植物生态学报 ›› 2011, Vol. 35 ›› Issue (5): 567-576.DOI: 10.3724/SP.J.1258.2011.00567
江浩1,2, 周国逸1, 黄钰辉1,2, 刘世忠1, 唐旭利1,*()
收稿日期:
2010-10-20
接受日期:
2011-01-14
出版日期:
2011-10-20
发布日期:
2011-06-07
通讯作者:
唐旭利
作者简介:
* E-mail: xltang@scib.ac.cnJIANG Hao1,2, ZHOU Guo-Yi1, HUANG Yu-Hui1,2, LIU Shi-Zhong1, TANG Xu-Li1,*()
Received:
2010-10-20
Accepted:
2011-01-14
Online:
2011-10-20
Published:
2011-06-07
Contact:
TANG Xu-Li
摘要:
对南亚热带常绿阔叶林中着生在林冠层不同部位的4种藤本植物(白背瓜馥木(Fissistigma glaucescens)、瓜子金(Dischidia chinensis)、蔓九节(Psychotria serpens)和山蒌(Piper hancei))的光合生理生态特性进行比较, 探讨着生在林冠不同部位的藤本植物的光合生理特性随光照、温度、湿度等变化的规律。结果表明, 鼎湖山南亚热带常绿阔叶林微生境由上至下发生了较大变化, 相对于林内, 冠层顶部具有高温、高光强、低湿度的特征。受这些变化的环境因子的影响, 着生在林冠不同部位的藤本植物之间的光合生理特征存在着较大差异: 着生于林冠层中上部的瓜子金和蔓九节的最大净光合速率分别为(2.9 ± 0.6)和(6.3 ± 1.3) μmol CO2·m-2·s-1, 光饱和点为(168.5 ± 83.4)和(231.4 ± 147.8) μmol·m-2·s-1, 显著小于位于冠层下部的白背瓜馥木和山蒌的最大净光合速率值(8.9 ± 2.9)和(8.6 ± 2.3) μmol CO2·m-2·s-1以及光饱和点值(491.6 ± 230.8)和(402.3 ± 112.8) μmol·m-2·s-1。瓜子金和蔓九节的光补偿点值为(16.1 ± 5.9)和(10.1 ± 5.7) μmol·m-2·s-1, 水分利用效率值为(11.5 ± 3.9)和(8.7 ± 1.6) μmol CO2·mmol-1 H2O, 显著大于林内的白背瓜馥木和山蒌的光补偿点值(5.6 ± 1.9)和(5.4 ± 1.7) μmol·m-2·s-1以及水分利用效率值(6.7 ± 1.8)和(6.8 ± 1.3) μmol CO2·mmol-1 H2O。这些光合生理指标的变化显示出植物对不同的温度、光照、湿度的适应, 是植物适应环境条件的重要表现。
江浩, 周国逸, 黄钰辉, 刘世忠, 唐旭利. 南亚热带常绿阔叶林林冠不同部位藤本植物的光合生理特征及其对环境因子的适应. 植物生态学报, 2011, 35(5): 567-576. DOI: 10.3724/SP.J.1258.2011.00567
JIANG Hao, ZHOU Guo-Yi, HUANG Yu-Hui, LIU Shi-Zhong, TANG Xu-Li. Photosynthetic characteristics of canopy-dwelling vines in lower subtropical evergreen broad- leaved forest and response to environmental factors. Chinese Journal of Plant Ecology, 2011, 35(5): 567-576. DOI: 10.3724/SP.J.1258.2011.00567
种名 Species | 生活型 Life form | 群落中垂直方向分布 Vertical distribution in community | 相对优势度 Relative dominance |
---|---|---|---|
瓜子金 Dischidia chinensis | 附生藤本 Epiphytic vines | 冠层顶部 Upper canopy | 7.46% |
蔓九节 Psychotria serpens | 附生藤本 Epiphytic vines | 冠层中上部 Upper canopy | 7.80% |
白背瓜馥木 Fissistigma glaucescens | 攀援藤本 Climbing vines | 冠层中下部 Lower canopy | 4.97% |
山蒌 Piper hancei | 攀援藤本 Climbing vines | 冠层中下部 Lower canopy | 8.31% |
表1 鼎湖山南亚热带常绿阔叶林4种藤本附生植物在林冠中的分布和相对优势度
Table 1 Distribution and relative dominance of four epiphytic vines in the canopy of subtropical evergreen broad-leaved forest in Dinghushan
种名 Species | 生活型 Life form | 群落中垂直方向分布 Vertical distribution in community | 相对优势度 Relative dominance |
---|---|---|---|
瓜子金 Dischidia chinensis | 附生藤本 Epiphytic vines | 冠层顶部 Upper canopy | 7.46% |
蔓九节 Psychotria serpens | 附生藤本 Epiphytic vines | 冠层中上部 Upper canopy | 7.80% |
白背瓜馥木 Fissistigma glaucescens | 攀援藤本 Climbing vines | 冠层中下部 Lower canopy | 4.97% |
山蒌 Piper hancei | 攀援藤本 Climbing vines | 冠层中下部 Lower canopy | 8.31% |
图1 鼎湖山南亚热带常绿阔叶林林冠内外月平均气温(T) (A)、相对空气湿度(RH) (B)和月总光合有效辐射(PAR) (C) (平均值±标准偏差)。
Fig. 1 Monthly mean air temperature (T) (A), relative humidity (RH) (B) and total photosynthetically active radiation (PAR) (C) inside and outside of canopy in the lower subtropical evergreen broad-leaved forest in Dinghushan (mean ± SD).
图2 鼎湖山南亚热带常绿阔叶林林冠4种藤本植物的光响应曲线(平均值±标准偏差, n = 12)。A. 林冠内部植物。B. 林冠顶植物。a, 山蒌; b, 白背瓜馥木; c, 蔓九节; d, 瓜子金。
Fig. 2 Light-response curves of four vines in the lower subtropical evergreen broad-leaved forest in Dinghushan (mean ± SD, n = 12). A. Lower-canopy vines. B. Upper canopy vines. a, Piper hancei; b, Fissistigma glaucescens; c, Psychotria serpens; d, Dischidia chinensis. Pn, net photosynthetic rate. Q, light intensity.
种名 Species | 最大净光合速率 Amax (μmol CO2·m-2·s-1) | 表观量子速率 Φ | 曲角 K | 光下呼吸速率 Rday (μmol CO2·m-2·s-1) | 光补偿点 Lcp (μmol·m-2·s-1) | 光饱和点 Lsp (μmol·m-2·s-1) |
---|---|---|---|---|---|---|
瓜子金 Dischidia chinensis | 2.9 ± 0.6a | 0.067 ± 0.024a | 0.865 ± 0.103a | 0.83 ± 0.38a | 16.1 ± 5.9a | 168.5 ± 83.4a |
蔓九节 Psychotria serpens | 6.3 ± 1.7a | 0.099 ± 0.026a | 0.835 ± 0.053a | 1.00 ± 0.72a | 10.7 ± 5.7a | 231.4 ± 147.8a |
白背瓜馥木 Fissistigma glaucescens | 8.9 ± 2.9b | 0.116 ± 0.009a | 0.691 ± 0.085a | 0.65 ± 0.24a | 5.6 ± 1.9b | 491.6 ± 230.8b |
山蒌 Piper hancei | 8.6 ± 2.3b | 0.106 ± 0.020a | 0.749 ± 0.088a | 0.46 ± 0.04a | 5.4 ± 1.7b | 402.3 ± 112.8b |
表2 鼎湖山南亚热带常绿阔叶林4种藤本植物的光响应曲线的特征参数(平均值±标准偏差, n = 12)
Table 2 Characteristic parameters of light-response curves of four vines in the lower subtropical evergreen broad-leaved forest in Dinghushan (mean ± SD, n = 12)
种名 Species | 最大净光合速率 Amax (μmol CO2·m-2·s-1) | 表观量子速率 Φ | 曲角 K | 光下呼吸速率 Rday (μmol CO2·m-2·s-1) | 光补偿点 Lcp (μmol·m-2·s-1) | 光饱和点 Lsp (μmol·m-2·s-1) |
---|---|---|---|---|---|---|
瓜子金 Dischidia chinensis | 2.9 ± 0.6a | 0.067 ± 0.024a | 0.865 ± 0.103a | 0.83 ± 0.38a | 16.1 ± 5.9a | 168.5 ± 83.4a |
蔓九节 Psychotria serpens | 6.3 ± 1.7a | 0.099 ± 0.026a | 0.835 ± 0.053a | 1.00 ± 0.72a | 10.7 ± 5.7a | 231.4 ± 147.8a |
白背瓜馥木 Fissistigma glaucescens | 8.9 ± 2.9b | 0.116 ± 0.009a | 0.691 ± 0.085a | 0.65 ± 0.24a | 5.6 ± 1.9b | 491.6 ± 230.8b |
山蒌 Piper hancei | 8.6 ± 2.3b | 0.106 ± 0.020a | 0.749 ± 0.088a | 0.46 ± 0.04a | 5.4 ± 1.7b | 402.3 ± 112.8b |
图3 鼎湖山南亚热带常绿阔叶林4种藤本植物的蒸腾速率(I)和水分利用效率(II) (平均值±标准偏差, n = 12)。A, 山蒌; B, 白背瓜馥木; C, 蔓九节; D, 瓜子金。不同小写字母表示不同种间差异显著(p < 0.05)。
Fig. 3 Transportation rate (Tr) (I) and water use efficiency (WUE) (II) of the four vines in the lower subtropical evergreen broad-leaved forest in Dinghushan (mean ± SD, n = 12). A, Piper hancei; B, Fissistigma glaucescens; C, Psychotria serpens; D, Dischidia chinensis. Different small letters within columns indicate significant differences among different species at p < 0.05 level.
[1] | Appanah S, Putz FE (1984). Climber abundance in virgin dipterocarp forest and the effect of prefelling climber cutting on logging damage. Malaysian Forester, 47, 335-342. |
[2] |
Barker MG, Pérez-Salicrup D (2000). Comparative water relations of mature mahogany (Swietenia macrophylla) trees with and without lianas in a subhumid, seasonally dry forest in Boliva. Tree Physiology, 20, 1167-1174.
URL PMID |
[3] | Bauer H, Thoni WC (1988). Photosynthetic light acclimation in fully development leaves of the juvenile and adult life phases of Hedera helix. Physiology Plant, 73, 31-37. |
[4] | Cai YL (蔡永立), Song YC (宋永昌) (2001). Adaptive ecology of lianas in Tiantong evergreen broad-leaved forest, Zhejiang, China. I. Leaf anatomical characters. Acta Phytoecologica Sinica (植物生态学报), 25, 90-98. (in Chinese with English abstract) |
[5] | Chen XH (陈兴华), Hu HX (胡会先), Lin JP (林爵平), Wu G (吴刚), Pan W (潘文), Zhang FQ (张方秋), Zhu BZ (朱报著) (2010). Eco-physiological characteristics of photosynthetic research on the landscape lianas in southern China. Guangdong Forestry Science and Technology (广东林业科技), 26(2), 7-11. (in Chinese with English abstract) |
[6] | Chen YJ (陈亚军), Cao KF (曹坤芳), Cai ZQ (蔡志全) (2008). Above- and below-ground competition between seedlings of lianas and trees under two light irradiances. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 639-647. (in Chinese with English abstract) |
[7] | Chen YJ (陈亚军), Chen JW (陈军文), Cai ZQ (蔡志全) (2007). Lianas and their functions in tropical forest. Chinese Bulletin of Botany (植物学通报), 24, 240-246. (in Chinese with English abstract) |
[8] | Esau K (1977). Anatomy of Seed Plants 2nd edn. John Wiley and Sons Press, New York. 315-372. |
[9] | Feng YL (冯玉龙), Cao KF (曹坤芳), Feng ZL (冯志立), Ma L (马玲) (2002). Acclimation of lamina mass per unit area, photosynthetic characteristics and dark respiration to growth light regimes in four tropical rainforest species. Acta Ecololgica Sinica (生态学报), 22, 901-910. (in Chinese with English abstract) |
[10] | Givnish TJ (1988). Adaptation to sun and shade: a whole-plant perspective. Australian Journal of Plant Physiology, 15, 63-92. |
[11] | Guo MC (郭明春), Yu PT (于澎涛), Wang YH (王彦辉), Shen ZX (沈振西), Shi ZJ (时忠杰), Du AP (杜阿朋), He CQ (何常清) (2005). Rainfall interception model of forest canopy: a preliminary study. Chinese Journal of Applied Ecology (应用生态学报), 16, 1633-1639. (in Chinese with English abstract) |
[12] | Han JQ (韩建秋) (2010). Effects of drought stress on photosynthesis parameter daily dynamics in white cover. Chinese Agricultural Science Bulletin (中国农学通报), 26, 143-146. (in Chinese with English abstract) |
[13] | He CX (何春霞), Li JY (李吉跃), Guo M (郭明), Wang YT (王玉涛), Chen C (陈崇) (2008). Changes of leaf photosynthetic characteristics and water use efficiency along tree height of 4 tree species. Acta Ecologica Sinica (生态学报), 28, 3008-3016. (in Chinese with English abstract) |
[14] |
Herrick JD, Thomas RB (1999). Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflun) in a forest ecosystem. Tree Physiology, 19, 779-786.
URL PMID |
[15] | Ishibashi M, Terashima I (1995). Effects of continues leaf wetness on photosynthesis: adverse aspects of rainfall. Plant, Cell & Environment, 18, 431-438. |
[16] | Jiang GM (蒋高明), Zhu GJ (朱桂杰) (2001). Effects of natural high temperature and irrigation on photosynthetic and related parameters in three arid sandy shrub species. Acta Phytoecologica Sinica (植物生态学报), 24, 554-559. (in Chinese with English abstract) |
[17] |
Koch GW, Sillett SC, Jennings GM, Davis SD (2004). The limit to tree height. Nature, 428, 851-854.
URL PMID |
[18] | Lambers H, Chapin FS, Pons TL (2003). Plant Physiological Ecology. Springer Press, New York. 14-16. |
[19] |
Landhäusser SM, Lieffers VJ (2001). Photosynthesis and carbon allocation of six boreal tree species grown in understory and open conditions. Tree physiology, 21, 243-250.
DOI URL PMID |
[20] |
Landhäusser SM, Stadt KJ, Lieffers VJ (1997). Photosynthetic strategies of summer green and evergreen understory herbs of the boreal mixed wood forest. Oecologia, 112, 173-178.
DOI URL PMID |
[21] | Larcher W (2003). Physiological Plant Ecology. Spring-verlag Press, Berlin. 136-139. |
[22] |
Laurance WF, Pérez-Salicrup D, Delamônica P, Fearnside P, D’Angelo S, Jerozolinski A, Pohl L, Lovejoy TE (2001). Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 82, 105-116.
DOI URL |
[23] |
Lee DW, Bone RA, Tarsis SL, Storch D (1990). Correlates of leaf optical properties in tropical forest sun and extreme- shade plants. American Journal of Botany, 77, 370-380.
DOI URL |
[24] | Li JY (李吉跃), Zhou P (周平), Zhao LJ (招礼军) (2002). Influence of drought stress on transpiring water-consump- tion of seedlings. Acta Ecologica Sinica (生态学报), 22, 1380-1386. (in Chinese with English abstract) |
[25] | Li JY, Blake TJ (1996). Effect of repeated cycles of dehydration-rehydration on gas exchange and water use efficiency in jack pine and black spruce. Journal of Beijing Forestry University, 5(2), 78-87. |
[26] | Li Y (李阳), Qiman Y (齐曼·尤努斯), Zhu Y (祝燕) (2006). Effects of water stress on photosynthetic characteristics and biomass partition of Elaeagnus moorcroftii. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 26, 2493-2499. (in Chinese with English abstract) |
[27] | Liu XD (刘晓东), Zhu CQ (朱春全), Lei JP (雷静品), Ju GS (巨关升), Bai R (白锐) (2000). The distribution of photosynthetic radiation in the canopy of poplar plantation. Scientia Silvae Sinicae (林业科学), 36(3), 2-7. (in Chinese with English abstract) |
[28] | Liu ZF (刘志发), Shen WJ (申卫军), Wen DZ (温达志) (2009). Growth and photosynthetic characteristics of six native tree species seedlings grown on bare land and beneath secondary forest in Nan’ao Island. Ecology and Environmental Sciences (生态环境学报), 18, 621-628. (in Chinese with English abstract) |
[29] | Meng L (孟雷), Li LX (李磊鑫), Chen WF (陈温福), Xu ZJ (徐正进), Liu LX (刘丽霞) (1999). Effects of water stress on stomatal density, length width and net photosynthetic rate in rice leaves. Journal of Shenyang Agriculture University (沈阳农业大学学报), 30, 477-480. (in Chinese with English abstract) |
[30] | Oguchi R, Hikosaka K, Hirose T (2003). Does the photosynthetic light-acclimation need change in leaf anatomy? Plant, Cell & Enviroment, 26, 505-512. |
[31] |
Ozanne CMP, Anhuf D, Boulter SL (2003). Biodiversity meets the atmosphere: a global view of forest canopies. Science, 301, 183-186.
DOI URL PMID |
[32] | Pan RC (潘瑞炽) (2001). Plant Physiology (植物生理学) 4th edn. Higher Education Press, Beijing. 55-57, 91-95. (in Chinese) |
[33] |
Phillips OL, Martínez RV, Arroyo L, Baker TR, Killeen T, Lewis SL, Maihl Y, Mendoza AM, Neill D, Vargas PN, Alexiades M, Cerón C, Di Fiore A, Erwin T, Jardim A, Palacios W, Saldias M, Vinceti B (2002). Increasing dominance of large lianas in Amazonian forest. Nature, 418, 770-774.
URL PMID |
[34] |
Putz FE (1984). The natural history of lianas on Barro Coldrado Island, Panama. Ecology, 65, 1713-1724.
DOI URL |
[35] | Putz FE, Chai P (1987). Ecological studies of lianas in national park, Sarawak, Malaysia. Ecology, 75, 523-531. |
[36] | Putz FE, Mooney HA (1991). The Biology of Vines. Cambridge University Press, London. 47, 214-216. |
[37] |
Richardson AD, Beryln GP (2002). Spectral reflectance and photosynthetic properties of Betula papyrifera (Betulaceae) leaves along an elevational gradient on Mt. Mansfield, Vermont, USA. American Journal of Botany, 89, 88-94.
URL PMID |
[38] |
Ryan MG, Yoder BJ (1997). Hydraulic limits to tree height and tree growth. BioScience, 47, 235-242.
DOI URL |
[39] |
Sala A, Tenhunen JD (1994). Site-specific water relations and stomatal response of Quercus ilex in a Mediterranean watershed. Tree Physiology, 14, 601-617.
DOI URL PMID |
[40] |
Schnitzer SA, Bongers F (2002). The ecology of lianas and their role in forests. Trends in Ecology & Evolution, 17, 223-230.
DOI URL |
[41] | Su PX (苏培玺), Yan QD (严巧娣) (2006). Photosynthetic characteristics of C4 desert species Haloxylon ammodendron and Calligonum mongolicum under different moisture conditions. Acta Ecologica Sinica (生态学报), 26, 75-82. (in Chinese with English abstract) |
[42] | Su PX (苏培玺), Zhang LX (张立新), Du MW (杜明武), Bi YR (毕玉蓉), Zhao AF (赵爱芬), Liu XM (刘新民) (2003). Photosynthetic character and water use efficiency of different leaf shapes of Populus euphratica and their response to CO2 enrichment. Acta Phytoecologica Sinica (植物生态学报), 27, 34-40. (in Chinese with English abstract) |
[43] |
Thomas SC, Bazzaz FA (1999). Asymptotic height as a predictor of photosynthetic characteristics in Malaysian rain forest trees. Ecology, 80, 1607-1622.
DOI URL |
[44] | Unsworth MH, Coughtrey PJ, Martin MH (1987). Pollutant Transport and Fate in Ecosystem. Blackwell Press, Oxford. 125-127. |
[45] |
Vierling LA, Wessman CA (2000). Photosynthetically active radiation heterogeneity within a monodominant Congolese rain forest canopy. Agricultural and Forest Meteorology, 103, 265-278.
DOI URL |
[46] | Wang AZ (王安志), Pei TF (裴铁璠), Jin CJ (金昌杰), Guan DX (关德新) (2006). Estimation of rainfall interception by broadleaved Korean pine forest in Changbai Mountains. Chinese Journal of Applied Ecology (应用生态学报), 17, 1403-1407. (in Chinese with English abstract) |
[47] | Wang MB (王孟本), Li HJ (李洪建), Chai BF (柴宝峰), Feng CP (冯彩平) (1999). A comparison of transpiration, photosynthetic and transpiration efficiency in four tree species in the loess region. Acta Phytoecologica Sinica (植物生态学报), 23, 401-410. (in Chinese with English abstract) |
[48] | Wen DZ (温达志) (1997). Recent studies on plant water use efficiency under elevated atmospheric concentrations of carbon dioxide. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 5(3), 83-90. (in Chinese with English abstract) |
[49] | Whitmore TC (1984). Tropical Rain Forest of the Far East 2nd edn. Clarendon Press, Oxford. 352. |
[50] |
Woodruff DR, McCulloh KA, Warren JM, Meinzer FC, Lachenbruch B (2007). Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir. Plant, Cell & Environment, 30, 559-569.
URL PMID |
[51] |
Wright SJ, Calderón O, Hernandéz A, Paton S (2004). Are lianas increasing in importance in tropical forest? A 17-year record from Panama. Ecology, 85, 484-489.
DOI URL |
[52] | Xie HC (谢会成), Song JD (宋金斗), Jiang ZL (姜志林) (2004). The light distribution and photosynthetic characteristics of main plant species in oriental oak forest. Journal of Fujian College of Forestry (福建林学院学报), 24, 21-24. (in Chinese with English abstract) |
[53] | Yan JH (闫俊华), Zhou GY (周国逸), Wei Q (韦琴) (2000). Environment of microclimate of the lower subtropical evergreen broad-leaves forest in Dinghushan. Journal of Wuhan Botanical Research (武汉植物学研究), 18, 397-404. (in Chinese with English abstract) |
[54] | Yang XH (杨兴洪), Zou Q (邹琦), Zhao SJ (赵世杰) (2005). Photosynthetic characteristics and chlorophyll fluorescence in leaves of cotton plants grown in full light and 40% sunlight. Acta Phytoecologica Sinica (植物生态学报), 29, 8-15. (in Chinese with English abstract) |
[55] | Yi S (易俗), Huang ZL (黄忠良), Ouyang XJ (欧阳学军) (2001). Study on the species diversity of interlayer plants of Dinghushan biosphere reserve. Biodiversity Science (生物多样性), 9, 56-61. (in Chinese with English abstract) |
[56] | Zeng XP (曾小平), Zhao P (赵平), Cai XA (蔡锡安), Rao XQ (饶兴权), Liu H (刘惠), Ma L (马玲), Li CH (李长洪) (2006). Shade-tolerance of 25 low subtropical plants. Journal of Beijing Forestry University (北京林业大学学报), 28(4), 88-95. (in Chinese with English abstract) |
[57] | Zhang M (张弥), Wu JB (吴家兵), Guan DX (关德新), Shi TT (施婷婷), Chen PS (陈鹏狮), Ji RP (纪瑞鹏) (2006). Light response curve of dominant tree species photosynthesis in broadleaved Korean pine forest of Changbai Mountain. Chinese Journal of Applied Ecology (应用生态学报), 17, 1575-1578. (in Chinese with English abstract) |
[58] | Zhu YW (朱跃武) (2005). Study on Physiological Ecology of Five Lianas in Tiantong Evergreen Broad-leaved Forest, ZheJiang (浙江天童常绿阔叶林5种藤本植物生理生态研究). Master Degree Dissertation, East China Normal University, Shanghai. 59-61. (in Chinese with English abstract) |
[59] |
Zotz G, Hietz P (2001). The physiological ecology of vascular epiphytes: current knowledge, open questions. Journal of Experimental Botany, 52, 2067-2078.
DOI URL PMID |
[1] | 彭仲韬 金光泽 刘志理. 小兴安岭三种槭树叶性状随植株大小和林冠条件的变异[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 陈昭铨, 王明慧, 胡子涵, 郎学东, 何云琼, 刘万德. 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024, 48(1): 68-79. |
[3] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[4] | 仲琦, 李曾燕, 马炜, 况雨潇, 邱岭军, 黎蕴洁, 涂利华. 氮添加和凋落物处理对华西雨屏区常绿阔叶林凋落叶分解的影响[J]. 植物生态学报, 2023, 47(5): 629-643. |
[5] | 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529-538. |
[6] | 朱华. 云南常绿阔叶林的植被地理研究[J]. 植物生态学报, 2021, 45(3): 224-241. |
[7] | 李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣. 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类[J]. 植物生态学报, 2020, 44(3): 236-247. |
[8] | 王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣. 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响[J]. 植物生态学报, 2020, 44(10): 1015-1027. |
[9] | 莫丹, 王振孟, 左有璐, 向双. 亚热带常绿阔叶林木本植物幼树阶段抽枝展叶的权衡关系[J]. 植物生态学报, 2020, 44(10): 995-1006. |
[10] | 王雪, 陈光水, 闫晓俊, 陈廷廷, 姜琦, 陈宇辉, 范爱连, 贾林巧, 熊德成, 黄锦学. 亚热带常绿阔叶林89种木本植物一级根直径的变异[J]. 植物生态学报, 2019, 43(11): 969-978. |
[11] | 樊海东, 陈海燕, 吴雁南, 刘建峰, 徐德宇, 曹嘉瑜, 袁泉, 谭斌, 刘晓彤, 徐佳, 王国敏, 韩文娟, 刘立斌, 倪健. 金华北山南坡主要植被类型的群落特征[J]. 植物生态学报, 2019, 43(10): 921-928. |
[12] | 吴小琪, 杨圣贺, 黄力, 李笑寒, 杨超, 钱深华, 杨永川. 常绿阔叶林林冠环境对栲幼苗建成的影响[J]. 植物生态学报, 2019, 43(1): 55-64. |
[13] | 辜翔, 张仕吉, 刘兆丹, 李雷达, 陈金磊, 王留芳, 方晰. 中亚热带植被恢复对土壤有机碳含量、碳密度的影响[J]. 植物生态学报, 2018, 42(5): 595-608. |
[14] | 邹顺, 周国逸, 张倩媚, 徐姗, 熊鑫, 夏艳菊, 刘世忠, 孟泽, 褚国伟. 1992-2015年鼎湖山季风常绿阔叶林群落结构动态[J]. 植物生态学报, 2018, 42(4): 442-452. |
[15] | 温韩东, 林露湘, 杨洁, 胡跃华, 曹敏, 刘玉洪, 鲁志云, 谢有能. 云南哀牢山中山湿性常绿阔叶林20 hm2动态样地的物种组成与群落结构[J]. 植物生态学报, 2018, 42(4): 419-429. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19