植物生态学报 ›› 2010, Vol. 34 ›› Issue (4): 375-386.DOI: 10.3773/j.issn.1005-264x.2010.04.003
所属专题: 生态系统碳水能量通量; 碳循环
许皓1,2,*(), 李彦1,2, 谢静霞3, 程磊1,2, 赵彦1,2, 刘冉1,4
收稿日期:
2009-04-08
接受日期:
2009-06-21
出版日期:
2010-04-08
发布日期:
2010-04-01
通讯作者:
许皓
作者简介:
* E-mail: joycie@ms.xjb.ac.cnXU Hao1,2,*(), LI Yan1,2, XIE Jing-Xia3, CHENG Lei1,2, ZHAO Yan1,2, LIU Ran1,4
Received:
2009-04-08
Accepted:
2009-06-21
Online:
2010-04-08
Published:
2010-04-01
Contact:
XU Hao
摘要:
全球气候变化和人类活动的加剧, 正导致古尔班通古特沙漠南缘原始盐生旱生荒漠地区的地下水位发生显著改变。大气污染导致该地区太阳辐射减少。以盐生荒漠建群种多枝柽柳(Tamarix ramosissima)为研究对象, 选择地下水位在2.9-4.5 m波动的典型原始生境, 观测了生长期内光合有效辐射和地下水位变化时的光合作用、蒸腾作用和叶水势等生理活动的季节变化, 调查了根系分布特征; 并利用涡度相关系统测定了生态系统碳水通量, 估算群落碳同化能力、蒸腾耗水量与叶面积指数的季节变化, 旨在揭示光合有效辐射和地下水位等环境因素对柽柳属(Tamarix)荒漠灌木群落光合作用的影响。研究结果表明: 降水造成的潜土层水分状况变化对多枝柽柳的碳平衡没有显著影响。深根系与气孔调节是多枝柽柳碳平衡适应荒漠环境水分状况的两个关键机制。特殊的气孔行为体现了多枝柽柳以高水分消耗为代价将其碳获取最大化的适应对策; 多枝柽柳生理与群落尺度的水分平衡和碳获取均依赖于深根系获取的稳定地下水源, 缓和的地下水位波动将不会扰动其现有的碳/水平衡, 地下水位剧烈下降将危及多枝柽柳的生存。此外, 光合有效辐射是另一个主要影响因素, 与群落碳获取呈显著正相关关系。群落碳同化能力的季节变化是光合有效辐射和地下水位共同影响下光合作用物候学特征的体现。过度开采地下水和直接破坏原生植被的行为, 将会严重地干扰多枝柽柳群落的生存, 进而破坏该区域现有的生态水文过程。
许皓, 李彦, 谢静霞, 程磊, 赵彦, 刘冉. 光合有效辐射与地下水位变化对柽柳属荒漠灌木群落碳平衡的影响. 植物生态学报, 2010, 34(4): 375-386. DOI: 10.3773/j.issn.1005-264x.2010.04.003
XU Hao, LI Yan, XIE Jing-Xia, CHENG Lei, ZHAO Yan, LIU Ran. Influence of solar radiation and groundwater table on carbon balance of phreatophytic desert shrub Tamarix. Chinese Journal of Plant Ecology, 2010, 34(4): 375-386. DOI: 10.3773/j.issn.1005-264x.2010.04.003
图1 柽柳生态系统能量闭合。 G, 土壤热通量; H, 显热通量; LE, 潜热通量; Rn, 净辐射。
Fig. 1 Energy closure in Tamarix ecosystem. G, soil heat flux; H, heat flux; LE, latent heat flux; Rn, net radiation.
图2 自然状况与无降水状况下多枝柽柳吸收根垂直分布(A和B)及生境土壤含水量(C和D)。 误差线表示平均值的标准误差。
Fig. 2 Vertical distribution of surface area of absorbing roots of Tamarix ramosissima (A, B) and soil water content (C, D) in its habitat with natural and no precipitation. Bars represent the standard error of the average.
图3 多枝柽柳叶水势(ψ)与最大蒸腾速率(Trmax)的季节变化。
Fig. 3 Seasonal variations in leaf water potential (ψ) and maximal transpiration rate (Trmax) of Tamarix ramosissima.
图4 多枝柽柳光合表观量子效率(Φ)、光补偿点光量子通量密度(Ic)、光饱和点净光合速率(Ps)及瞬时水分利用效率的季节变化。
Fig. 4 Seasonal changes in apparent quantum efficiency of photosynthesis (Φ), photosynthetic photon flux density at light compensation point (Ic), net photosynthetic rate at light saturation point (Ps), and photosynthetic water use efficiency of Tamarix ramosissima.
图5 潜在蒸发力对多枝柽柳生理活动的影响。 A, 光饱和点净光合速率(Ps)以及潜在蒸发力与最大蒸腾速率的相关性; B, 潜在蒸发力与瞬时水分利用效率的相关性。
Fig. 5 Effects of potential evaporation on physiological activities of Tamarix ramosissima. A, The correlation between net photosynthetic rate at light saturation point / potential evaporation and the maximum transpiration rate (Trmax). B, The correlation between potential evaporation and photosynthetic water use efficiency (WUE).
月份 Month | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September |
---|---|---|---|---|---|
每日净辐射 Daily net radiation (W·m-2) | 4 471 | 4 392 | 5 170 | 4 635 | 2 638 |
每日光合有效辐射 Daily photosynthetically active radiation (mmol·m-2·d-1) | 47 745 | 47 462 | 50 848 | 39 629 | 34 533 |
平均温度 Average temperature (℃) | 19.1 | 27.0 | 24.3 | 22.1 | 17.5 |
潜在蒸发力 Potential evaporation (mm) | 202.7 | 205.3 | 208.5 | 160.0 | 138.0 |
降水 Precipitation (mm) | 6.8 | 7.2 | 11.1 | 44.2 | 1.1 |
地下水位 Water table (m) | 3.12 | 4.04 | 3.69 | 4.43 | 3.87 |
群落碳收支 Community carbon budget (g C·m-2·d-1) | -0.40a | -0.42a | -0.51a | -0.33a | -0.24a |
群落蒸腾耗水 Community water loss (mm·d-1) | 0.95 | 0.84 | 0.91 | 0.21 | 0.46 |
叶面积指数LAI | 0.19 | 0.17 | 0.25 | 0.15 | 0.18 |
碳平衡 Ecosystem carbon balance (g C·m-2·d-1) | -0.07b | -0.10b | -0.11b | -0.19b | -0.26a |
水分蒸散 Ecosystem evapotranspiration (mm·d-1) | 1.17 | 1.07 | 1.28 | 1.64 | 0.50 |
表1 柽柳生态系统气象要素、地下水位、碳收支与叶面积指数的季节变化
Table 1 Seasonal variation of meteorological factors, water table, carbon budget and leaf area index (LAI) in Tamarix ecosystem
月份 Month | 5月 May | 6月 June | 7月 July | 8月 August | 9月 September |
---|---|---|---|---|---|
每日净辐射 Daily net radiation (W·m-2) | 4 471 | 4 392 | 5 170 | 4 635 | 2 638 |
每日光合有效辐射 Daily photosynthetically active radiation (mmol·m-2·d-1) | 47 745 | 47 462 | 50 848 | 39 629 | 34 533 |
平均温度 Average temperature (℃) | 19.1 | 27.0 | 24.3 | 22.1 | 17.5 |
潜在蒸发力 Potential evaporation (mm) | 202.7 | 205.3 | 208.5 | 160.0 | 138.0 |
降水 Precipitation (mm) | 6.8 | 7.2 | 11.1 | 44.2 | 1.1 |
地下水位 Water table (m) | 3.12 | 4.04 | 3.69 | 4.43 | 3.87 |
群落碳收支 Community carbon budget (g C·m-2·d-1) | -0.40a | -0.42a | -0.51a | -0.33a | -0.24a |
群落蒸腾耗水 Community water loss (mm·d-1) | 0.95 | 0.84 | 0.91 | 0.21 | 0.46 |
叶面积指数LAI | 0.19 | 0.17 | 0.25 | 0.15 | 0.18 |
碳平衡 Ecosystem carbon balance (g C·m-2·d-1) | -0.07b | -0.10b | -0.11b | -0.19b | -0.26a |
水分蒸散 Ecosystem evapotranspiration (mm·d-1) | 1.17 | 1.07 | 1.28 | 1.64 | 0.50 |
图7 柽柳净生态系统碳交换、土壤碳通量与群落净碳收支日过程及其季节变化。
Fig. 7 Diurnal patterns of net ecosystem carbon exchange, soil carbon flux and net community carbon budget of Tamarix and their seasonal variations.
图8 柽柳群落净碳收支与光合有效辐射的关系。 每个点代表2005-2007年生长季内同一时间段连续20 d的平均值。
Fig. 8 Relationship between carbon budget of Tamarix community and photosynthetically active radiation (PAR). Each plot represents the average of continous 20 d during the same period in the growth season of 2005-2007.
图10 多枝柽柳群落净碳吸收与光合有效辐射和地下水位的关系。
Fig. 10 Relationships between net carbon uptake of Tamarix community and photosynthetically active radiation (PAR) or water table.
[1] | Anderson JE (1982). Factors controlling transpiration and photosynthesis in Tamarix chinensis Lour. Ecology, 63, 48-56. |
[2] | Arndt SK (2006). Integrated research of plant functional traits is important for the understanding of ecosystem processes. Plant and Soil, 285, 1-3. |
[3] | Chen ZH (陈志华), Shi GY (石广玉), Che HZ (车慧正) (2005). Analysis of the solar radiation of Xinjiang Uygur Autonomous Region in recent 40 years. Arid Land Geography (干旱区地理), 28, 734-739. (in Chinese with English abstract) |
[4] |
Cleverly JR, Smith SD, Sala A, Devitt DA (1997). Invasive capacity of Tamarix ramosissima in a Mojave Desert floodplain: the role of drought. Oecologia, 111, 12-18.
URL PMID |
[5] | Cohen Y, Fuchs M, Cohen S (1983). Resistance to water uptake in a mature citrus tree. Journal of Experimental Botany, 34, 451-560. |
[6] | Donovan LA, Ehleringer JR (1994). Water stress and use of summer precipitation in a Great Basin shrub community. Functional Ecology, 8, 289-297. |
[7] | Eagleson PS (1982). Ecological optimality in water limited natural soil-vegetation systems. Water Resources Research, 18, 325-354. |
[8] | Ehleringer JR (1995). Variation in gas exchange characteristics among desert plants. In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynthesis Springer-Verlag, Berlin. 361-392. |
[9] | Goulden ML, Munger JW, Fan SM (1996). Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. Global Change Biology, 2, 169-182. |
[10] | Hastings SJ, Oechel WC, Muhlia-Melo A (2005). Diurnal, seasonal, and annual variation in net ecosystem CO2 exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global Change Biology, 11, 927-939. |
[11] | Horton JL, Kolb TE, Hart SC (2001). Physiological response to groundwater depth varies among species and with river flow regulation. Ecological Applications, 11, 1046-1059. |
[12] | Li Y, Xu H, Cohen S (2005). Long-term hydraulic acclimation to soil texture and radiation load in cotton. Plant, Cell & Environment, 28, 492-499. |
[13] | Massman WJ, Lee X (2002). Eddy covariance corrections and uncertainties in long-term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 113, 121-144. |
[14] |
Muller O, Hikosaka K, Hirose T (2005). Seasonal changes in light and temperature affect the balance between light harvesting and light utilizations components of photosynthesis in an evergreen understory shrub. Oecologia, 143, 501-508.
DOI URL PMID |
[15] | Qian Y, Kaiser DP, Leung LR, Xu M (2006). More frequent cloud-free sky and less surface solar radiation in China from 1955-2000. Geophysical Research Letters, 33, L01812. |
[16] | Rundell PW, Nobel PS (1991). Structure and function of desert root systems. In: Atkinson D ed. Plant Root Growth: an Ecological Perspective. Blackwell, Oxford, UK. 349-378. |
[17] | Sala A, Smith SD (1996). Water use by Tamarix ramosissima and associated phreatophytes in a Mojave desert flood plain. Ecological Applications, 6, 888-898. |
[18] |
Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore B, Murdiyarso D III, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169-172.
URL PMID |
[19] | Schwinning S, Ehleringer JR (2001). Water use trade-offs and optimal adaptations to pulse-driven arid ecosystems. Journal of Ecology, 89, 464-480. |
[20] | Smith SD, Monson RK, Anderson JE (1996). Physiological Ecology of North American Desert Plants. Springer, Berlin. 165-178. |
[21] | Sperry JS, Hacke UG (2002). Desert shrub water relations with respect to soil characteristics and plant functional type. Functional Ecology, 16, 367-378. |
[22] | Su PX (苏培玺), Zhao AF (赵爱芬), Zhang LX (张立新), Du MW (杜明武), Chen HS (陈怀顺) (2003). Characteristic in photosynthesis, transpiration and water use efficiency of Haloxylon ammodendron and Calligonum mongolicum of desert species. Acta Botanica Boreal-Occidental Sinica (西北植物学报), 23, 11-17. (in Chinese with English abstract) |
[23] | Wang YG, Xiao DN, Li Y (2008). Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: a case study Fubei Region of Xinjiang Province, China. Environment Monitoring and Assessment, 140, 291-302. |
[24] | Webb EK, Pearman GI, Leuning R (1980). Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100. |
[25] | Wesely ML, Lenschow DH (1989). Flux measurement techniques. In: Lenschow DH, Hicks BB eds. Global Tropospheric Chemistry, Chemical Fluxes in the Global Atmosphere. The National Center for Atmospheric Research (NCAR) Technical Report, Boulder, CO, USA. 31-46. |
[26] | Xie JX, Li Y, Zhai CX, Li CH, Lan ZD (2009). CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environmental Geology, 56, 953-961. |
[27] | Xu H, Li Y (2006). Water use strategy of three central Asian desert shrubs and their responses to rain pulse events. Plant and Soil, 285, 5-17. |
[28] | Xu H (许皓), Li Y (李彦), Zou T (邹婷), Xie JX (谢静霞), Jiang LX (蒋礼学) (2007). Ecophysiological response and morphological adjustment of Haloxylon ammodendron towards variation in summer precipitation. Acta Ecologica Sinica (生态学报), 27, 5019-5028. (in Chinese with English abstract) |
[29] | Yang JS (杨劲松) (1995). Progress in the study on soil salinization. Soil (土壤), 27(1), 23-27. (in Chinese with English abstract) |
[30] | Ye WH (叶万辉), Zhang XM (张希明), Li XM (李小明), Deng X (邓雄) (2002). A study of the gas exchange characteristics of four desert plants. Acta Phytoecologica Sinica (植物生态学报), 26, 605-612. (in Chinese with English abstract) |
[1] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[2] | 刘兵兵, 魏建新, 胡天宇, 杨秋丽, 刘小强, 吴发云, 苏艳军, 郭庆华. 卫星遥感监测产品在中国森林生态系统的验证和不确定性分析——基于海量无人机激光雷达数据[J]. 植物生态学报, 2022, 46(10): 1305-1316. |
[3] | 刘超, 李平, 武运涛, 潘胜难, 贾舟, 刘玲莉. 一种基于数码相机图像和群落冠层结构调查的草地地上生物量估算方法[J]. 植物生态学报, 2022, 46(10): 1280-1288. |
[4] | 黄松宇, 贾昕, 郑甲佳, 杨睿智, 牟钰, 袁和第. 中国典型陆地生态系统波文比特征及影响因素[J]. 植物生态学报, 2021, 45(2): 119-130. |
[5] | 杨焕莹, 宋建达, 周焘, 金光泽, 姜峰, 刘志理. 林分、土壤及空间因子对谷地云冷杉林叶面积指数空间异质性的影响[J]. 植物生态学报, 2019, 43(4): 342-351. |
[6] | 刘泽彬, 王彦辉, 刘宇, 田奥, 王亚蕊, 左海军. 宁夏六盘山半湿润区华北落叶松林冠层叶面积指数的时空变化及坡面尺度效应[J]. 植物生态学报, 2017, 41(7): 749-760. |
[7] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[8] | 周明, 刘志理, 金光泽. 利用3种校正方案提高间接法测定兴安落叶松人工林叶面积指数的精度[J]. 植物生态学报, 2016, 40(6): 574-584. |
[9] | 吴启美, 周启星. 大金发藓对土壤多氯联苯污染的生理生态响应[J]. 植物生态学报, 2015, 39(3): 275-282. |
[10] | 朱绪超, 袁国富, 邵明安, 易小波, 杜涛. 塔里木河下游河岸带植被的空间结构特征[J]. 植物生态学报, 2015, 39(11): 1053-1061. |
[11] | 刘志理, 金光泽, 周明. 利用直接法和间接法测定针阔混交林叶面积指数的季节动态[J]. 植物生态学报, 2014, 38(8): 843-856. |
[12] | 穆少杰, 周可新, 齐杨, 陈奕兆, 方颖, 朱超. 内蒙古植被降水利用效率的时空格局及其驱动因素[J]. 植物生态学报, 2014, 38(1): 1-16. |
[13] | 苏宏新, 白帆, 李广起. 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较[J]. 植物生态学报, 2012, 36(3): 231-242. |
[14] | 侯琼, 王英舜, 杨泽龙, 师桂花. 内蒙古典型草原作物系数的动态模拟与确定[J]. 植物生态学报, 2010, 34(12): 1414-1423. |
[15] | 刘建立, 王彦辉, 于澎涛, 程丽莉, 熊伟, 徐丽宏, 杜阿朋. 六盘山叠叠沟小流域典型坡面土壤水分的植被承载力[J]. 植物生态学报, 2009, 33(6): 1101-1111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19