and Phragmites australis (mean ± SE, n = 3)
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | NaCl | ||
0 | 0.048 ± 0.004a | 0.050 ± 0.001a | 0.041 ± 0.000a | 0.038 ± 0.003a | 0.037 ± 0.001a | 0.036 ± 0.002ab | |
1 | 0.047 ± 0.002a | 0.045 ± 0.002ab | 0.045 ± 0.000ab | 0.039 ± 0.001a | 0.026 ± 0.005a | 0.038 ± 0.002ab | |
2 | 0.048 ± 0.004a | 0.040 ± 0.002b | 0.043 ± 0.003ab | 0.039 ± 0.004a | 0.028 ± 0.005a | 0.034 ± 0.003a | |
3 | 0.054 ± 0.002a | 0.042 ± 0.003ab | 0.045 ± 0.003ab | 0.038 ± 0.003a | 0.030 ± 0.006a | 0.041 ± 0.001b | |
4 | 0.050 ± 0.001a | 0.046 ± 0.003ab | 0.050 ± 0.003b | 0.037 ± 0.001a | 0.027 ± 0.006a | 0.038 ± 0.001ab |
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
NaCl | Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | ||
0 | 2 440.0 ± 136.2a | 2 067.1 ± 75.6a | 2 258.1 ± 198.7a | 1 815.1 ± 166.1a | 2 081.2 ± 169.7a | 1 911.2 ± 77.0a | |
1 | 2 517.8 ± 180.3a | 2 366.9 ± 413.6a | 2 246.4 ± 124.7a | 1 958.9 ± 66.4a | 1 943.5 ± 239.8a | 2 141.6 ± 113.0a | |
2 | 2 520.5 ± 0.8a | 2 221.7 ± 315.2a | 2 313.3 ± 182.0a | 1 973.9 ± 132.6a | 1 970.5 ± 130.5a | 1 924.3 ± 124.7a | |
3 | 2 475.9 ± 149.5a | 1 951.2 ± 224.0a | 2 438.8 ± 170.1a | 1 747.9 ± 161.2a | 1 942.0 ± 98.4a | 2 054.1 ± 98.6a | |
4 | 2 371.4 ± 191.0a | 2 230.3 ± 114.1a | 2 613.2 ± 191.2a | 1 905.5 ± 118.9a | 1 917.9 ± 177.4a | 1 788.5 ± 114.7a |
表3 不同盐处理下互花米草和芦苇的光饱和点(μmol·m-2·s-1) (平均值±标准误差, n = 3)
Table 3 Influence of different salt treatments on light saturation point in Spartina alterniflora and Phragmites australis (mean ± SE, n = 3)
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
NaCl | Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | ||
0 | 2 440.0 ± 136.2a | 2 067.1 ± 75.6a | 2 258.1 ± 198.7a | 1 815.1 ± 166.1a | 2 081.2 ± 169.7a | 1 911.2 ± 77.0a | |
1 | 2 517.8 ± 180.3a | 2 366.9 ± 413.6a | 2 246.4 ± 124.7a | 1 958.9 ± 66.4a | 1 943.5 ± 239.8a | 2 141.6 ± 113.0a | |
2 | 2 520.5 ± 0.8a | 2 221.7 ± 315.2a | 2 313.3 ± 182.0a | 1 973.9 ± 132.6a | 1 970.5 ± 130.5a | 1 924.3 ± 124.7a | |
3 | 2 475.9 ± 149.5a | 1 951.2 ± 224.0a | 2 438.8 ± 170.1a | 1 747.9 ± 161.2a | 1 942.0 ± 98.4a | 2 054.1 ± 98.6a | |
4 | 2 371.4 ± 191.0a | 2 230.3 ± 114.1a | 2 613.2 ± 191.2a | 1 905.5 ± 118.9a | 1 917.9 ± 177.4a | 1 788.5 ± 114.7a |
图2 Na2S处理对互花米草和芦苇净光合效率(A、B)、实际光化学量子产量(C、D)、光化学淬灭(E、F)及非光化学淬灭(G、H)的影响。
Fig. 2 Influence of Na2S on net photosynthetic rate (A, B), quantum yield of PSII (C, D), photochemical quenching (E, F) and non-photochemical quenching (G, H) in Spartina alterniflora and Phragmites australis.
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
NaCl | Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | ||
0 | 57.2 ± 14.6a | 52.7 ± 2.4a | 45.4 ± 1.7ab | 37.6 ± 6.9a | 52.4 ± 3.1a | 33.0 ± 14.8a | |
1 | 33.7 ± 3.1b | 35.9 ± 4.4b | 39.0 ± 1.9a | 25.1 ± 7.8a | 34.5 ± 2.9b | 29.5 ± 11.1a | |
2 | 30.8 ± 2.4b | 42.3 ± 1.5ab | 67.0 ± 7.1c | 27.6 ± 7.3a | 43.3 ± 4.7ab | 27.7 ± 13.9a | |
3 | 26.1 ± 0.9b | 43.2 ± 6.8ab | 58.2 ± 3.1bc | 46.7 ± 5.5a | 42.3 ± 6.8ab | 46.9 ± 5.5a | |
4 | 30.6 ± 4.6b | 46.0 ± 0.5ab | 53.6 ± 4.3bc | 32.4 ± 8.7a | 31.9 ± 1.0b | 57.8 ± 16.8a |
表4 不同盐处理下互花米草和芦苇的光补偿点(μmol·m-2·s-1) (平均值±标准误差, n = 3)
Table 4 Influence of different salt treatments on light compensation point in Spartina alterniflora and Phragmites australis (mean ± SE, n = 3)
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
NaCl | Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | ||
0 | 57.2 ± 14.6a | 52.7 ± 2.4a | 45.4 ± 1.7ab | 37.6 ± 6.9a | 52.4 ± 3.1a | 33.0 ± 14.8a | |
1 | 33.7 ± 3.1b | 35.9 ± 4.4b | 39.0 ± 1.9a | 25.1 ± 7.8a | 34.5 ± 2.9b | 29.5 ± 11.1a | |
2 | 30.8 ± 2.4b | 42.3 ± 1.5ab | 67.0 ± 7.1c | 27.6 ± 7.3a | 43.3 ± 4.7ab | 27.7 ± 13.9a | |
3 | 26.1 ± 0.9b | 43.2 ± 6.8ab | 58.2 ± 3.1bc | 46.7 ± 5.5a | 42.3 ± 6.8ab | 46.9 ± 5.5a | |
4 | 30.6 ± 4.6b | 46.0 ± 0.5ab | 53.6 ± 4.3bc | 32.4 ± 8.7a | 31.9 ± 1.0b | 57.8 ± 16.8a |
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | NaCl | ||
0 | 0.810 ± 0.000a | 0.791 ± 0.011a | 0.786 ± 0.017a | 0.825 ± 0.009a | 0.797 ± 0.009a | 0.794 ± 0.006a | |
1 | 0.796 ± 0.006ab | 0.806 ± 0.007a | 0.810 ± 0.001a | 0.809 ± 0.003a | 0.788 ± 0.034a | 0.811 ± 0.010a | |
2 | 0.784 ± 0.008b | 0.783 ± 0.016a | 0.813 ± 0.005a | 0.823 ± 0.007a | 0.781 ± 0.043a | 0.808 ± 0.014a | |
3 | 0.800 ± 0.005ab | 0.773 ± 0.012a | 0.809 ± 0.004a | 0.821 ± 0.006a | 0.816 ± 0.008a | 0.794 ± 0.027a | |
4 | 0.795 ± 0.003ab | 0.798 ± 0.006a | 0.809 ± 0.003a | 0.814 ± 0.011a | 0.804 ± 0.020a | 0.812 ± 0.009a |
表5 不同盐处理对互花米草和芦苇暗适应下最大光化学效率的影响(平均值±标准误差, n = 3)
Table 5 Influence of different salt treatments on maximum quantum yield of PSII in Spartina alterniflora and Phragmites australis (mean ± SE, n = 3)
处理后天数 Day after treatment | 互花米草 S. alterniflora | 芦苇 P. australis | |||||
---|---|---|---|---|---|---|---|
Na2SO4 | Na2S | NaCl | Na2SO4 | Na2S | NaCl | ||
0 | 0.810 ± 0.000a | 0.791 ± 0.011a | 0.786 ± 0.017a | 0.825 ± 0.009a | 0.797 ± 0.009a | 0.794 ± 0.006a | |
1 | 0.796 ± 0.006ab | 0.806 ± 0.007a | 0.810 ± 0.001a | 0.809 ± 0.003a | 0.788 ± 0.034a | 0.811 ± 0.010a | |
2 | 0.784 ± 0.008b | 0.783 ± 0.016a | 0.813 ± 0.005a | 0.823 ± 0.007a | 0.781 ± 0.043a | 0.808 ± 0.014a | |
3 | 0.800 ± 0.005ab | 0.773 ± 0.012a | 0.809 ± 0.004a | 0.821 ± 0.006a | 0.816 ± 0.008a | 0.794 ± 0.027a | |
4 | 0.795 ± 0.003ab | 0.798 ± 0.006a | 0.809 ± 0.003a | 0.814 ± 0.011a | 0.804 ± 0.020a | 0.812 ± 0.009a |
图3 NaCl处理对互花米草和芦苇净光合效率(A、B)、实际光化学量子产量(C、D)、光化学淬灭(E、F)及非光化学淬灭(G、H)的影响。
Fig. 3 Influence of NaCl on net photosynthetic rate (A, B), quantum yield of PSII (C, D), photochemical quenching (E, F) and non-photochemical quenching (G, H) in Spartina alterniflora and Phragmites australis.
35 | (in Chinese with English abstract) [袁琳, 张利权, 古志钦 (2010). 入侵植物互花米草(Spartina alterniflora)叶绿素荧光对淹水胁迫的响应. 环境科学学报, 30, 882-889.] |
36 | Zhou CF, An SQ, Deng ZF, Yin DQ, Zhi YB, Sun ZY, Zhao H, Zhou LX, Fang C, Qian C (2009). Sulfur storage changed by exotic Spartina alterniflora in coastal saltmarshes of China. Ecological Engineering, 35, 536-543. |
37 | Zhou CF, An SQ, Zhao CJ, Fang C, Lu XM, Zhao H, Liu JN (2009). Th`e influence of Spartina alterniflora invasion on emission of DMS and N2O in coastal salt marsh. Marine Sciences, 33(2), 17-21. |
(in Chinese with English abstract) [周长芳, 安树青, 赵聪蛟, 方超, 陆霞梅, 赵晖, 刘静娜 (2009). 互花米草入侵对海岸盐沼二甲基硫及氧化亚氮气体释放的影响. 海洋科学, 33(2), 17-21.] | |
38 | Zhou CF, Shen WY, Lu CM, Wang HX, Xiao Y, Zhao YQ, An SQ (2014). Effects of salinity on the photosynthesis of two Poaceous Halophytes. Clean-Soil, Air, Water, doi: 10.1002/clen.201300840. |
39 | Zhu XG, Zhang QD (1999). Advances in the research on the effects of NaCl on photosynthesis. Chinese Bulletin of Botany, 16, 332-338. |
(in Chinese with English abstract) [朱新广, 张其德 (1999). NaCl对光合作用影响的研究进展. 植物学通报, 16, 332-338.] | |
40 | Zhu YH, Tu NM, Xiao HQ, Guan GS, Wang H, Cai Q, Deng LC, Wei Y, Yi D, Huang ZC, Li HL (2008). Effects of sulfur nutrition on photosynthesis and chlorophyll fluorescence of tobacco leaves. Acta Ecologica Sinica, 28, 1000-1005. |
1 | An SQ, Gu BH, Zhou CF, Wang ZS, Deng ZF, Zhi YB, Li HL, Chen L, Yu DH, Liu YH (2007).Spartina invasion in China: Implications for invasive species management and future research. Weed Research, 47, 183-191. |
2 | Anttila CK, Daehler CC, Rank NE, Strong DR (1998). Greater male fitness of a rare invader (Spartina alterniflora, Poaceae) threatens a common native (Spartina foliosa) with hybridization. American Journal of Botany, 85, 1597-1601. |
3 | Arim M, Abades SR, Neill PE, Lima M, Marquet PA (2006). Spread dynamics of invasive species. Proceedings of the National Academy of Sciences of the United States of America, 103, 374-378. |
4 | Armstrong J, Armstrong W (2005). Rice: sulfide-induced barriers to root radial oxygen loss, Fe2+ and water uptake, and lateral root emergence. Annals of Botany, 96, 625-638. |
5 | Belnap J, Phillips SL, Sherrod SK, Moldenke A (2005). Soil biota can change after exotic plant invasion: Does this affect ecosystem processes?Ecology, 86, 3007-3017. |
6 | Carlson PR, Forrest J (1982). Uptake of dissolved sulfide by Spartina alterniflora: Evidence from natural sulfur isotope abundance ratios. Science, 216, 633-635. |
7 | Chen ZY, Li B, Chen JK (2004). Ecological consequences and management of Spartina spp. invasions in coastal ecosystems. Biodiversity Science, 12, 280-289. |
(in Chinese with English abstract) [陈中义, 李博, 陈家宽 (2004). 米草属植物入侵的生态后果及管理对策. 生物多样性, 12, 280-289.] | |
8 | Chung C (2006). Forty years of ecological engineering with Spartina plantations in China. Ecological Engineering, 27, 49-57. |
9 | Daehler CC, Strong DR (1996). Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in pacific estuaries, USA. Biological Conservation, 78, 51-58. |
10 | Deng ZF, An SQ, Zhi YB, Zhou CF, Chen L, Zhao CJ, Fang SB, Li HL (2006). Preliminary studies on invasive model and outbreak mechanism of exotic species, Spartina alterniflora Loisel. Acta Ecologica Sinica, 26, 2678-2686. |
(in Chinese with English abstract) [邓自发, 安树青, 智颖飙, 周长芳, 陈琳, 赵聪蛟, 方淑波, 李红丽 (2006). 外来种互花米草入侵模式与爆发机制. 生态学报, 26, 2678-2686.] | |
11 | Fang C, Zhao H, Zhou CF, Lu XM, Chen FF, Yang Q, An SQ (2007). The impact of Spartina alterniflora invasion on soil properties of coastal salt marsh in China. Journal of Nanjing University(Natural Scincnce), 43, 274-283. |
(in Chinese with English abstract) [方超, 赵晖, 周长芳, 陆霞梅, 陈奋飞, 杨茜, 安树青 (2007). 互花米草入侵对我国海岸盐沼土壤特性的影响. 南京大学学报(自然科学版), 43, 274-283.] | |
12 | Gao S, Tanji KK, Scardaci SC (2004). Impact of rice straw incorporation on soil redox status and sulfide toxicity. Agronomy Journal, 96, 70-76. |
13 | Gu ZQ, Zhang LQ (2009). Physiological responses of Spartina alterniflora to long-term waterlogging stress. Acta Scientiae Circumstantiae, 29, 876-881. |
(in Chinese with English abstract) [古志钦, 张利权 (2009). 互花米草对持续淹水胁迫的生理响应. 环境科学学报, 29, 876-881.] | |
14 | Hulme PE, Pysek P, Nentwig W, Vilà M (2009). Will threat of biological invasions unite the European Union?Science, 324, 40-41. |
15 | Jiang GM, Zhu GJ (2001). Effects of natural high temperature and irradiation on photosynthesis and related parameters in three arid sandy shrub species. Acta Phytoecologica Sinica, 25, 525-531. |
(in Chinese with English abstract) [蒋高明, 朱桂杰 (2001). 高温强光环境条件下3种沙地灌木的光合生理特点.植物生态学报, 25, 525-531.] | |
16 | Kang H, Shi GY, Li JM (2009). Effects of NaCl stress on photosynthesis and parameters of Spartina alterniflora. Guangxi Sciences, 16, 451-454. |
(in Chinese with English abstract) [康浩, 石贵玉, 李佳枚 (2009). NaCl胁迫对互花米草光合作用及其参数的影响. 广西科学, 16, 451-454.] | |
17 | Kathilankal JC, Mozdzer TJ, Fuentes JD, McGlathery KJ, D’Odorico P, Zieman JC (2011). Physiological responses of Spartina alterniflora to varying environmental conditions in Virginia marshes. Hydrobiologia, 669, 167-181. |
18 | Klepac-Ceraj V, Bahr M, Crump BC, Teske AP, Hobbie JE, Polz MF (2004). High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Environmental Microbiology, 6, 686-698. |
19 | Kocsis MG, Nolte KD, Rhodes D, Shen TL, Gage DA, Hanson AD (1998). Dimethylsulfoniopropionate biosynthesis in Spartina alterniflora. Plant Physiology, 117, 273-281. |
20 | Liang X, Zhang LQ, Zhao GQ (2006). A comparison of photosynthetic characteristics between Spartina alterniflora and Phragmites australis under different CO2 concentrations. Acta Ecologica Sinica, 26, 842-848. |
(in Chinese with English abstract) [梁霞, 张利权, 赵广琦 (2006). 芦苇与外来植物互花米草在不同CO2浓度下的光合特性比较. 生态学报, 26, 842-848.] | |
21 | Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659-668. |
22 | Naidoo G, McKee KL, Mendelssohn IA (1992). Anatomical and metabolic responses to waterlogging and salinity in Spartina alterniflora and S. patens (Poaceae). American Journal of Botany, 79, 765-770. |
23 | Otte ML, Wilson G, Morris JT, Moran BM (2004). Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. Journal of Experimental Botany, 55, 1919-1925. |
24 | Pagter M, Bragato C, Malagoli M, Brix H (2009). Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquatic Botany, 90, 43-51. |
25 | Renny-Byfield S, Ainouche M, Leitch IJ, Lim KY, Le Comber SC, Leitch AR (2010). Flow cytometry and GISH reveal mixed ploidy populations and Spartina nonaploids with genomes of S. alterniflora and S. maritime origin. Annals of Botany, 105, 527-533. |
26 | Seliskar DM, Smart KE, Higashikubo BT, Gallagher JL (2004). Seedling sulfide sensitivity among plant species colonizing Phragmites-infested wetlands. Wetlands, 24, 426-433. |
27 | Shen WY, Lu CM, Zhou CF (2011). Antioxidant systems of Spartina alterniflora and Phragmites australis responded differently to environmental sulfur stress. Journal of Fudan University(Natural Scincnce), 50, 653-661. |
(in Chinese with English abstract ) [沈文燕, 陆长梅, 周长芳 (2011). 互花米草和芦苇抗氧化系统在抵御硫胁迫过程中的响应差异. 复旦学报(自然科学版), 50, 653-661.] | |
28 | Stribling JM (1997). The relative importance of sulfate availability in the growth of Spartina alterniflora and Spartina cynosuroides. Aquatic Botany, 56, 131-143. |
29 | Wang Q, An SQ, Ma ZJ, Zhao B, Chen JK, Li B (2006). Invasive Spartina alterniflora: Biology, ecology and management. Acta Phytotaxonomica Sinica, 44, 559-588. |
(in Chinese with English abstract) [王卿, 安树青, 马志军, 赵斌, 陈家宽, 李博 (2006). 入侵植物互花米草——生物学、生态学及管理. 植物分类学报, 44, 559-588.] | |
30 | Wu Y, Gao L, Cao MJ, Xiang CB (2007). Plant sulfur metabolism, regulation, and biological functions. Chinese Bulletin of Botany, 24, 735-761. |
(in Chinese with English abstract) [吴宇, 高蕾, 曹民杰, 向成斌 (2007). 植物硫营养代谢、调控与生物学功能. 植物学通报, 24, 735-761.] | |
31 | Xiao Y, Tang JB, An SQ (2011). Responses of growth and sexual reproduction of Phragmites australis and Spartina alterniflora to salinity stress. Chinese Journal of Ecology, 30, 267-272. |
(in Chinese with English abstract) [肖燕, 汤俊兵, 安树青 (2011). 芦苇、互花米草的生长和繁殖对盐分胁迫的响应. 生态学杂志, 30, 267-272.] | |
32 | Ye Q, Hou ZH, Liu J, Liu RQ, Liu X (2011). H2O2 involvement in H2S-induced stomatal closure of Arabidopsis thaliana L. Plant Physiology Journal, 47, 1195-1200. |
(in Chinese with English abstract) [叶青, 侯智慧, 刘菁, 刘瑞清, 刘新 (2011). H2O2介导H2S诱导的拟南芥气孔关闭. 植物生理学报, 47, 1195-1200.] | |
33 | Ye ZP, Yu Q (2007). Comparison of a new model of light response of photosynthesis with traditional models. Journal of Shenyang Agriculture University, 38, 771-775. |
(in Chinese with English abstract) [叶子飘, 于强 (2007). 一个光合作用光响应新模型与传统模型的比较. 沈阳农业大学学报, 38, 771-775.] | |
34 | Ye ZP, Yu Q (2008). Comparison of new and several classical models of photosynthesis in response to irradiance. Journal of Plant Ecology (Chinese Version), 32, 1356-1361. |
(in Chinese with English abstract) [叶子飘, 于强 (2008). 光合作用光响应模型的比较. 植物生态学报, 32, 1356-1361.] | |
35 | Yuan L, Zhang LQ, Gu ZQ (2010). Responses of chlorophyll fluorescence of an invasive plant Spartina alterniflora to continuous waterlogging. Acta Scientiae Circumstantiae, 30, 882-889. |
40 | (in Chinese with English abstract) [朱英华, 屠乃美, 肖汉乾, 关广晟, 王辉, 蔡奇, 邓力超, 危跃, 易迪, 黄泽春, 李海林 (2008). 硫对烟草叶片光合特性和叶绿素荧光参数的影响. 生态学报, 28, 1000-1005.] |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[4] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[5] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[6] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[7] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[8] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[9] | 秦文超, 陶至彬, 王永健, 刘艳杰, 黄伟. 资源脉冲对外来植物入侵影响的研究进展和展望[J]. 植物生态学报, 2021, 45(6): 573-582. |
[10] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[11] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[12] | 王晴晴, 高燕, 王嵘. 全球变化对食物网结构影响机制的研究进展[J]. 植物生态学报, 2021, 45(10): 1064-1074. |
[13] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[14] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[15] | 许光耀, 李洪远, 莫训强, 孟伟庆. 中国归化植物组成特征及其时空分布格局分析[J]. 植物生态学报, 2019, 43(7): 601-610. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19