植物生态学报 ›› 2017, Vol. 41 ›› Issue (11): 1149-1156.DOI: 10.17521/cjpe.2016.0321
收稿日期:
2016-10-17
接受日期:
2017-10-23
出版日期:
2017-11-10
发布日期:
2017-11-10
通讯作者:
范秀华
基金资助:
Ling-Zhao TAN1, Chun-Yu FAN1, Xiu-Hua FAN2,*
Received:
2016-10-17
Accepted:
2017-10-23
Online:
2017-11-10
Published:
2017-11-10
Contact:
Xiu-Hua FAN
摘要:
该研究以吉林蛟河阔叶红松林为分析对象, 比较了物种多样性和群落结构对生产力的影响, 试图为解释多样性-生产力关系、指导森林经营管理提供科学依据。研究利用11.76 hm2大样地中10 973株木本植物数据, 通过线性回归模型分析了7个物种多样性和群落结构指标与生产力的相关性, 进而利用结构方程模型比较了物种多样性和群落结构对生产力的影响。结果显示: (1)在线性回归模型中, 物种多样性和群落结构均对生产力有显著作用, 其中物种多样性均匀度指数与生产力显著负相关, 群落结构的香农指数与生产力显著正相关, 基尼系数与生产力显著负相关。(2)在结构方程模型中, 群落结构对生产力的影响比物种多样性更强。研究认为群落结构对生产力的作用比物种多样性更大, 在森林经营管理中, 提高群落结构复杂性对促进生产力具有重要的意义。
谭凌照, 范春雨, 范秀华. 吉林蛟河阔叶红松林木本植物物种多样性及群落结构与生产力的关系. 植物生态学报, 2017, 41(11): 1149-1156. DOI: 10.17521/cjpe.2016.0321
Ling-Zhao TAN, Chun-Yu FAN, Xiu-Hua FAN. Relationships between species diversity or community structure and productivity of woody-plants in a broad-leaved Korean pine forest in Jiaohe, Jilin, China. Chinese Journal of Plant Ecology, 2017, 41(11): 1149-1156. DOI: 10.17521/cjpe.2016.0321
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|
胸高断面积年均增长量 Annual growth of basal area (cm2·a-1) | 76.53-543.60 | 272.22 | 83.62 |
林冠开阔度 Canopy openness | 1.12-3.99 | 1.87 | 0.38 |
土壤全氮 Soil total nitrogen (g·kg-1) | 0.65-1.60 | 0.95 | 0.16 |
土壤全磷 Soil total phosphorus (g·kg-1) | 0.33-1.09 | 0.79 | 0.12 |
土壤全钾 Soil total potassium (g·kg-1) | 20.40-20.90 | 20.70 | 0.01 |
土壤速效氮 Soil available nitrogen (mg·kg-1) | 29.93-68.81 | 53.65 | 8.48 |
土壤速效磷 Soil available phosphorus (mg·kg-1) | 0.09-22.01 | 11.94 | 5.59 |
土壤速效钾 Soil available potassium (mg·kg-1) | 206.80-236.20 | 226.30 | 5.74 |
土壤有机碳 Soil organic carbon (%) | 5.51-13.33 | 9.64 | 1.60 |
土壤pH值 Soil pH value | 4.38-5.32 | 4.88 | 0.25 |
胸高断面积密度 Basal area density (cm2·m-2) | 9.73-46.31 | 27.97 | 5.96 |
表1 样地内基础变量信息统计表
Table 1 The statistical information of basic variables in the sampling plot
变量 Variables | 范围 Range | 平均值 Mean | 标准偏差 Standard deviation |
---|---|---|---|
胸高断面积年均增长量 Annual growth of basal area (cm2·a-1) | 76.53-543.60 | 272.22 | 83.62 |
林冠开阔度 Canopy openness | 1.12-3.99 | 1.87 | 0.38 |
土壤全氮 Soil total nitrogen (g·kg-1) | 0.65-1.60 | 0.95 | 0.16 |
土壤全磷 Soil total phosphorus (g·kg-1) | 0.33-1.09 | 0.79 | 0.12 |
土壤全钾 Soil total potassium (g·kg-1) | 20.40-20.90 | 20.70 | 0.01 |
土壤速效氮 Soil available nitrogen (mg·kg-1) | 29.93-68.81 | 53.65 | 8.48 |
土壤速效磷 Soil available phosphorus (mg·kg-1) | 0.09-22.01 | 11.94 | 5.59 |
土壤速效钾 Soil available potassium (mg·kg-1) | 206.80-236.20 | 226.30 | 5.74 |
土壤有机碳 Soil organic carbon (%) | 5.51-13.33 | 9.64 | 1.60 |
土壤pH值 Soil pH value | 4.38-5.32 | 4.88 | 0.25 |
胸高断面积密度 Basal area density (cm2·m-2) | 9.73-46.31 | 27.97 | 5.96 |
指数 Index | 计算公式 Formula | 平均值 Mean value | 范围 Range | |
---|---|---|---|---|
物种多样性 Species diversity | 物种丰富度 Species richness | 8.34 | 4-15 | |
物种香农指数 Species Shannon index | 1.81 | 1.18-2.55 | ||
物种均匀度 Species evenness | 0.87 | 0.65-0.97 | ||
群落结构变异 Variation of community structure | 胸径香农指数 DBH Shannon index | 2.77 | 2.24-3.11 | |
胸径均匀度 DBH evenness | 0.94 | 0.70-1.11 | ||
胸径变异系数 Coefficient of DBH variation | 77.36 | 44.14-112.70 | ||
胸径基尼系数 DBH Gini index | 0.39 | 0.24-0.51 |
表2 物种多样性和群落结构变异计算公式及结果
Table 2 The formulas and results of species diversity and community structure of woody plants in the studied forest
指数 Index | 计算公式 Formula | 平均值 Mean value | 范围 Range | |
---|---|---|---|---|
物种多样性 Species diversity | 物种丰富度 Species richness | 8.34 | 4-15 | |
物种香农指数 Species Shannon index | 1.81 | 1.18-2.55 | ||
物种均匀度 Species evenness | 0.87 | 0.65-0.97 | ||
群落结构变异 Variation of community structure | 胸径香农指数 DBH Shannon index | 2.77 | 2.24-3.11 | |
胸径均匀度 DBH evenness | 0.94 | 0.70-1.11 | ||
胸径变异系数 Coefficient of DBH variation | 77.36 | 44.14-112.70 | ||
胸径基尼系数 DBH Gini index | 0.39 | 0.24-0.51 |
解释变量 Explanatory variables | 估计值 Estimate | ||
---|---|---|---|
物种多样性模型 Species diversity model | 群落结构变异模型 Community structural variation model | ||
A | B | ||
物种均匀度 Species evenness | -0.211* | - | - |
胸径香农指数 DBH Shannon index | - | 0.400*** | - |
胸径基尼系数 DBH Gini index | - | - | -0.337*** |
胸高断面积密度 Basal area density | 0.914*** | 0.756*** | 0.964*** |
林冠开阔度 Canopy openness | 0.289*** | 0.275** | 0.298*** |
有机碳 Soil organic carbon | 0.517*** | 0.221* | 0.293*** |
速效钾 Available potassium | 0.991*** | 0.193* | 0.241** |
速效氮 Available nitrogen | 0.413*** | - | - |
pH | -0.520*** | - | - |
速效磷 Available phosphorus | - | 0.413*** | - |
全磷 Total phosphorus | - | -0.244* | - |
调整决定系数 Adjusted R2 | 34.67% | 35.95% | 31.93% |
AIC值 AIC value | 1 080.385 | 1 074.56 | 1 090.52 |
表3 与生产力显著相关的多样性线性回归结果
Table 3 The correlation coefficient between the examined variables and forest productivity using different models
解释变量 Explanatory variables | 估计值 Estimate | ||
---|---|---|---|
物种多样性模型 Species diversity model | 群落结构变异模型 Community structural variation model | ||
A | B | ||
物种均匀度 Species evenness | -0.211* | - | - |
胸径香农指数 DBH Shannon index | - | 0.400*** | - |
胸径基尼系数 DBH Gini index | - | - | -0.337*** |
胸高断面积密度 Basal area density | 0.914*** | 0.756*** | 0.964*** |
林冠开阔度 Canopy openness | 0.289*** | 0.275** | 0.298*** |
有机碳 Soil organic carbon | 0.517*** | 0.221* | 0.293*** |
速效钾 Available potassium | 0.991*** | 0.193* | 0.241** |
速效氮 Available nitrogen | 0.413*** | - | - |
pH | -0.520*** | - | - |
速效磷 Available phosphorus | - | 0.413*** | - |
全磷 Total phosphorus | - | -0.244* | - |
调整决定系数 Adjusted R2 | 34.67% | 35.95% | 31.93% |
AIC值 AIC value | 1 080.385 | 1 074.56 | 1 090.52 |
图1 物种多样性和群落结构对生产力的作用路径图。图中实线表示作用路径显著, 虚线表示作用路径不显著。***, p < 0.001。
Fig. 1 The impact paths of species diversity and community structure on productivity. Solid line indicates significant path, while dashed line indicates insignificant path. ***, p < 0.001.
[1] | Bertness MD, Leonard GH (1997). The role of positive interacttions in communities: Lessons from intertidal habitats.Ecology, 78, 1976-1989. |
[2] |
Bourdier T, Cordonnier T, Kunstler G, Piedallu C, Lagarrigues G, Courbaud B (2016). Tree size inequality reduces forest productivity: An analysis combining inventory data for ten European species and a light competition model.PLOS ONE, 11, e0151852. doi: 10.1371/journal.pone.0151852.
DOI URL PMID |
[3] | Box GEP, Cox DR (1964). An analysis of transformations.Journal of the Royal Statistical Society, 26, 211-252. |
[4] |
Chesson P (2000). Mechanisms of maintenance of species diversity.Annual Review of Ecology & Systematics, 31, 343-366.
DOI URL |
[5] |
Christopherm G, Christophs V, Brady H, Peters C (2010). Wood net primary production resilience in an unmanaged forest transitioning from early to middle succession.Forest Ecology & Management, 260, 36-41.
DOI URL |
[6] |
Clark JS (2010). Individuals and the variation needed for high species diversity in forest trees.Science, 327, 1129-1132.
DOI URL PMID |
[7] |
Coomes DA, Kunstler G, Canham CD, Wright E (2009). A greater range of shade-tolerance niches in nutrient-rich forests: An explanation for positive richness-productivity relationships?Journal of Ecology, 97, 705-717.
DOI URL |
[8] |
D?nescu A, Albrecht AT, Bauhus J (2016). Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany.Oecologia, 182, 319-333.
DOI URL PMID |
[9] |
Fahey RT, Fotis AT, Woods KD (2015). Quantifying canopy complexity and effects on productivity and resilience in late-successional hemlock-hardwood forests.Ecological Applications, 25, 834-847.
DOI URL PMID |
[10] |
Forrester DI, Bauhus J (2016). A review of processes behind diversity—Productivity relationships in forests.Current Forestry Reports, 2, 1-17.
DOI URL |
[11] | Fox J (2008). Applied Regression Analysis and Generalized Linear Models. 2nd edn. Sage Publications, Thousand Oaks, USA. |
[12] | Fox J, Monette G (1992). Generalized collinearity diagnostics.Journal of the American Statistical Association, 87, 178-183. |
[13] |
Hardiman BS, Bohrer G, Gough CM, Vogel CS, Curtisi PS (2011). The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest.Ecology, 92, 1818-1827.
DOI URL PMID |
[14] |
Hardiman BS, Gough CM, Halperin A, Hofmeister KL, Nave LE, Bohrer G, Curtis P (2013). Maintaining high rates of carbon storage in old forests: A mechanism linking canopy structure to forest function.Forest Ecology & Management, 298, 111-119.
DOI URL |
[15] |
He JS, Fang JY, Ma KP, Huang JH (2003). Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems?Acta Phytoecologica Sinica, 27, 835-843. (in Chinese with English abstract)[贺金生, 方精云, 马克平, 黄建辉 (2003). 生物多样性与生态系统生产力: 为什么野外观测和受控实验结果不一致? 植物生态学报, 27, 835-843.]
DOI URL |
[16] |
Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Set?l? H, Symstad AJ, Vandermeer J, Wardle DA (2005). Effects of biodiversity on ecosystem functioning: A consensus of current knowledge.Ecological Monographs, 75, 3-35.
DOI URL |
[17] | Kuehne C, Weiskittel AR, Fraver S, Puettmann KJ (2015). Effects of thinning-induced changes in structural heterogeneity on growth, ingrowth, and mortality in secondary coastal Douglas-fir forests.Canadian Journal of Forest Research, 45, 1448-1461. |
[18] |
Lei X, Wang W, Peng C (2008). Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada.Canadian Journal of Forest Research, 39, 1835-1847.
DOI URL |
[19] |
Liang J, Buongiorno J, Monserud RA, Kruger EL, Zhou Me (2007). Effects of diversity of tree species and size on forest basal area growth, recruitment, and mortality.Forest Ecology & Management, 243, 116-127.
DOI URL |
[20] |
Long JN, Shaw JD (2010). The influence of compositional and structural diversity on forest productivity.Forestry, 289, 121-128.
DOI URL |
[21] | Loreau M, Hector A (2001). Partitioning selection and complementarity in biodiversity experiments.Nature, 412, 72-76. |
[22] | Maire GL, Nouvellon Y, Christina M, Ponzoni FJ, Gon?alves JLM, Bouillet JP, Laclau JP (2013). Tree and stand light use efficiencies over a full rotation of single- and mixed- species Eucalyptus grandis, and Acacia mangium plantations. Forest Ecology & Management, 288, 31-42. |
[23] |
Morin X, Fahse L, Scherer-Lorenzen M, Bugmann H (2011). Tree species richness promotes productivity in temperate forests through strong complementarity between species.Ecology Letters, 14, 1211-1219.
DOI URL PMID |
[24] | Naeem S, Bunker DE, Hector A, Loreau M, Perrings C (2009). Biodiversity, Ecosystem Functioning, and Human Wellbeing. Oxford University Press, New York. |
[25] |
Parker GG, Davis MM, Chapotin SM (2002). Canopy light transmittance in Douglas-fir-western hemlock stands.Tree Physiology, 22, 147-157.
DOI URL PMID |
[26] |
Parker GG, Harmon ME, Lefsky MA, Chen J (2004). Three- dimensional structure of an old-growth Pseudotsuga- Tsuga, canopy and its implications for radiation balance, microclimate, and gas exchange.Ecosystems, 7, 440-453.
DOI URL |
[27] |
Pretzsch H (2014). Canopy space filling and tree crown morphology in mixed-species stands compared with monocultures.Forest Ecology & Management, 327, 251-264.
DOI URL |
[28] |
Reich PB, Tilman D, Isbell F, Mueller K, Hobbie SE, Flynn DFB, Eisenhauer N (2012). Impacts of biodiversity loss escalate through time as redundancy fades.Science, 336, 589-592.
DOI URL PMID |
[29] |
Ruijven JV, Berendse F (2005). Diversity-productivity relationships: Initial effects, long-term patterns, and underlying mechanisms.Proceedings of the National Academy of Sciences of the United States of America, 102, 695-700.
DOI URL PMID |
[30] |
Ryan MG, Stape JL, Binkley D, Fonseca S, Loos RA, Takahashi EN, Silva CR, Silva SR, Hakamada RE, Ferreira JM, Lima AMN, Gava JL, Leite FP, Andrade HB, Alves JM, Silva GGC (2010). Factors controlling Eucalyptus productivity: How water availability and stand structure alter production and carbon allocation.Forest Ecology & Management, 259, 1695-1703.
DOI URL |
[31] | Tilman D, Lehman CL, Thomson KT (1997). Plant diversity and ecosystem productivity: Theoretical considerations.Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861. |
[32] |
Tilman D, Reich PB, Knops JM (2006). Biodiversity and ecosystem stability in a decade-long grassland experiment.Nature, 441, 629-632.
DOI URL PMID |
[33] |
Tilman D, Wedin D, Knops J (1996). Productivity and sustainability influenced by biodiversity in grassland ecosystems.Nature, 379, 718-720.
DOI URL |
[34] |
Valladares F, Niinemets U (2008). Shade tolerance, a key plant feature of complex nature and consequences.Annual Review of Ecology Evolution & Systematics, 39, 237-257.
DOI URL |
[35] |
Yachi S, Loreau M (2007). Does complementary resource use enhance ecosystem functioning? A model of light competition in plant communities. Ecology Letters, 10, 54-62.
DOI URL PMID |
[36] |
Zhang Y, Chen HYH (2015). Individual size inequality links forest diversity and above-ground biomass.Journal of Ecology, 103, 1245-1252.
DOI URL |
[37] |
Zhang Y, Chen HYH, Reich PB (2012). Forest productivity increases with evenness, species richness and trait variation: A global meta-analysis.Journal of Ecology, 100, 742-749.
DOI URL |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[4] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[5] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[6] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[7] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[8] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[9] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[10] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[11] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[12] | 樊凡, 赵联军, 马添翼, 熊心雨, 张远彬, 申小莉, 李晟. 川西王朗亚高山暗针叶林25.2 hm2动态监测样地物种组成与群落结构特征[J]. 植物生态学报, 2022, 46(9): 1005-1017. |
[13] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[14] | 冯继广, 张秋芳, 袁霞, 朱彪. 氮磷添加对土壤有机碳的影响: 进展与展望[J]. 植物生态学报, 2022, 46(8): 855-870. |
[15] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 5428
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 1486
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La