植物生态学报 ›› 2010, Vol. 34 ›› Issue (7): 819-826.DOI: 10.3773/j.issn.1005-264x.2010.07.007
收稿日期:
2009-09-04
接受日期:
2010-03-20
出版日期:
2010-09-04
发布日期:
2010-07-01
通讯作者:
赵忠
作者简介:
* E-mail: zhaozh@nwsuaf.edu.cn
WANG Di-Hai1,2, ZHAO Zhong1,2,*(), LI Jian2
Received:
2009-09-04
Accepted:
2010-03-20
Online:
2010-09-04
Published:
2010-07-01
Contact:
ZHAO Zhong
摘要:
在黄土丘陵沟壑区陕西省安塞县, 于2007年生长季内, 采用根钻法对刺槐(Robinia pseudoacacia)、侧柏(Platycladus orientalis)、油松(Pinus tabulaeformis)林地的细根和土壤水分进行了动态调查。结果表明: 生长季内, 刺槐、侧柏、油松林地0-200 cm土层的土壤含水量变动较大, 此土层是树木细根表面积的主要分布层, 分别有82.4% (侧柏)、86.5% (刺槐)和87.5% (油松)的细根表面积分布。侧柏、刺槐、油松细根表面积垂直分布与剖面土壤水分间呈显著的正相关关系(p < 0.05)。模型S = AhB(C + Dh + Eh2 + Fh3)可以较好地拟合不同树种细根表面积的垂直分布, 拟合决定系数R2均在0.85以上。刺槐、侧柏、油松林地土壤含水量的动态变化均表现为10月>4月>6月>8月。刺槐、油松细根表面积在6月出现1个高峰, 侧柏在6月和10月各出现1个高峰。树木细根表面积动态与土壤含水量的季节动态不完全一致。侧柏、刺槐、油松生长所需的水分约87%来自降水的补给。但是, 总体上侧柏、刺槐、油松细根表面积与林地土壤含水量的相关性不显著(p > 0.05)。全面了解树木细根季节动态的机理, 还需对水分、温度、养分和树种本身遗传特性等影响因子进行综合研究。
王迪海, 赵忠, 李剑. 土壤水分对黄土高原主要造林树种细根表面积 季节动态的影响. 植物生态学报, 2010, 34(7): 819-826. DOI: 10.3773/j.issn.1005-264x.2010.07.007
WANG Di-Hai, ZHAO Zhong, LI Jian. Impact of soil moisture on the seasonal dynamics of fine root surface area of major afforestation tree species on China’s Loess Plateau. Chinese Journal of Plant Ecology, 2010, 34(7): 819-826. DOI: 10.3773/j.issn.1005-264x.2010.07.007
序号 No. | 树种 Tree species | 坡向 Slope aspect | 坡度 Slope gradient (°) | 土壤 Soil | 林龄 Stand age (a) | 平均树高Average tree height (m) | 平均胸径Average DBH (cm) | 林分密度 Stand density (tree·hm-2) |
---|---|---|---|---|---|---|---|---|
1 | 刺槐 Robinia pseudoacacia | 东北Northeast | 30 | 黄绵土 Yellow loessial soil | 40 | 14.9 | 23.3 | 1 180 |
2 | 刺槐 R. pseudoacacia | 东北Northeast | 30 | 黄绵土 Yellow loessial soil | 40 | 13.5 | 23.5 | 1 176 |
3 | 刺槐 R. pseudoacacia | 东北Northeast | 32 | 黄绵土 Yellow loessial soil | 40 | 16.1 | 25.3 | 1 185 |
4 | 侧柏 Platycladus orientalis | 西北Northwest | 15 | 黄绵土 Yellow loessial soil | 21 | 2.2 | 3.3 | 1 243 |
5 | 侧柏 P. orientalis | 西北Northwest | 15 | 黄绵土 Yellow loessial soil | 21 | 2.5 | 4.3 | 1 245 |
6 | 侧柏 P. orientalis | 西北Northwest | 15 | 黄绵土 Yellow loessial soil | 21 | 2.6 | 4.1 | 1 240 |
7 | 油松 Pinus tabulaeformis | 西北Northwest | 20 | 黄绵土 Yellow loessial soil | 21 | 3.1 | 4.8 | 1 242 |
表1 样地林分基本特征
Table 1 Stand basic characteristics of Robinia pseudoacacia, Platycladus orientalis, and Pinus tabulaeformis plantations
序号 No. | 树种 Tree species | 坡向 Slope aspect | 坡度 Slope gradient (°) | 土壤 Soil | 林龄 Stand age (a) | 平均树高Average tree height (m) | 平均胸径Average DBH (cm) | 林分密度 Stand density (tree·hm-2) |
---|---|---|---|---|---|---|---|---|
1 | 刺槐 Robinia pseudoacacia | 东北Northeast | 30 | 黄绵土 Yellow loessial soil | 40 | 14.9 | 23.3 | 1 180 |
2 | 刺槐 R. pseudoacacia | 东北Northeast | 30 | 黄绵土 Yellow loessial soil | 40 | 13.5 | 23.5 | 1 176 |
3 | 刺槐 R. pseudoacacia | 东北Northeast | 32 | 黄绵土 Yellow loessial soil | 40 | 16.1 | 25.3 | 1 185 |
4 | 侧柏 Platycladus orientalis | 西北Northwest | 15 | 黄绵土 Yellow loessial soil | 21 | 2.2 | 3.3 | 1 243 |
5 | 侧柏 P. orientalis | 西北Northwest | 15 | 黄绵土 Yellow loessial soil | 21 | 2.5 | 4.3 | 1 245 |
6 | 侧柏 P. orientalis | 西北Northwest | 15 | 黄绵土 Yellow loessial soil | 21 | 2.6 | 4.1 | 1 240 |
7 | 油松 Pinus tabulaeformis | 西北Northwest | 20 | 黄绵土 Yellow loessial soil | 21 | 3.1 | 4.8 | 1 242 |
图1 不同林地土壤含水量和树木细根表面积的垂直分布(平均值±标准误差)。 A, 刺槐。B, 侧柏。C, 油松。
Fig. 1 Vertical distribution of fine root surface area and soil water content of different forests (mean ± SE). A, Robinia pseudoacacia. B, Platycladus orientalis. C, Pinus tabulaeformis.
项目 Item | 树种 Tree species | 时间 Time | |||
---|---|---|---|---|---|
2007-04 | 2007-06 | 2007-08 | 2007-10 | ||
土壤含水量 Soil water content (%) | 刺槐 Robinia pseudoacacia | 6.98 ± 0.92aA | 4.30 ± 0.80bA | 3.73 ± 0.65bA | 10.11 ± 1.07cA |
侧柏 Platycladus orientalis | 5.16 ± 1.51aA | 4.44 ± 0.79aA | 4.39 ± 0.57aA | 11.21 ± 0.82bA | |
油松 Pinus tabulaeformis | 6.09 ± 0.97aA | 5.32 ± 0.40aA | 5.28 ± 0.37aA | 10.57 ± 0.79bA | |
细根表面积 Fine root surface area of trees (cm2·dm-3) | 刺槐 Robinia pseudoacacia | 17.85 ± 6.11abA | 27.66 ± 6.84cA | 17.10 ± 6.53abA | 21.19 ± 5.49bA |
侧柏 Platycladus orientalis | 30.62 ± 5.76aB | 41.73 ± 11.83bB | 24.46 ± 5.68aB | 39.49 ± 13.01bB | |
油松 Pinus tabulaeformis | 29.45 ± 7.46aB | 42.18 ± 3.61bB | 24.13 ± 4.56aB | 29.07 ± 6.11aC |
表2 不同林地0-200 cm土层的土壤含水量和细根表面积(平均值±标准误差)
Table 2 Soil water content and fine root surface area of different forests in 0-200 cm soil layer (mean ± SE)
项目 Item | 树种 Tree species | 时间 Time | |||
---|---|---|---|---|---|
2007-04 | 2007-06 | 2007-08 | 2007-10 | ||
土壤含水量 Soil water content (%) | 刺槐 Robinia pseudoacacia | 6.98 ± 0.92aA | 4.30 ± 0.80bA | 3.73 ± 0.65bA | 10.11 ± 1.07cA |
侧柏 Platycladus orientalis | 5.16 ± 1.51aA | 4.44 ± 0.79aA | 4.39 ± 0.57aA | 11.21 ± 0.82bA | |
油松 Pinus tabulaeformis | 6.09 ± 0.97aA | 5.32 ± 0.40aA | 5.28 ± 0.37aA | 10.57 ± 0.79bA | |
细根表面积 Fine root surface area of trees (cm2·dm-3) | 刺槐 Robinia pseudoacacia | 17.85 ± 6.11abA | 27.66 ± 6.84cA | 17.10 ± 6.53abA | 21.19 ± 5.49bA |
侧柏 Platycladus orientalis | 30.62 ± 5.76aB | 41.73 ± 11.83bB | 24.46 ± 5.68aB | 39.49 ± 13.01bB | |
油松 Pinus tabulaeformis | 29.45 ± 7.46aB | 42.18 ± 3.61bB | 24.13 ± 4.56aB | 29.07 ± 6.11aC |
树种 Tree species | A | B | C | D | E | F | R2 | hmax (cm) | hp (cm) | hq (cm) | η1 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
刺槐 Robinia pseudoacacia | 0.004 91 | 0.005 61 | 10 214.80 | -107.975 0 | 0.473 87 | -0.000 72 | 0.98 | 311.12 | 17.56 | 203.74 | 88.31 |
侧柏 Platycladus orientalis | 0.014 66 | -0.761 91 | 60 166.67 | -259.219 0 | 2.068 19 | -0.004 56 | 0.98 | 307.57 | 12.95 | 204.72 | 87.42 |
油松 Pinus tabulaeformis | 0.001 23 | 0.366 42 | 2 609.55 | -25.984 4 | 0.117 11 | -0.000 17 | 0.85 | 300.23 | 10.28 | 200.32 | 87.16 |
表3 树木细根垂直分布模型的拟合系数和模型特征值
Table 3 Fitted coefficient and characteristic index of the model for fine root vertical distribution
树种 Tree species | A | B | C | D | E | F | R2 | hmax (cm) | hp (cm) | hq (cm) | η1 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
刺槐 Robinia pseudoacacia | 0.004 91 | 0.005 61 | 10 214.80 | -107.975 0 | 0.473 87 | -0.000 72 | 0.98 | 311.12 | 17.56 | 203.74 | 88.31 |
侧柏 Platycladus orientalis | 0.014 66 | -0.761 91 | 60 166.67 | -259.219 0 | 2.068 19 | -0.004 56 | 0.98 | 307.57 | 12.95 | 204.72 | 87.42 |
油松 Pinus tabulaeformis | 0.001 23 | 0.366 42 | 2 609.55 | -25.984 4 | 0.117 11 | -0.000 17 | 0.85 | 300.23 | 10.28 | 200.32 | 87.16 |
[1] | Bohdan K, Jorge CY, Ivan AJ, Reinhart C (2005). Comparison of fine root dynamics in Scots pine and Pedunculate oak in sandy soil. Plant and Soil, 276, 33-45. |
[2] | Box JE (1996). Modern methods for root investigation. In: Waise Y, Eshel A, Kafkafi U eds. Plant Roots: the Hidden Half. Marcel Dekker Inc., New York 193-233. |
[3] | Cao Y (曹扬), Zhao Z (赵忠), Qu M (曲美), Cheng XR (成向荣), Wang DH (王迪海) (2006). Effects of Robinia pseudoacacia roots on deep soil moisture status. Chinese Journal of Applied Ecology (应用生态学报), 17, 765-768. (in Chinese with English abstract) |
[4] | Carolyn SW, Joseph WF, George CJF, Robert SN (2004). Fine root growth dynamics of four Mojave desert shrubs as related to soil moisture and microsite. Journal of Arid Environments, 56, 129-148. |
[5] | Chen GS (陈光水), Yang YS (杨玉盛), He ZM (何宗明), Xie JS (谢锦升), Jiang ZK (蒋宗垲) (2004). Comparison on fine root production, distribution and turnover between plantations of Forkienia hodginsii and Cunninghamis lanceolate. Scientia Silvae Sinicae (林业科学), 40(4), 15-21. (in Chinese with English abstract) |
[6] | Chen BQ (陈宝群), Zhao JB (赵景波), Li YH (李艳花) (2009). Research on causes of dried soil layer in the Loess Plateau. Geography and Geo-Information Science (地理与地理信息科学), 25(3), 85-89. (in Chinese with English abstract) |
[7] | Cheng XR, Huang MB, Shao MA, Warrington DN (2009). A comparison of fine root distribution and water consumption of mature Caragana korshinkii Kom. grown in two soils in a semiarid region, China. Plant and Soil, 315, 149-161. |
[8] | Cheng XR (成向荣), Zhao Z (赵忠), Guo MC (郭满才), Wang DH (王迪海), Yuan ZF (袁志发) (2006). Researches on model for fine root vertical distribution of Robinia pseudoacacia plantation. Scientia Silvae Sinicae (林业科学), 42(6), 40-48. (in Chinese with English abstract) |
[9] | Cheng YH (程云环), Han YZ (韩有志), Wang QC (王庆成), Wang ZQ (王政权) (2005). Seasonal dynamics of fine root biomass, root length density, specific root length and soil resource availability in a Larix gmelini plantation. Acta Phytoecologica Sinica (植物生态学报), 29, 403-410. (in Chinese with English abstract) |
[10] | Hao WF (郝文芳), Han RL (韩蕊莲), Shan CJ (单长卷), Liang ZS (梁宗锁) (2003). Study on the variation law of soil water in artificial Locust woodland under different habitats of Loess Plateau in Northern Shaanxi. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 23, 964-968. (in Chinese with English abstract) |
[11] | He WM (何维明) (2000). Distribution characteristics of root area of Sabina vulgaris under different habitats. Scientia Silvae Sinicae (林业科学), 36(5), 17-21. (in Chinese with English abstract) |
[12] | He YT (何永涛), Shi PL (石培礼), Zhang XZ (张宪洲), Zhong ZM (钟志明), Xu LL (徐玲玲), Zhang DQ (张东秋) (2009). Fine root production and turnover of poplar plantation in the Lhasa river valley, Tibet Autonomous Region. Acta Ecologica Sinica (生态学报), 29, 2877-2883. (in Chinese with English abstract) |
[13] | Hendrick RL, Pregitzer KS (1993). Patterns of fine root mortality in two sugar maple forests. Nature, 361, 59-61. |
[14] | Huang JH (黄建辉), Han XG (韩兴国), Chen LZ (陈灵芝) (1999). Advances on the research of (fine) root biomass in forest ecosystems. Acta Ecologica Sinica (生态学报), 19, 270-277. (in Chinese with English abstract) |
[15] |
Jackson RB, Mooney HA, Schulze ED (1997). A global budget for fine root biomass, surface area, and nutrient contents. Proceedings of the National Academy of Sciences of the United States of America, 94, 7362-7366.
URL PMID |
[16] | Jon PD, Bruce H, David C, Ron H (2004). Fine root dynamics along an elevation gradient in the southern Appalachian Mountains, USA. Forest Ecology and Management, 187, 19-34. |
[17] | Lin XH (林希昊), Wang ZH (王真辉), Chen QB (陈秋波), Yang LF (杨礼富) (2008). Vertical distribution and annual dynamics of fine roots of Hevea brasiliensis at different ages. Acta Ecologica Sinica (生态学报), 28, 4129-4135. (in Chinese with English abstract) |
[18] | Mei L (梅莉), Han YZ (韩有志), Yu SQ (于水强), Shi JW (史建伟), Wang ZQ (王政权) (2006). Impact factors on fine roots seasonal dynamics in Fraxinus mandshurica plantation. Scientia Silvae Sinicae (林业科学), 42(9), 7-12. (in Chinese with English abstract) |
[19] | Pregitzer KS, King JS, Burton AJ (2000). Response of tree fine roots to temperature. New Phytologist, 147, 105-115. |
[20] | Wang WQ (王文全), Wang SJ (王世绩), Liu YR (刘雅荣), Liu JW (刘建伟) (1994). Distribution and growth characteristics of the rootsystems of poplar, willow, elm and locust on site of renewed land by fine ash of coal. Scientia Silvae Sinicae (林业科学), 30(1), 25-33. (in Chinese with English abstract) |
[21] | Wang ZQ, Burch WH, Mou P, Jones RH, Mitchell RJ (1995). Accuracy of visible and ultraviolet light for estimation live root proportions with minirhizotrons. Ecology, 76, 2330-2334. |
[22] | Wei X (卫星), Zhang GZ (张国珍) (2008). Progress and prospect in the main research realms of tree fine roots. Chinese Agricultural Science Bulletin (中国农学通报), 24(5), 143-147. (in Chinese with English abstract) |
[23] | Xiao CW, Sang WG, Wang RZ (2008). Fine root dynamics and turnover rate in an Asia white birch forest of Donglingshan Mountain, China. Forest Ecology and Management, 255, 765-773. |
[24] | Yang XY (杨秀云), Han YZ (韩有志), Zhang YX (张芸香) (2008). Effects of horizontal distance on fine root biomass and seasonal dynamics in Larix principis-rupprechtii plantation. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 1277-1284. (in Chinese with English abstract) |
[25] | Yang WZ (杨文治), Tian JL (田均良) (2004). Essential exploration of soil aridization in Loess Plateau. Acta Pedologica Sinica (土壤学报), 41, 1-6. (in Chinese with English abstract) |
[26] | Yang XM (杨新民), Yang WZ (杨文治), Ma YX (马玉玺) (1994). Study on the condition growing of man-made locust woodland and moisture eco-environment in the small watershed of Zhifanggou. Research of Soil and Water Conservation (水土保持研究), 1(3), 31-35. (in Chinese with English abstract) |
[27] | Zhang XQ (张小全), Wu KH (吴可红) (2001). Fine-root production and turnover for forest ecosystems. Scientia Silvae Sinicae (林业科学), 37(3), 126-138. (in Chinese with English abstract) |
[28] | Zhang GS (张国盛), Wu GX (吴国玺), Wang LH (王林和), Qin Y (秦艳), Hu YN (胡永宁), Zhang ZS (张忠山) (2009). Fine root distribution characteristics of Sabina vulgaris and Artemisia ordosica communities in the Mu Us Sandland of Inner Mongolia, China. Acta Ecologica Sinica (生态学报), 29, 18-27. (in Chinese with English abstract) |
[29] | Zhao Z (赵忠), Cheng XR (成向荣), Xue WP (薛文鹏), Wang DH (王迪海), Yuan ZF (袁志发) (2006). Difference of fine root vertical distribution of Robinia pseudoacacia under the different climate regions in the Loess Plateau. Scientia Silvae Sinicae (林业科学), 42(11), 1-7. (in Chinese with English abstract) |
[30] | Zhou ZC, Shangguan ZP (2007). Vertical distribution of fine roots in relation to soil factors in Pinus tabulaeformis Carr. Forest of the Loess Plateau of China. Plant and Soil, 291, 119-129. |
[31] | Zhu SY (朱胜英), Zhou B (周彪), Mao ZJ (毛子军), Wang XW (王秀伟), Sun YF (孙元发) (2006). Space-time dynamics of fine root biomass of six forests in Maoershan forest region. Scientia Silvae Sinicae (林业科学), 42(6), 13-19. (in Chinese with English abstract) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 徐子怡 金光泽. 阔叶红松林不同菌根类型幼苗细根功能性状的变异与权衡[J]. 植物生态学报, 2024, 48(5): 612-622. |
[3] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[4] | 曲泽坤, 朱丽琴, 姜琦, 王小红, 姚晓东, 蔡世锋, 罗素珍, 陈光水. 亚热带常绿阔叶林丛枝菌根树种养分觅食策略及其与细根形态间的关系[J]. 植物生态学报, 2024, 48(4): 416-427. |
[5] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[6] | 舒韦维, 杨坤, 马俊旭, 闵惠琳, 陈琳, 刘士玲, 黄日逸, 明安刚, 明财道, 田祖为. 氮添加对红锥不同序级细根形态和化学性状的影响[J]. 植物生态学报, 2024, 48(1): 103-112. |
[7] | 吴晨, 陈心怡, 刘源豪, 黄锦学, 熊德成. 增温对森林细根生长、死亡及周转特征影响的研究进展[J]. 植物生态学报, 2023, 47(8): 1043-1054. |
[8] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[9] | 沈健, 何宗明, 董强, 郜士垒, 林宇. 轻度火烧对滨海沙地人工林土壤呼吸速率和非生物因子的影响[J]. 植物生态学报, 2023, 47(7): 1032-1042. |
[10] | 吴帆, 吴晨, 张宇辉, 余恒, 魏智华, 郑蔚, 刘小飞, 陈仕东, 杨智杰, 熊德成. 增温对成熟杉木人工林不同季节细根生长、形态及生理代谢特征的影响[J]. 植物生态学报, 2023, 47(6): 856-866. |
[11] | 杜婷, 陈玉莲, 毕境徽, 杨玉婷, 张丽, 游成铭, 谭波, 徐振锋, 王丽霞, 刘思凝, 李晗. 林窗对川西亚高山凋落叶总酚和缩合单宁损失动态的影响[J]. 植物生态学报, 2023, 47(5): 660-671. |
[12] | 祝维, 周欧, 孙一鸣, 古丽米热·依力哈木, 王亚飞, 杨红青, 贾黎明, 席本野. 混交林内毛白杨和刺槐根系吸水的动态生态位划分[J]. 植物生态学报, 2023, 47(3): 389-403. |
[13] | 李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民. 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应[J]. 植物生态学报, 2023, 47(3): 434-446. |
[14] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[15] | 刘美君, 陈秋文, 吕金林, 李国庆, 杜盛. 黄土丘陵区辽东栎和刺槐树干径向生长与微变化季节动态特征[J]. 植物生态学报, 2023, 47(2): 227-237. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19