植物生态学报 ›› 2017, Vol. 41 ›› Issue (6): 661-669.DOI: 10.17521/cjpe.2016.0257
收稿日期:
2017-05-03
接受日期:
2016-08-04
出版日期:
2017-06-10
发布日期:
2017-07-19
通讯作者:
赵成章
作者简介:
* 通信作者Author for correspondence (E-mail:
基金资助:
Jing CHEN, Cheng-Zhang ZHAO*(), Ji-Wei WANG, Lian-Chun ZHAO
Received:
2017-05-03
Accepted:
2016-08-04
Online:
2017-06-10
Published:
2017-07-19
Contact:
Cheng-Zhang ZHAO
About author:
KANG Jing-yao(1991-), E-mail:
摘要:
植物可以通过调整树冠构型和光截获来增强自身的光合效率和竞争力。在甘肃省张掖市黑河干流边缘的洪泛平原湿地选取I (25-36 Ind.·plot-1)、II (37-48 Ind.·plot-1)和III (49-60 Ind.·plot-1) 3个密度梯度, 研究了不同密度旱柳(Salix matsudana)的冠层厚度、冠层面积和冠层光截获, 以及它们的相互关系。结果表明: 随旱柳种群密度增加, 土壤水分逐渐增加、土壤电导率和水分利用率逐渐减小, 旱柳枝长度与冠层厚度呈逐渐增大的趋势, 光合有效辐射、分枝数、分枝角度与冠层面积呈逐渐减小的趋势, 叶面积指数和光截获、净光合速率和蒸腾速率在中密度样地最大; 旱柳的光截获与冠层厚度和冠层面积在低密度样地分别呈极显著正相关和负相关关系, 在高密度样地呈显著正相关和负相关关系(p < 0.05), 在中密度样地均呈极显著正相关关系(p < 0.01)。旱柳在低密度选择减小光截获与冠层厚度而增大冠层面积的水平空间拓展模式, 在高密度倾向于垂直空间拓展模式, 反映了植物树冠构型在不同生境中的表型可塑性变化。
陈静, 赵成章, 王继伟, 赵连春. 不同密度旱柳的树冠构型与光截获. 植物生态学报, 2017, 41(6): 661-669. DOI: 10.17521/cjpe.2016.0257
Jing CHEN, Cheng-Zhang ZHAO, Ji-Wei WANG, Lian-Chun ZHAO. Canopy structure and radiation interception of Salix matsudana: Stand density dependent relationships. Chinese Journal of Plant Ecology, 2017, 41(6): 661-669. DOI: 10.17521/cjpe.2016.0257
密度分组 Density fractions | 密度区间 Density interval (Ind.·plot-1) | 样方数 Number of plots | 高度 Height (cm) | 胸径 Diameter at breast height (cm) | 郁闭度 Crown density (%) |
---|---|---|---|---|---|
低密度 Low density (I) | 25-36 | 26 | 398.57 ± 20.63c | 13.06 ± 0.61a | 42.84 ± 2.72c |
中密度 Medium density (II) | 37-48 | 38 | 454.69 ± 24.05b | 10.72 ± 0.58b | 69.56 ± 3.93b |
高密度 High density (III) | 49-60 | 36 | 521.23 ± 27.48a | 8.64 ± 0.39c | 87.09 ± 4.37a |
表1 样地分组情况和旱柳种群的生物学特征(平均值±标准误差)
Table 1 Biological characteristics of Salix matsudana population (mean ± SE) at three stands of variable density
密度分组 Density fractions | 密度区间 Density interval (Ind.·plot-1) | 样方数 Number of plots | 高度 Height (cm) | 胸径 Diameter at breast height (cm) | 郁闭度 Crown density (%) |
---|---|---|---|---|---|
低密度 Low density (I) | 25-36 | 26 | 398.57 ± 20.63c | 13.06 ± 0.61a | 42.84 ± 2.72c |
中密度 Medium density (II) | 37-48 | 38 | 454.69 ± 24.05b | 10.72 ± 0.58b | 69.56 ± 3.93b |
高密度 High density (III) | 49-60 | 36 | 521.23 ± 27.48a | 8.64 ± 0.39c | 87.09 ± 4.37a |
图1 不同密度条件下旱柳种群冠层构型的变化(平均值±标准误差)。不同小写字母表示在密度间差异显著(p < 0.05)。I、II、III, 同表1。
Fig. 1 Canopy structure of Salix matsudana by density (mean ± SE). The lowercase letters indicate significant differences among density (p < 0.05). I, II, III, see Table 1.
图2 不同密度旱柳光截获与冠层厚度的关系。I、II、III, 同表1。
Fig. 2 Relationship between light interception and crown depth of Salix matsudana by density. I, II, III, see Table 1.
图3 不同密度旱柳冠层光截获与冠层面积的关系。I、II、III, 同表1。
Fig. 3 Relationship between light interception and crown area of Salix matsudana by density. I, II, III, see Table 1.
密度 Density | |||
---|---|---|---|
I | II | III | |
土壤质量含水量 Mass moisture of soil (%) | 31.56 ± 1.52a | 34.83 ± 1.87a | 38.47 ± 2.01a |
土壤电导率 Soil electric conductivity (ms·cm-1) | 7.75 ± 0.41a | 4.09 ± 0.21b | 2.36 ± 0.13c |
光合有效辐射 PAR (μmol·m-2·s-1) | 981.26 ± 50.14a | 740.51 ± 39.08b | 434.67 ± 24.34c |
光截获 LI | 0.64 ± 0.03c | 0.81 ± 0.05a | 0.73 ± 0.04b |
净光合速率 Pn (μmol·m-2·s-1) | 10.27 ± 0.53b | 13.69 ± 0.61a | 9.26 ± 0.47c |
蒸腾速率 Tr (mmol·m-2·s-1) | 4.59 ± 0.23c | 6.52 ± 0.34a | 5.24 ± 0.27b |
水分利用率 WUE (μmol·mmol-1) | 2.34 ± 0.11a | 2.10 ± 0.09b | 1.77 ± 0.08c |
表2 不同密度旱柳群落土壤性质与光合性状(平均值±标准误差)
Table 2 Soil characteristics and photosynthetic characteristics of Salix matsudana stand by density (mean ± SE)
密度 Density | |||
---|---|---|---|
I | II | III | |
土壤质量含水量 Mass moisture of soil (%) | 31.56 ± 1.52a | 34.83 ± 1.87a | 38.47 ± 2.01a |
土壤电导率 Soil electric conductivity (ms·cm-1) | 7.75 ± 0.41a | 4.09 ± 0.21b | 2.36 ± 0.13c |
光合有效辐射 PAR (μmol·m-2·s-1) | 981.26 ± 50.14a | 740.51 ± 39.08b | 434.67 ± 24.34c |
光截获 LI | 0.64 ± 0.03c | 0.81 ± 0.05a | 0.73 ± 0.04b |
净光合速率 Pn (μmol·m-2·s-1) | 10.27 ± 0.53b | 13.69 ± 0.61a | 9.26 ± 0.47c |
蒸腾速率 Tr (mmol·m-2·s-1) | 4.59 ± 0.23c | 6.52 ± 0.34a | 5.24 ± 0.27b |
水分利用率 WUE (μmol·mmol-1) | 2.34 ± 0.11a | 2.10 ± 0.09b | 1.77 ± 0.08c |
[1] | Clark JS (2010). Individuals and the variation needed for high species diversity in forest trees.Science, 327, 1129-1132. |
[2] | Cline MG (1991). Apical dominance.The Botanical Review, 57, 318-358. |
[3] | Depury DGG, Farquhar GD (1997). Simple scaling of photosynthesis from leaves to canopies without the errors of big-leaf models.Plant, Cell & Environment, 20, 537-557. |
[4] | Du J, Zhao CZ, Song QH, Shi YC, Wang JW, Chen J (2016). Plant size differences with twig and leaf traits of Zygophyllum xanthoxylum in the northern slope of Qilian Mountains, China. Chinese Journal of Plant Ecology, 40, 212-220. (in Chinese with English abstract)[杜晶, 赵成章, 宋清华, 史元春, 王继伟, 陈静 (2016). 祁连山北坡霸王枝-叶性状关系的个体大小差异. 植物生态学报, 40, 212-220.] |
[5] | Duan J, Ma LY, Jia LM, Xu CY, Jia ZK, Che WR (2010). The density effect ofPlatycladus orientalis plantation in Beijing area. Acta Ecologica Sinica, 30, 3206-3214. (in Chinese with English abstract)[段劼, 马履一, 贾黎明, 徐程扬, 贾忠奎, 车文瑞 (2010). 北京地区侧柏人工林密度效应. 生态学报, 30, 3206-3214.] |
[6] | Goel NS (1988). Models of vegetation canopy rellectance and their use in estimation of biophysical parameters from rellectance data.Remote Sening Reviews, 4, 1-221. |
[7] | Gong R, Gao Q (2015). Research progress in the effects of leaf hydraulic characteristics on plant physiological functions.Chinese Journal of Plant Ecology, 39, 300-308. (in Chinese with English abstract)[龚容, 高琼 (2015). 叶片结构的水力学特性对植物生理功能影响的研究进展. 植物生态学报, 39, 300-308.] |
[8] | Guo J, Xiao K, Guo XY, Zhang FL, Zhao CZ (2005). Review on maize canopy structure, light distributing and canopy photosynthesis.Journal of Maize Science, 13(2), 55-59. (in Chinese with English abstract)[郭江, 肖凯, 郭新宇, 张凤路, 赵春江 (2005). 玉米冠层结构、光分布和光合作用研究综述. 玉米科学, 13(2), 55-59.] |
[9] | Han L, Zhao CZ, Xu T, Feng W, Duan BB, Zheng HL.Trade-off between leaf size and vein density ofAchnatherum splendens in Zhangye wetland. Chinese Journal of Plant Ecology, 40, 788-797. (in Chinese with English abstract)[韩玲, 赵成章, 徐婷, 冯威, 段贝贝, 郑慧玲 (2016). 张掖湿地芨芨草叶大小和叶脉密度的权衡关系. 植物生态学报, 40, 788-797.] |
[10] | Japhet W, Zhou DW, Zhang HX, Zhang HX, Yu T (2009). Evidence of phenotypic plasticity in the response of Fagopyrum esculentum to population density and sowing date. Journal of Plant Biology, 52, 303-311. |
[11] | Kanniah KD, Beringer J, North P, Hutley L (2012). Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review.Progress in Physical Geography, 36, 209-237. |
[12] | Kind DA, Davies SJ, Noor NSM (2006). Growth and mortality are related to adult tree size in a Malaysian mixed dipterocarp forest. Forest Ecology and Management, 223, 152-158. |
[13] | King DA (1997). Branch growth and biomass allocation in Abies amabilis saplings in contrasting light environments. Tree Physiology, 17, 251-258. |
[14] | Li L, Zhou DW, Sheng LX (2011). Density dependence- determined plant biomass allocation pattern. Chinese Journal of Ecology, 30, 1579-1589. (in Chinese with English abstract)[黎磊, 周道玮, 盛连喜 (2011). 密度制约决定的植物生物量分配格局. 生态学杂志, 30, 1579-1589.] |
[15] | Li SY, Feng W, Wang YH, Wang CY, Guo TC (2013). Effects of spacing interval of wide bed planting on canopy characteristics and yield in winter wheat.Chinese Journal of Plant Ecology, 37, 758-767. (in Chinese with English abstract)[李世莹, 冯伟, 王永华, 王晨阳, 郭天财 (2013). 宽幅播种带间距对冬小麦冠层特征及产量的影响. 植物生态学报, 37, 758-767.] |
[16] | Ma ZQ, Liu QJ, Zeng HQ, Li XR, Chen YR, Zhang SH, Yang FD, Wang HQ (2008). Estimation of leaf area index of planted forests in subtropical China by photogrammetry.Acta Ecologica Sinica, 28, 1971-1980. (in Chinese with English abstract)[马泽清, 刘琪憬, 曾慧卿, 李轩然, 陈永瑞, 林耀明, 张时煌, 杨风亭, 汪宏清 (2008). 南方人工林叶面积指数的摄影测量. 生态学报, 28, 1971-1980.] |
[17] | Osunkoya OO, Omar-Ali K, Amit N, Dayan J, Daud DS, Sheng TK (2007). Comparative height crown allometry and mechanical design in 22 tree species of Kuala Belalong rainforest, Brunei, Borneo.American Journal of Botany, 94, 1951-1962. |
[18] | Poorter L, Bongers F, Sterck FJ, Woll H (2003). Architecture of 53 rain forest tree species differing in adult stature and shade tolerance.Ecology, 84, 602-608. |
[19] | Poorter L, Wright SJ, Paz H, Ackerly DD, Condit R, IbarraManriquez G, Harms KE, Licona JC, Martínez-Ramos M, Mazer SJ, Muller-Landau HC, Peña-Claros M, Webb CO, Wright IJ (2008). Are functional traits good predictors of demographic rates? Evidence from five neotropical forests.Ecology, 89, 1908-1920. |
[20] | Rodríguez-González PM, Stella JC, Campelo F, Ferreira MT Albuquerque A (2010). Subsidy or stress? Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe.Forest Ecology & Management, 259, 2015-2025. |
[21] | Shi YC, Zhao CZ, Song QH, Du J, Wang JW (2015). Allometric relationship between height and crown width or diameter of Platycladus orienalis on different slope aspects of Lanzhou northern mountains.Chinese Journal of Ecology, 34, 1879-1885. (in Chinese with English abstract)[史元春, 赵成章, 宋清华, 杜晶, 王继伟 (2015). 兰州北山侧柏株高与冠幅、胸径异速生长关系的坡向差异性. 生态学杂志, 34, 1879-1885.] |
[22] | Sixto H, Cañellas I, Arendonka JV, Ciria P, Camps F, Sánchez M, Sánchez-González M (2015). Growth potential of different species and genotypes for biomass production in short rotation in Mediterranean environments.Forest Ecology and Management, 354, 291-299. |
[23] | Song X, Fang J, Han X, He X, Liu M, Hu J, Zhuo R (2016). Overexpression of quinone reductase from Salix matsudana Koidz enhances salt tolerance in transgenic Arabidopsis thaliana. Gene, 576, 520-527. |
[24] | Stenberg P, Smolander H, Sprugel D, Smolander S (1998). Shoot structure, light interception, and distribution of nitrogen in anAbies amabilis canopy. Tree Physiology, 18, 759-767. |
[25] | Sun HG, Chen YT (2010). Root growth patterns of four coastal shelter forest tree species in response to salt stress.Chinese Journal of Ecology, 29, 2365-2372. (in Chinese with English abstract)[孙洪刚, 陈益泰 (2010). 沿海防护林四个树种根系分布对盐胁迫的响应. 生态学杂志, 29, 2365-2372.] |
[26] | Thorpe HC, Astrup R, Trowbridge A, Coates KD (2010). Competition and tree crowns: A neighborhood analysis of three boreal tree species.Forest Ecology and Management, 259, 1586-1596. |
[27] | Wang JF, Feng YL (2004). The effect of light intensity on blomass allocation, leaf morphology and relative growth rate of two invasive plants. Acta Phytoecologica Sinica, 28, 781-786. (in Chinese with English abstract)[王俊峰, 冯玉龙 (2004). 光强对两种入侵植物生物量分配、叶片形态和相对生长速率的影响. 植物生态学报, 28, 781-786.] |
[28] | Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry.Biological Reviews, 81, 259-291. |
[29] | Wunsche JN, Lakso AN, Robinson TL, Lenz F, Denning SS (1996). The bases of productivity in apple production systems: The role of light interception by different shoot types.Journal of the American Society for Horticultural Science, 121, 886-893. |
[30] | Xia JB, Zhang SY, Zhao ZG, Zhao YY, Gao Y, Gu GY, Sun JK (2013). Critical effect of photosynthetic efficiency in Salix matsudana to soil moisture and its threshold grade in shell ridgei sland. Chinese Journal of Plant Ecology, 37, 851-860. (in Chinese with English abstract)[夏江宝, 张淑勇, 赵自国, 赵艳云, 高源, 谷广义, 孙景宽 (2013). 贝壳堤岛旱柳光合效率的土壤水分临界效应及其阈值分级. 植物生态学报, 37, 851-860.] |
[31] | Yang XD, Yan ER, Zhang ZH, Sun BW, Huang HX, ARSHAD A, Ma WJ, Shi QR (2013). Tree architecture of overlapping species among successional stages in evergreen broad-leaved forests in Tiantong region, Zhejiang Province, China.Chinese Journal of Plant Ecology, 37, 611-619. (in Chinese with English abstract)[杨晓东, 阎恩荣, 张志浩, 孙宝伟, 黄海侠, ARSHAD A, 马文济, 史青茹 (2013). 浙江天童常绿阔叶林演替阶段共有种的树木构型. 植物生态学报, 37, 611-619.] |
[32] | Zhang H, Li JN, Wang GX, Dai XF, Qiu MQ, Zheng KF. (2008). Plants interactions between Suaeda salsa individuals are mediated by salinity stress. Acta Physiologiae Plantarum, 30, 99-104. |
[33] | Zhang JH, Shi QR, Xu MS, Zhao YT, Zhong Q, Zhang FJ, Yan ER (2014). Testing of Corner’s rules across woody plants in Tiantong region, Zhejiang Province: Effects of individual density.Chinese Journal of Plant Ecology, 38, 655-664. (in Chinese with English abstract)[章建红, 史青茹, 许洺山, 赵延涛, 仲强, 张富杰, 阎恩荣 (2014). 浙江天童木本植物Corner法则的检验: 个体密度的影响. 植物生态学报, 38, 655-664.] |
[34] | Zhang WF, Wang ZL, Yu SL, Li SK, Fang J, Tong WS (2004). Effects of planting density on canopy photosynthesis, canopy structures and yield formation of high-yield cotton in Xinjiang, China.Acta Phytoecologica Sinica, 28, 164-171. (in Chinese with English abstract)[张旺锋, 王振林, 余松烈, 李少昆, 房建, 童文崧 (2004). 种植密度对新疆高产棉花群体光合作用、冠层结构及产量形成的影响. 植物生态学报, 28, 164-171.] |
[35] | Zhang YQ, Liang CZ, Wang W, Wang LX, Peng JT, Yan JC, Jia JC (2010). Soil salinity andAchnatherum splendens distribution. Chinese Journal of Ecology, 29, 2438-2443. (in English with Chinese abstract)[张雅琼, 梁存柱, 王炜, 王立新, 彭江涛, 闫建成, 贾成朕 (2010). 芨芨草群落土壤盐分特征. 生态学杂志, 29, 2438-2443.] |
[36] | Zhou HH, Li WH (2015). Responses and adaptation of xylem hydraulic conductivity to salt stress inPopulus euphratica. Chinese Journal of Plant Ecology, 39, 81-91 (in English with Chinese abstract)[周洪华, 李卫红 (2015). 胡杨木质部水分传导对盐胁迫的响应与适应. 植物生态学报, 39, 81-91.] |
[1] | 文佳 张新娜 王娟 赵秀海 张春雨. 性状调节幼苗存活率对邻体竞争和环境的响应 [J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 赵榕江, 陈焘, 董丽佳, 郭辉, 马海鲲, 宋旭, 王明刚, 薛伟, 杨强. 植物-土壤反馈及其在生态学中的研究进展[J]. 植物生态学报, 2023, 47(10): 1333-1355. |
[3] | 史欢欢, 雪穷, 于振林, 汪承焕. 密度、物种比例对盐沼植物种子萌发阶段种内、种间相互作用的影响[J]. 植物生态学报, 2023, 47(1): 77-87. |
[4] | 张慧, 曾文静, 龚新桃, 马泽清. 亚热带典型树种根毛特征及其与共生真菌的关系[J]. 植物生态学报, 2023, 47(1): 88-100. |
[5] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[6] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[7] | 王银柳, 耿倩倩, 黄建辉, 王常慧, 李磊, 哈斯木其尔, 牛国祥. 氮肥和种植密度对达乌里胡枝子的生长与生物固氮的影响[J]. 植物生态学报, 2021, 45(1): 13-22. |
[8] | 于青含, 金光泽, 刘志理. 植株大小、枝龄和环境共同驱动红松枝性状的变异[J]. 植物生态学报, 2020, 44(9): 939-950. |
[9] | 冯银平, 沈海花, 罗永开, 徐龙超, 刘上石, 朱言坤, 赵梦颖, 邢爱军, 方精云. 种植密度对苜蓿生长及生物量的影响[J]. 植物生态学报, 2020, 44(3): 248-256. |
[10] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[11] | 李娜, 张一鹤, 韩晓增, 尤孟阳, 郝翔翔. 长期不同植被覆盖对黑土团聚体内有机碳组分的影响[J]. 植物生态学报, 2019, 43(7): 624-634. |
[12] | 冯慧芳, 刘落鱼, 薛立. 氮磷添加及林分密度对大叶相思林土壤化学性质的影响[J]. 植物生态学报, 2019, 43(11): 1010-1020. |
[13] | 张振振, 杨轲嘉, 顾宇璐, 赵平, 欧阳磊. 模拟降雨格局变化对亚热带地区两树种液流特征的影响[J]. 植物生态学报, 2019, 43(11): 988-998. |
[14] | 孟令君, 姚杰, 秦江环, 范春雨, 张春雨, 赵秀海. 吉林蛟河针阔混交林乔木幼苗组成及其密度格局影响因素[J]. 植物生态学报, 2018, 42(6): 653-662. |
[15] | 邹顺, 周国逸, 张倩媚, 徐姗, 熊鑫, 夏艳菊, 刘世忠, 孟泽, 褚国伟. 1992-2015年鼎湖山季风常绿阔叶林群落结构动态[J]. 植物生态学报, 2018, 42(4): 442-452. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19