植物生态学报 ›› 2011, Vol. 35 ›› Issue (5): 577-586.DOI: 10.3724/SP.J.1258.2011.00577
• 研究论文 • 上一篇
收稿日期:
2011-01-11
接受日期:
2011-02-14
出版日期:
2011-01-11
发布日期:
2011-06-07
通讯作者:
臧润国
作者简介:
* E-mail: zangrung@caf.ac.cnReceived:
2011-01-11
Accepted:
2011-02-14
Online:
2011-01-11
Published:
2011-06-07
Contact:
ZANG Run-Guo
摘要:
热带次生林具有重要的物种保育和固碳功能, 然而高强度的干扰会导致次生林早期出现类似季雨林的阶段, 因而群落恢复速度和方向是当前热带生态学研究中最为关注的议题之一。该文以海南岛在刀耕火种弃耕地形成的不同演替阶段的次生林为研究对象, 比较森林不同恢复时间(12年、25年、55年)群落中的不同年龄(幼树、小树、成年树)个体与低地雨林老龄林的物种组成、多样性和群落结构差异, 探讨刀耕火种弃耕地恢复过程中的群落组配过程。首先, 在海南岛霸王岭林区内建立7个1 hm2(100 m × 100 m)的样地, 并调查样地内所有胸径≥ 1 cm的木本植物个体(不包括木质藤本)的种类、胸径大小和树高。无度量多维标定法(NMS)排序结果表明, 刀耕火种弃耕地恢复群落与老龄林的物种组成存在明显差异, 并且其物种组成差异随着径级增加而逐渐减小。刀耕火种弃耕地群落物种累积速度缓慢, 25年和55年恢复群落的种面积、种个体和种多度曲线无差异, 存在一个明显的停滞阶段。与物种组成相比, 群落结构恢复相对较迅速, 但仍没有形成老龄林阶段中的复杂结构。萌生个体在早期恢复群落中占有较高比例, 其个体密度和胸高断面积分别占总数的39.9%和55.9%, 但在恢复中后期迅速降低。刀耕火种弃耕地恢复群落中以先锋种和非先锋喜光种为主。虽然耐阴种随演替而逐渐增加, 但恢复中后期群落中的耐阴种重要值仅为老龄林的27.7%。这些结果表明, 虽然刀耕火种弃耕地恢复群落缓慢地逐渐接近最终恢复目标, 但仍然存在 很大的不确定性。刀耕火种弃耕地恢复过程中的异速恢复和停滞阶段需要纳入今后群落演替模型构建和森林固碳效益核甘共苦算中。
丁易, 臧润国. 海南岛霸王岭热带低地雨林植被恢复动态. 植物生态学报, 2011, 35(5): 577-586. DOI: 10.3724/SP.J.1258.2011.00577
DING Yi, ZANG Run-Guo. Vegetation recovery dynamics of tropical lowland rain forest in Bawangling of Hainan Island, South China. Chinese Journal of Plant Ecology, 2011, 35(5): 577-586. DOI: 10.3724/SP.J.1258.2011.00577
图2 不同恢复时间次生林和老龄林样地中3个年龄等级(幼树、小树、成年树)的种面积累积曲线、种多度累积曲线、种多度等级分布曲线。灰色虚线表示12年次生林样地; 黑色点线表示25年次生林样地; 灰色线表示55年次生林样地; 黑色线表示老龄林样地。
Fig. 2 The species-area accumulation curves, species-abundance accumulation curves, and species rank-abundance distribution curves for saplings (A, D, G), treelets (B, E, H), and adult trees (C, F, I) in plots across secondary forests with different recovery time and old growth forests. Gray dashed lines represent 12-year-old secondary forest plots; black dotted lines represent 25-year-old secondary forest plots; gray lines represent 55-year-old secondary forest plots; black lines represent old growth forest plots.
图3 不同恢复时间次生林和老龄林样地中成年个体树的胸径(A)和树高(B)分布图。图中粗体黑色短线表示平均值。A图中纵坐标经过对数转换。样地编号中的前2个字符, 数字表示恢复时间(年), OG表示老龄林; 样地编号中的第3个字符是霸王岭各样地所在地点的简称。B, 白龙潭; D, 东干线; M, 芒果地; N, 南叉河; W, 五里桥。
Fig. 3 Beanplots of diameter at breast height (DBH) (A) and height (B) for adult trees in plots across secondary forests with different recovery time and old growth forests. The bold black short lines represent mean values of DBH and height of adult trees. Y axis in Fig. A is logarithmic transformed. Of the first two characters of plot codes, figures represent recovery time (year), OG represents old growth forest. The third character of plot code represents abbreviation of the site name of each plot located in Bawangling. B, Bailongtan; D, Dongganxian; M, Mangguodi; N, Nanchahe; W, Wuliqiao.
图4 不同恢复时间次生林和老龄林中萌生(黑色条形图)和实生(白色条形图)的个体密度(A)和胸高断面积(B)。OG表示老龄林。
Fig. 4 Individual density (A) and basal area (B) for sprouting stems (black bars) and seeder stems (white bars) across secondary forests with different recovery time and old growth forests. OG represents old growth forest.
图5 不同恢复时间次生林和老龄林中3个功能群的重要值。黑色条形表示先锋种; 白色条形表示非先锋喜光种; 灰色条形表示耐阴种。OG表示老龄林。
Fig. 5 Important value for three functional groups across secondary forests with different recovery time and old growth forests. Black bars represent pioneer species; white bars represent non-pioneer light-demanding species; gray bars represent shade-tolerant species. OG represents old growth forest.
图1 不同恢复时间次生林和老龄林样地中3个年龄等级(s, 幼树; t, 小树; at, 成年树)的无度量多维标定图。图中下划线前符号表示样地编号。白色正方形表示12年次生林样地; 白色三角形表示25年次生林样地; 白色圆圈表示55年次生林样地; 黑色正方形表示老龄林样地。
Fig. 1 Non-metric multidimensional scaling (NMS) for saplings (s), treelets (t), and adult trees (at) in plots across secondary forests with different recovery time and old growth forest. The symbols before underline represent codes of plots. White squares represent 12-year-old secondary forest plot; white triangles represnet 25-year-old secondary forest plots; white circles represent 55-year-old secondary forest plots; black squares represent old growth forest plots.
[1] |
Aide TM, Zimmerman JK, Pascarella JB, Rivera L, Marcano- Vega H (2000). Forest regeneration in a chron- osequence of tropical abandoned pastures: implications for restora- tion ecology. Restoration Ecology, 8, 328-338.
DOI URL |
[2] |
Bond WJ, Midgley JJ (2001). Ecology of sprouting in woody plants: the persistence niche. Trends in Ecology and Evolution, 16, 45-51.
DOI URL PMID |
[3] |
Bongers F, Poorter L, Hawthorne WD, Sheil D (2009). The intermediate disturbance hypothesis applies to tropical forests, but disturbance contributes little to tree diversity. Ecology Letters, 12, 798-805.
DOI URL PMID |
[4] |
Brooks TM, Wright SJ, Sheil D (2009). Evaluating the success of conservation actions in safeguarding tropical forest biodiversity. Conservation Biology, 23, 1448-1457.
URL PMID |
[5] |
Brown S, Lugo AE (1990). Tropical secondary forests. Journal of Tropical Ecology, 6, 1-32.
DOI URL |
[6] |
Chazdon RL (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 6, 51-71.
DOI URL |
[7] |
Chazdon RL (2008a). Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 320, 1458-1460.
DOI URL PMID |
[8] | Chazdon RL (2008b). Chance and determinism in tropical forest succession. In: Carson WP, Schnitzer SA eds. Tropical Forest Community Ecology. Wiley-Blackwell, Oxford. 384-408. |
[9] |
Chazdon RL, Finegan B, Capers RS, Salgado-Negret B, Casanoves F, Boukili V, Norden N (2010). Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica, 42, 31-40.
DOI URL |
[10] |
Chazdon R, Letcher S, van Breugel M, Martínez-Ramos M, Bongers F, Finegan B (2007). Rates of change in tree communities of secondary neotropical forests following major disturbances. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 273-289.
DOI URL |
[11] |
Ding Y, Zang RG (2005). Community characteristics of early recovery vegetation on abandoned lands of shifting cultivation in Bawangling of Hainan Island, South China. Journal of Integrative Plant Biology, 47, 530-538.
DOI URL |
[12] |
Ding Y, Zang RG, Jiang YX (2006). Effect of hillslope gradient on vegetation recovery on abandoned land of shifting cultivation in Hainan Island, South China. Journal of Integrative Plant Biology, 48, 642-653.
DOI URL |
[13] | Ding Y (丁易), Zang RG (臧润国) (2008). Changes in deciduous trees during recovery of tropical lowland rain forests on abandoned shifting cultivation lands in Hainan Island, South China. Biodiversity Science (生物多样性), 16, 103-109. (in Chinese with English abstract) |
[14] |
Finegan B (1996). Pattern and process in neotropical secondary rain forests: the first 100 years of succession. Trends in Ecology and Evolution, 11, 119-124.
URL PMID |
[15] |
Gehring C, Denich M, Vlek PLG (2005). Resilience of secondary forest regrowth after slash-and-burn agriculture in central Amazonia. Journal of Tropical Ecology, 21, 519-527.
DOI URL |
[16] |
Guariguata MR, Chazdon RL, Denslow JS, Dupuy JM, Anderson L (1997). Structure and floristic of secondary and old-growth forest stands in lowland Costa Rica. Plant Ecology, 132, 107-120.
DOI URL |
[17] |
Guariguata MR, Ostertag R (2001). Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 148, 185-206.
DOI URL |
[18] |
Kammesheidt L (1998). The role of tree sprouts in the restoration of stand structure and species diversity in tropical moist forest after slash-and-burn agriculture in Eastern Paraguay. Plant Ecology, 139, 155-165.
DOI URL |
[19] |
Lamb D, Erskine PD, Parrotta JA (2005). Restoration of degraded tropical forest landscapes. Science, 310, 1628-1632.
URL PMID |
[20] |
Lawrence D (2005). Biomass accumulation after 10-200 years of shifting cultivation in Bornean rain forest. Ecology, 86, 26-33.
DOI URL |
[21] |
Lawrence D, Suma V, Mogea JP (2005). Change in species composition with repeated shifting cultivation: limited role of soil nutrients. Ecological Applications, 15, 1952-1967.
DOI URL |
[22] |
Lebrija-Trejos E, Meave JA, Poorter L, Pérez-García EA, Bongers F (2010). Pathways, mechanisms and predicta- bility of vegetation change during tropical dry forest succession. Perspectives in Plant Ecology, Evolution and Systematics, 12, 267-275.
DOI URL |
[23] |
Letcher SG, Chazdon RL (2009a). Lianas and self-supporting plants during tropical forest succession. Forest Ecology and Management, 257, 2150-2156.
DOI URL |
[24] |
Letcher SG, Chazdon RL (2009b). Rapid recovery of biomass, species richness, and species composition in a secondary forest chronosequence in northeastern Costa Rica. Biotropica, 41, 608-617.
DOI URL |
[25] |
Lewis SL, Lloyd J, Sitch S, Mitchard ETA, Laurance WF (2009). Changing ecology of tropical forests: evidence and drivers. Annual Review of Ecology, Evolution, and Systematics, 40, 529-549.
DOI URL |
[26] |
Marcano-Vega H, Aide TM, Báez D (2002). Forest regeneration in abandoned coffee plantations and pastures in the Cordillera Central of Puerto Rico. Plant Ecology, 161, 75-87.
DOI URL |
[27] |
Martínez-Garza C, Howe HF (2003). Restoring tropical diversity: beating the time tax on species loss. Journal of Applied Ecology, 40, 423-429.
DOI URL |
[28] |
Mesquita RCG, Ickes K, Ganade G, Williamson GB (2001). Alternative successional pathways in the Amazon Basin. Journal of Ecology, 89, 528-537.
DOI URL |
[29] |
Norden N, Chazdon RL, Chao A, Jiang YH, Vílchez-Alvarado B (2009). Resilience of tropical rain forests: tree community reassembly in secondary forests. Ecology Letters, 12, 385-394.
DOI URL PMID |
[30] |
Palomaki MB, Chazdon RL, Arroyo JP, Letcher SG (2006). Juvenile tree growth in relation to light availability in second-growth tropical rain forests. Journal of Tropical Ecology, 22, 223-226.
DOI URL |
[31] |
Pascarella JB, Aide TM, Serrano MI, Zimmerman JK (2000). Land-use history and forest regeneration in the Cayey Mountains, Puerto Rico. Ecosystems, 3, 217-218.
DOI URL |
[32] | Peterson CJ, Carson WP (2008). Processes constraining woody species succession on abandoned pastures in the tropical: on the relevance of temperate models of succession. In: Carson WP, Schnitzer SA eds. Tropical Forest Comm- unity Ecology. Wiley-Blackwell, Oxford. 367-383. |
[33] | R Development Core Team (2010). R: A Language and Environment for Statistical Computing R Foundation for Statistical Computing, Vienna, Austria. |
[34] |
Saldarriaga JG, West DC, Tharp ML, Uhl C (1988). Long-term chronosequence of forest succession in the Upper Rio Negro of Colombia and Venezuela. Journal of Ecology, 76, 938-958.
DOI URL |
[35] | The Biodiversity Committee of Chinese Academy of Sciences (中国科学院生物多样性委员会) (2010). Catalogue of Life China: 2010 Annual Checklist China (中国生物物种名录: 2010版). CD-ROM; Species 2000 China Node, Beijing. |
[36] |
Uhl C (1987). Factors controlling succession following slash-and-burn agriculture in Amazonia. Journal of Ecology, 75, 377-407.
DOI URL |
[37] |
Uhl C, Clark H, Clark K, Maguirino P (1982). Successional patterns associated with slash-and-burn agriculture in the Upper Río Negro region of the Amazon Basin. Biotropica, 14, 249-254.
DOI URL |
[38] |
Vandermeer J, Granzow de la Cerda I, Perfecto I, Boucher D, Ruiz J, Kaufmann A (2004). Multiple basins of attraction in a tropical forest: evidence for a nonequilibrium community structure. Ecology, 85, 575-579.
DOI URL |
[39] |
Vieira DLM, Scariot A (2006). Principles of natural regeneration of tropical dry forests for restoration. Restoration Ecology, 14, 11-20.
DOI URL |
[40] | Zang RG (臧润国), An SQ (安树青), Tao JP (陶建平), Jiang YX (蒋有绪), Wang BS (王伯荪) (2004). Mechanism of Biodiversity Maintenance of Tropical Forests on Hainan Island (海南岛热带林生物多样性维持机制). Science Press, Beijing. (in Chinese) |
[41] | Zang RG (臧润国), Ding Y (丁易), Zhang ZD (张志东), Deng FY (邓福英), Mao PL (毛培利) (2010). Ecological Foundation of Conservation and Restoration for the Major Functional Groups in Tropical Natural Forests on Hainan Island (海南岛热带天然林主要功能群保护与恢复的生态学基础). Science Press, Beijing. (in Chinese) |
[1] | 李文博 孙龙 娄虎 于澄 韩宇 胡同欣. 火干扰对兴安落叶松种子萌发的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 俞庆水 倪晓凤 吉成均 朱江玲 唐志尧 方精云. 10年氮磷添加对海南尖峰岭两种热带雨林优势植物叶片非结构性碳水化合物的影响[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[4] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[5] | 赵艳超, 陈立同. 土壤养分对青藏高原高寒草地生物量响应增温的调节作用[J]. 植物生态学报, 2023, 47(8): 1071-1081. |
[6] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[7] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[8] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[9] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
[10] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[11] | 柳牧青, 杨小凤, 石钰铭, 刘雨薇, 李小蒙, 廖万金. 模拟酸雨对入侵植物豚草与伴生种鬼针草竞争关系的影响[J]. 植物生态学报, 2022, 46(8): 932-940. |
[12] | 李斐, 孙明伟, 钟尚志, 宋文政, 钟晓月, 孙伟. 不同光合类型牧草对干旱-复水的光合生理响应及生长适应策略[J]. 植物生态学报, 2022, 46(1): 74-87. |
[13] | 赵阳, 栾军伟, 王一, 杨怀, 刘世荣. 模拟干旱和磷添加对热带低地雨林氮矿化过程的影响[J]. 植物生态学报, 2022, 46(1): 102-113. |
[14] | 秦倩倩, 邱聪, 郑大柽, 刘艳红. 油松人工林火烧迹地早期土壤入渗动态[J]. 植物生态学报, 2021, 45(8): 903-917. |
[15] | 宗宁, 石培礼, 赵广帅, 郑莉莉, 牛犇, 周天财, 侯阁. 降水量变化对藏北高寒草地养分限制的影响[J]. 植物生态学报, 2021, 45(5): 444-455. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19