植物生态学报 ›› 2011, Vol. 35 ›› Issue (1): 17-26.DOI: 10.3724/SP.J.1258.2011.00017
所属专题: 生物多样性
魏丽萍, 王孝安*(), 王世雄, 朱志红, 郭华, 孙嘉男, 郝江勃
收稿日期:
2010-07-12
接受日期:
2010-10-18
出版日期:
2011-07-12
发布日期:
2011-01-24
通讯作者:
王孝安
作者简介:
*E-mail: wangxa@snnu.edu.cn
WEI Li-Ping, WANG Xiao-An*(), WANG Shi-Xiong, ZHU Zhi-Hong, GUO Hua, SUN Jia-Nan, HAO Jiang-Bo
Received:
2010-07-12
Accepted:
2010-10-18
Online:
2011-07-12
Published:
2011-01-24
Contact:
WANG Xiao-An
摘要:
物种多样性格局随着时空尺度的变化而变化, 同时也与植被组织尺度的变化密切相关, 基于多组织尺度的研究能更好地揭示一个地区的物种多样性规律。在应用数量分类(TWINSPAN)和主成分分析法(PCA)确定黄土高原马栏林区不同组织尺度的群落类型及其相互关系的基础上, 采用加性分配法分析该区域物种多样性与植被型、群系和群丛3种植被组织尺度之间的关系, 结果表明: (1) 区域物种多样性(γ)可加性分配分为群丛内(α1)、群丛间(β1)、群系间(β2)和植被型间(β3) 4个多样性成分, 无论用物种丰富度指数还是Shannon-Wiener多样性或Simpson多样性指数, 乔木、灌木和草本植物的最大物种多样性都存在于群丛内(草本层的物种丰富度除外), 说明群丛尺度是度量该区物种多样性的最佳尺度。(2)植被型、群系和群丛3种组织尺度的Shannon-Wiener多样性百分比均大于Simpson多样性百分比, 说明稀有种的分布对马栏林区各植被组织尺度的物种多样性格局起主要作用。(3)各尺度间的β多样性大小顺序在乔木、灌木、草本植物3层以不同多样性指数表示时各不相同, 这与乔木、灌木、草本植物3层的物种组成和分布, 以及主导不同植被组织尺度的物种多样性的因素差异有密切联系。
魏丽萍, 王孝安, 王世雄, 朱志红, 郭华, 孙嘉男, 郝江勃. 黄土高原马栏林区基于不同植被组织尺度的群落物种多样性. 植物生态学报, 2011, 35(1): 17-26. DOI: 10.3724/SP.J.1258.2011.00017
WEI Li-Ping, WANG Xiao-An, WANG Shi-Xiong, ZHU Zhi-Hong, GUO Hua, SUN Jia-Nan, HAO Jiang-Bo. Species diversity of communities based on different vegetation organizational scales in China’s Malan forest region. Chinese Journal of Plant Ecology, 2011, 35(1): 17-26. DOI: 10.3724/SP.J.1258.2011.00017
图1 以加性分配法为基础的马栏林区群落物种多样性与植被组织尺度的关系。
Fig. 1 Relationships between community species diversity and vegetation organizational scales in Malan forest region based on the additive partitioning approach.
多样性 Diversity | 乔木 Tree | 灌木 Shrub | 草本植物 Herb | |||||
---|---|---|---|---|---|---|---|---|
OBS | EXP | OBS | EXP | OBS | EXP | |||
α1 | 14.4 | 27.2 | 52.3 | 100.2 | 40.5 | 110.5 | ||
β1 | 10.5 | 10.6 | 30.9 | 23.5 | 32.1 | 26.5 | ||
β2 | 8.9 | 4.4 | 21.3 | 7.8 | 34.5 | 8.2 | ||
β3 | 13.2 | 4.8 | 36.5 | 9.4 | 46.9 | 8.9 | ||
γ | 47.0 | 47.0 | 141.0 | 140.9 | 154.0 | 154.1 |
表1 以物种丰富度为指标时, α、β和γ多样性在群丛、群系和植被型3种组织尺度上的观测值和期望值
Table 1 Observed and expected value of α, β and γ diversity on three organizational scales: association scale, formation scale and vegetation type scale, using species richness as indicators
多样性 Diversity | 乔木 Tree | 灌木 Shrub | 草本植物 Herb | |||||
---|---|---|---|---|---|---|---|---|
OBS | EXP | OBS | EXP | OBS | EXP | |||
α1 | 14.4 | 27.2 | 52.3 | 100.2 | 40.5 | 110.5 | ||
β1 | 10.5 | 10.6 | 30.9 | 23.5 | 32.1 | 26.5 | ||
β2 | 8.9 | 4.4 | 21.3 | 7.8 | 34.5 | 8.2 | ||
β3 | 13.2 | 4.8 | 36.5 | 9.4 | 46.9 | 8.9 | ||
γ | 47.0 | 47.0 | 141.0 | 140.9 | 154.0 | 154.1 |
图2 马栏林区的植被分类。各群丛样方数从左到右依次为: 12, 14, 15, 9, 26, 28, 18, 13, 16, 10, 10, 9, 8, 11, 9。
Fig. 2 Vegetation classification in Malan forest region. The quantity of quadrat in different association is 12, 14, 15, 9, 26, 28, 18, 13, 16, 10, 10, 9, 8, 11 and 9, from left to right.
图3 不同组织尺度群落样地主成分分析(PCA)排序。I, 乔木层。II, 灌木层。III, 草本植物层。A, 温性针叶林; B, 落叶阔叶林; C, 温性针阔混交林; A1, 油松群系; B1, 辽东栎群系; B2, 白桦群系; B3, 辽东栎+白桦群系; C1, 油松+辽东栎群系; A1-1, 油松-土庄绣线菊群丛; A1-2, 油松-胡枝子群丛; A1-3, 油松-水栒子群丛; A1-4, 油松-南蛇藤群丛; B1-1, 辽东栎-土庄绣线菊群丛; B1-2, 辽东栎-胡枝子群丛; B1-3, 辽东栎-水栒子群丛; B1-4, 辽东栎-虎榛子群丛; B2-1, 白桦-土庄绣线菊群丛; B2-2, 白桦-水栒子群丛; B2-3, 白桦-虎榛子群丛; B3-1, 辽东栎+白桦-土庄绣线菊群丛; B3-2, 辽东栎+白桦-水栒子; C1-1, 油松+辽东栎-土庄绣线菊群丛; C1-2, 油松+辽东栎-胡枝子群丛。
Fig. 3 Principal Components Analysis (PCA) ordination graph of the community at different organizational scales. I, Tree layer. II, Shrub layer. III, Herb layer. A, temperate coniferous forest; B, deciduous broadleaved forest; C, temperate coniferous-broadleaved mixed forest; A1, Form. Pinus tabulaeformis; B1, Form. Quercus liaotungensis; B2, Form. Betula platyphylla; B3, Form. Quercus liaotungensis + Betula platyphylla; C1, Form. Pinus tabulaeformis + Quercus liaotungensis; A1-1, Ass. Pinus tabulaeformis-Spi- raea pubescens; A1-2, Ass. Pinus tabulaeformis-Lespedeza bicolor; A1-3, Ass. Pinus tabulaeformis-Cotoneaster multiflorus; A1-4, Ass. Pinus tabulaeformis-Celastrus orbiculatus; B1-1, Ass. Quercus liaotungensis-Spiraea pubescens; B1-2, Ass. Quercus liaotungensis-Lespedeza bicolor; B1-3, Ass. Quercus liaotungensis-Cotoneaster multiflorus; B1-4, Ass. Quercus liaotungensis-Ostryopsis davidiana; B2-1, Ass. Betula platyphylla-Spiraea pubescens; B2-2, Ass. Betula platyphylla-Cotoneaster multiflorus; B2-3, Ass. Betula platyphylla-Ostryopsis davidiana; B3-1, Ass. Quercus liaotungensis + Betula platyphylla-Spiraea pubescens; B3-2, Ass. Quercus liaotungensis + Betula platyphylla-Cotoneaster multiflorus; C1-1, Ass. Pinus tabulaeformis + Quercus liaotungensis- Spiraea pubescens; C1-2, Ass. Pinus tabulaeformis + Quercus liaotungensis-Lespedeza bicolor.
图4 以物种丰富度(I)、Shannon-Wiener多样性(II)和Simpson多样性(III)为指标的群丛、群系和植被型3种组织尺度上乔木、灌木、草本植物3层的α、β和γ多样性组分的百分比。
Fig. 4 Proportion of tree, shrub and herb layer’s α, β and γ diversity components on three organizational scales: association, formation and vegetation type scale, using species richness (I), Shannon-Wiener diversity (II), and Simpson diversity (III) as indicators.
多样性 Diversity | 乔木 Tree | 灌木 Shrub | 草本植物 Herb | |||||
---|---|---|---|---|---|---|---|---|
OBS | EXP | OBS | EXP | OBS | EXP | |||
α1 | 0.964 | 1.639 | 3.164 | 3.641 | 2.560 | 3.104 | ||
β1 | 0.041 | 0.010 | 0.280 | 0.034 | 0.281 | 0.037 | ||
β2 | 0.248 | 0.002 | 0.107 | 0.007 | 0.119 | 0.008 | ||
β3 | 0.400 | 0.002 | 0.138 | 0.007 | 0.197 | 0.008 | ||
γ | 1.653 | 1.653 | 3.689 | 3.689 | 3.157 | 3.157 |
表2 以Shannon-Wiener多样性为指标时α、β和γ多样性在群丛、群系和植被型3种组织尺度上的观测值和期望值
Table 2 Observed and expected values of α, β and γ diversity on three organizational scales: association scale, formation scale and vegetation type scale, using Shannon-Wiener diversity as indicators
多样性 Diversity | 乔木 Tree | 灌木 Shrub | 草本植物 Herb | |||||
---|---|---|---|---|---|---|---|---|
OBS | EXP | OBS | EXP | OBS | EXP | |||
α1 | 0.964 | 1.639 | 3.164 | 3.641 | 2.560 | 3.104 | ||
β1 | 0.041 | 0.010 | 0.280 | 0.034 | 0.281 | 0.037 | ||
β2 | 0.248 | 0.002 | 0.107 | 0.007 | 0.119 | 0.008 | ||
β3 | 0.400 | 0.002 | 0.138 | 0.007 | 0.197 | 0.008 | ||
γ | 1.653 | 1.653 | 3.689 | 3.689 | 3.157 | 3.157 |
多样性 Diversity | 乔木 Tree | 灌木 Shrub | 草本植物 Herb | |||||
---|---|---|---|---|---|---|---|---|
OBS | EXP | OBS | EXP | OBS | EXP | |||
α1 | 0.403 1 | 0.714 9 | 0.922 7 | 0.953 1 | 0.838 7 | 0.876 0 | ||
β1 | 0.001 3 | 0.000 1 | 0.022 3 | 0.000 4 | 0.023 0 | 0.000 3 | ||
β2 | 0.138 6 | 0.000 0 | 0.004 0 | 0.000 1 | 0.004 1 | 0.000 1 | ||
β3 | 0.172 0 | 0.000 0 | 0.004 8 | 0.000 1 | 0.010 6 | 0.000 1 | ||
γ | 0.715 0 | 0.715 0 | 0.953 8 | 0.953 7 | 0.876 4 | 0.876 5 |
表3 以Simpson多样性为指标时α、β和γ多样性在群丛、群系和植被型3种组织尺度上的观测值和期望值
Table 3 Observed and expected values of α, β and γ diversity components on three organizational scales: association scale, formation scale and vegetation type scale, using Simpson diversity as indicators
多样性 Diversity | 乔木 Tree | 灌木 Shrub | 草本植物 Herb | |||||
---|---|---|---|---|---|---|---|---|
OBS | EXP | OBS | EXP | OBS | EXP | |||
α1 | 0.403 1 | 0.714 9 | 0.922 7 | 0.953 1 | 0.838 7 | 0.876 0 | ||
β1 | 0.001 3 | 0.000 1 | 0.022 3 | 0.000 4 | 0.023 0 | 0.000 3 | ||
β2 | 0.138 6 | 0.000 0 | 0.004 0 | 0.000 1 | 0.004 1 | 0.000 1 | ||
β3 | 0.172 0 | 0.000 0 | 0.004 8 | 0.000 1 | 0.010 6 | 0.000 1 | ||
γ | 0.715 0 | 0.715 0 | 0.953 8 | 0.953 7 | 0.876 4 | 0.876 5 |
[1] |
Allan JD (1975). Components of diversity. Oecologia, 18, 359-367.
DOI URL PMID |
[2] |
Azovsky AI (2009). Structural complexity of species assemblages and spatial scale of community organization: a case study of marine benthos. Ecological Complexity, 6, 308-315.
DOI URL |
[3] | Bond EM, Chase JM (2002). Biodiversity and ecosystem functioning at local and regional spatial scales. Ecology Letters, 5, 467-470. |
[4] |
Bunnell FL, Huggard DJ (1999). Biodiversity across spatial and temporal scales: problems and opportunities. Forest Ecology and Management, 115, 113-126.
DOI URL |
[5] |
Chase JM, Leibold MA (2002). Spatial scale dictates the productivity-biodiversity relationship. Nature, 416, 427-430.
DOI URL PMID |
[6] | Chandy S, Gibson DJ, Robertson PA (2006). Additive partitioning of diversity across hierarchical spatial scales in a forested landscape. Journal of Applied Ecology, 43, 792-801. |
[7] | Chen XY (陈小勇), Lu HP (陆慧萍), Ying XY (应向阳), Song YC (宋永昌) (2006). Additive partitioning of tree species diversity in Tiantong National Forest Park. Chinese Journal of Applied Ecology (应用生态学报), 17, 567-571. (in Chinese with English abstract) |
[8] | Cramer MJ, Willig MR (2002). Habitat heterogeneity, habitat associations, and rodent species diversity in a sand- shinnery-oak landscape. Journal of Mammalogy, 83, 743-753. |
[9] |
Crist TO, Veech JA, Gering JC, Summerville KS (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β and γ diversity. The American Naturalist, 162, 734-743.
URL PMID |
[10] | Department of Forestry of Shaanxi Province ( 陕西省林业厅) ( 1964). Manual of Shaanxi Forestry (陕西林业手册). China Forestry Publishing House, Beijing. 22-53. (in Chinese). |
[11] | Du HQ (杜华强), Tang MP (汤孟平), Zhou GM (周国模), Xu WB (徐文兵), Liu EB (刘恩斌), Shi YJ (施拥军) (2007). Linking species diversity with spatial scale dependence to spatial patterns using multifractal analysis. Acta Ecologica Sinica (生态学报), 27, 5038-5049. (in Chinese with English abstract) |
[12] | Ge F (戈峰) (2008). Modern Ecology (现代生态学). Science Press, Beijing. 316-317. (in Chinese) |
[13] | Gering JC, Crist TO, Veech JA (2003). Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conservation Biology, 17, 488-499. |
[14] | Gonzalez-Megias A, Gomez JM, Sanchez-Pinero F (2007). Diversity-habitat heterogeneity relationship at different spatial and temporal scales. Ecography, 30, 31-41. |
[15] | Hamer KC, Hill JK (2000). Scale-dependence effects of habitat disturbance on species richness in tropical forest. Conservation Biology, 14, 1435-1440. |
[16] | He F, Legendre P, Bellehumeur C, LaFrankie JV (1994). Diversity pattern and spatial scale: a study of a tropical rain forest of Malaysia. Environmental and Ecological Statistics, 1, 265-286. |
[17] |
Hillebrand H, Blenckner T (2002). Regional and local impact on species diversity-from pattern to processes. Oecologia, 132, 479-491.
URL PMID |
[18] | Leps J, Smilauer P (2003). Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, New York. 136-152. |
[19] | Levin SA (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943-1967. |
[20] | Li B (李博) (2000). Ecology (生态学). Higher Education Press, Beijing. 311. (in Chinese) |
[21] | Li YY (李裕元), Shao MA (邵明安) (2004). The change of plant diversity during natural recovery process of vegetation in Ziwuling area. Acta Ecologica Sinica (生态学报), 24, 252-260. (in Chinese with English abstract) |
[22] | Maurer BA, Taper ML (2002). Connecting geographical distributions with population processes. Ecology Letters, 5, 223-231. |
[23] | McLaughlin JF, Roughgarden J ( 1993). Species interactions in space. In: Ricklefs R, Schluter D eds. Species Diversity in Ecological Communities. Historical and Geographical Perspectives. The University of Chicago Press, Chicago. 89-98. |
[24] | Peixoto JC, Souza MC, Diniz-Filho JAF, Bini LM (2000). Local and regional species diversity in South American Falconiformes: a geostatistical approach. Acta Scientiarum, 22, 409-413. |
[25] | Rahbek C (2005). The role of spatial scale and the perception of large-scale species-richness patterns. Ecology Letters, 8, 224-239. |
[26] |
Ricklefs RE (1987). Community diversity: relative roles of local and regional processes. Science, 235, 167-171.
URL PMID |
[27] |
Rodriquez-Zaragoza FA, Arias-Gonzalez JE (2008). Additive diversity partitioning of reef fishes across multiple spatial scales. Caribbean Journal of Science, 44, 90-101.
DOI URL |
[28] | Ru WM (茹文明), Zhang JT (张金屯), Zhang F (张峰), Zhang GP (张桂萍), Liu RX (刘瑞祥) (2006). Species diversity and community structure of forest communities in Lishan Mountain. Chinese Journal of Applied Ecology (应用生态学报), 17, 561-566. (in Chinese with English abstract) |
[29] |
Stendera SES, Johnson RK (2005). Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshwater Biology, 50, 1360-1375.
DOI URL |
[30] | Summerville KS, Boulware MJ, Veech JA, Crist TO (2003). Spatial variation in species diversity and composition of forest lepidoptera in eastern deciduous forests of North America. Conservation Biology, 17, 1045-1057. |
[31] | Turner WR (2006). Interactions among spatial scales constrain species distributions in fragmented urban landscapes. Ecology and Society, 11, 6. |
[32] | Wang SZ (王顺忠), Chen GC (陈桂琛), Bai YP (柏玉平), Zhou GY (周国英), Sun J (孙菁) (2005). Interrelation between plant species diversity and soil environmental factors in bird island of Qinghai Lake. Chinese Journal of Applied Ecology (应用生态学报), 16, 186-188. (in Chinese with English abstract) |
[33] |
Wheatley M, Johnson C (2009). Factors limiting our understanding of ecological scale. Ecological Complexity, 6, 150-159.
DOI URL |
[34] |
Whittaker RH (1960). Vegetation of the Siskiou Mountains, Oregon and California. Ecological Monographs, 30, 279-338.
DOI URL |
[35] |
Whittaker RJ, Willis KJ, Field R (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography, 28, 453-470.
DOI URL |
[36] |
Wu JG (2004). Effects of changing scale on landscape pattern analysis: scaling relations. Landscape Ecology, 19, 125-138.
DOI URL |
[37] | Wu ZY (吴征镒) (1983). Vegetation of China (中国植被). Science Press, Beijing. 143-145. (in Chinese) |
[38] | Yang XB (杨小波), Zhang T (张桃), Wu QS (吴庆书) (2002). The relationship between biodiversity and soil fertility characteristics on abandoned fields in the tropical region of southern China. Acta Ecologica Sinica (生态学报), 22, 190-196. (in Chinese with English abstract) |
[39] | Yue M (岳明), Cui YT (崔延棠), Wang SF (王双峰) (2003). Analysis of species diversity on forest community in the Loess Plateau of North Shaanxi Province. Bulletin of Soil and Water Conservation (水土保持通报), 3, 39-45. (in Chinese with English abstract) |
[40] | Zhang T (张婷), Zhang WH (张文辉), Guo LJ (郭连金), Liu GB (刘国彬) (2007). Species diversity and community stability of Populus simonii plantations in different habitats in hilly area of the Loess Plateau. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 27, 340-347. (in Chinese with English abstract) |
[41] | Zhang YX (张育新), Ma KM (马克明), Qi J (祁建), Feng Y (冯云), Zhang JY (张洁瑜) (2009). Multi-scale analysis of plant species diversity of Oak (Quercus liaotungensis) forest at Dongling Mountain, Beijing. Acta Ecologica Sinica (生态学报), 29, 2179-2185. (in Chinese with English abstract) |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[3] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[4] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[5] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[6] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[7] | 张雪, 韩凤朋, 肖波, 沈思铭. 黄土高原生物结皮对地表粗糙度和灌草植物种子二次扩散的影响[J]. 植物生态学报, 2023, 47(12): 1668-1683. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[10] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[11] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[12] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
[13] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[14] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[15] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19