植物生态学报 ›› 2011, Vol. 35 ›› Issue (12): 1290-1299.DOI: 10.3724/SP.J.1258.2011.01290
收稿日期:
2011-05-17
接受日期:
2011-11-07
出版日期:
2011-05-17
发布日期:
2011-12-15
通讯作者:
刘文哲
作者简介:
*(E-mail:lwenzhe@nwu.edu.cn)Received:
2011-05-17
Accepted:
2011-11-07
Online:
2011-05-17
Published:
2011-12-15
Contact:
LIU Wen-Zhe
摘要:
花序内性别表达和性别分配的差异在被子植物中非常普遍。常见的变化模式是: 在顺次开放的花序内, 从早开的花到晚开的花, 生殖结构大小和数量依次减少, 晚开的花偏向雄性。通常认为资源竞争和位置效应是形成这种差异的主要原因。在喜树(Camptotheca acuminata)的聚伞花序内, 早开的头状花序在花序直径、小花直径、短雄蕊长度、坐果率、果序重量等方面与晚开的头状花序差异显著。通过去除喜树聚伞花序一级或一级和二级头状花序来控制花序内的资源分配, 从而分析影响喜树花序内花性状、性别分配及生殖能力的主要因子。结果显示, 去除部分头状花序后, 剩余头状花序的花序直径、小花直径明显增加, 短雄蕊长度明显缩短, 位置间差异消失; 而坐果率、果序重量的位置间差异依然显著。表明资源限制对花序直径、小花直径和短雄蕊长度等影响显著, 而坐果率和果序重量受位置效应影响明显。喜树雄全同株的性别分配可能是对特定生殖状况和资源状况适应的结果。
徐申林, 刘文哲. 喜树花序内性别表达及性别分配. 植物生态学报, 2011, 35(12): 1290-1299. DOI: 10.3724/SP.J.1258.2011.01290
XU Shen-Lin, LIU Wen-Zhe. Intra-inflorescence sex expression and allocation in Camptotheca acuminata. Chinese Journal of Plant Ecology, 2011, 35(12): 1290-1299. DOI: 10.3724/SP.J.1258.2011.01290
图1 喜树花序结构示意图。数字表示头状花序位置: 1, 一级; 2, 二级; 3, 三级。
Fig. 1 Structure diagram of Camptotheca acuminata inflorescence. Number refer to inflorescence position: 1, primary; 2, secondary; 3, tertiary。
图2 实验处理示意图。A, 去除一级头状花序。B, 去除一级和二级头状花序。C, 对照。
Fig. 2 Diagram of experimental treatment. A, Removing primary capitulum. B, Removing primary and secondary capitulum. C, Control.
分组 Group (150个聚伞花序 150 cyme) | 亚组 Subgroup (50个聚伞花序 50 cyme) | 处理对象 Object | 处理 Treatment |
---|---|---|---|
A组 Group A | A1 | 最初可见的花芽 First visible buds | 去除一级头状花序 Removing primary capitulum |
A2 | 发育10天后的花芽 Flower buds after 10 days | ||
A3 | 发育20天后的花芽 Flower buds after 20 days | ||
B组 Group B | B1 | 最初可见的花芽 First visible buds | 去除一级和二级头状花序 Removing primary and secondary capitulum |
B2 | 发育10天后的花芽 Flower buds after 10 days | ||
B3 | 发育20天后的花芽 Flower buds after 20 days | ||
C组 Group C | 不做任何处理 No treatment |
表1 实验处理及分组
Table 1 Experimental treatment and groups
分组 Group (150个聚伞花序 150 cyme) | 亚组 Subgroup (50个聚伞花序 50 cyme) | 处理对象 Object | 处理 Treatment |
---|---|---|---|
A组 Group A | A1 | 最初可见的花芽 First visible buds | 去除一级头状花序 Removing primary capitulum |
A2 | 发育10天后的花芽 Flower buds after 10 days | ||
A3 | 发育20天后的花芽 Flower buds after 20 days | ||
B组 Group B | B1 | 最初可见的花芽 First visible buds | 去除一级和二级头状花序 Removing primary and secondary capitulum |
B2 | 发育10天后的花芽 Flower buds after 10 days | ||
B3 | 发育20天后的花芽 Flower buds after 20 days | ||
C组 Group C | 不做任何处理 No treatment |
图3 喜树C组(对照组)花序内不同位置花性状的平均值(±标准误差)。不同字母表示在p < 0.05水平差异显著。花序位置同图1。
Fig. 3 Means (± SE) of ?oral traits at different intra-in?orescence positions for Group C (control) of Camptotheca acuminate. Different letters denote significant differences (p < 0.05) level. Inflorescence position see .
图4 喜树花序内同一位置不同处理组花性状的平均值(±标准误差)。不同字母表示在 p < 0.05水平差异显著。A组, 去除一级头状花序; B组, 去除一级和二级头状花序; C组, 对照组。花序位置同图1。
Fig. 4 Means (± SE) of ?oral traits at equal intra-in?orescence position of different treatments of Camptotheca acuminate. Different letters denote significant differences (p < 0.05) level. Group A, remove primary capitulum; Group B, remove primary and secondary capitulum; Group C, control. Inflorescence position see .
来源 Source | df | 花特征 Floral trait | ||||||
---|---|---|---|---|---|---|---|---|
花序直径 Capitulum diameter | 花数目 Flower number | 花直径 Corolla diameter | 花瓣长度 Petal length | 单花花粉粒 Pollen grains per flower | 长雄蕊长度 Long stamen length | 短雄蕊长度 Short stamen length | ||
处理 Treatment | 1 | 0.352 | 0.886 | 0.001 | 0.330 | 0.813 | 0.549 | 0.020 |
处理时间 Treat time | 2 | 0.980 | 0.863 | 0.070 | 0.786 | 0.124 | 0.399 | 0.180 |
处理×处理时间 Treatment × treat time | 2 | 0.875 | 0.491 | 0.870 | 0.228 | 0.042 | 0.217 | 0.195 |
表2 处理和处理时间的双因素方差分析(p值)
Table 2 Two-way ANOVA of treatment and treat time (p value)
来源 Source | df | 花特征 Floral trait | ||||||
---|---|---|---|---|---|---|---|---|
花序直径 Capitulum diameter | 花数目 Flower number | 花直径 Corolla diameter | 花瓣长度 Petal length | 单花花粉粒 Pollen grains per flower | 长雄蕊长度 Long stamen length | 短雄蕊长度 Short stamen length | ||
处理 Treatment | 1 | 0.352 | 0.886 | 0.001 | 0.330 | 0.813 | 0.549 | 0.020 |
处理时间 Treat time | 2 | 0.980 | 0.863 | 0.070 | 0.786 | 0.124 | 0.399 | 0.180 |
处理×处理时间 Treatment × treat time | 2 | 0.875 | 0.491 | 0.870 | 0.228 | 0.042 | 0.217 | 0.195 |
图5 喜树不同处理组花序内不同位置花性状的平均值(±标准误差)。不同字母表示在p < 0.05水平差异显著。A组, 去除一级头状花序; B组, 去除一级和二级头状花序; C组, 对照组。花序位置同图1。
Fig. 5 Means (± SE) of ?oral traits at different intra-in?orescence positions of different treatment groups of Camptotheca acuminate. Different letters denote significant differences (p < 0.05) level. Group A, remove primary capitulum; Group B, remove primary and secondary capitulum; Group C, control. Inflorescence position see .
图6 喜树花序轴的横切面。A, 一级花序的花序轴及其维管组织。B, 二级花序的花序轴及其维管组织。C, 三级花序的花序轴及其维管组织。
Fig. 6 Cross section of inflorescence axle for Camptotheca acuminate. A, Inflorescence axle of primary position and the vascular tissue in it. B, Inflorescence axle of secondary position and the vascular tissue in it. C, Inflorescence axle of tertiary position and the vascular tissue in it.
[1] |
Ashman TL, Hitchens MS (2000). Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae). American Journal of Botany, 87,197-204.
URL PMID |
[2] | Brookes RH, Jesson LK, Burd M (2010). Reproductive investment within inflorescences of Stylidium armeria varies with the strength of early resource commitment. Annals of Botany, 105,679-705. |
[3] | Brunet J (1996). Male reproductive success and variation in fruit and seed set in Aquilegia caerulea (Ranunculaceae). Ecology, 77,2458-2471. |
[4] |
Brunet J, Charlesworth D (1995). Floral sex allocation in sequentially blooming plants. Evolution, 49,70-79.
DOI URL PMID |
[5] |
Buide ML (2004). Intra-inflorescence variation in floral traits and reproductive success of the hermaphrodite Silene acutifolia. Annals of Botany, 94,441-448.
DOI URL PMID |
[6] |
Buide ML (2008). Disentangling the causes of intrainflorescence variation in floral traits and fecundity in the hermaphrodite Silene acutifolia. American Journal of Botany, 95,490-497.
DOI URL PMID |
[7] | Charlesworth D, Charlesworth B (1981). Allocation of resources to male and female functions in hermaphrodites. Biological Journal of the Linnean Society, 15,57-74. |
[8] | Chen LJ, Wang FH, Wu YR (1991). The pollination biology of Camptotheca acuminata Decne. (Nyssaceae). Cathaya, 3,45-52. |
[9] | de Kroon H, Huber H, Stuefer JF, van Groenendael JM (2005). A modular concept of phenotypic plasticity in plants. New Phytologist, 166,73-82. |
[10] | Diggle PK (1995). Architectural effects and the interpretation of patterns of fruit and seed development. Annual Review of Ecology and Systematics, 26,531-552. |
[11] | Diggle PK (2003). Architectural effects on floral form and function: a review. In: Stuessy T, Hörandl E, Mayer V eds. Deep Morphology: Toward a Renaissance of Morphology in Plant Systematics. Koeltz, Königstein, Germany. 63-80. |
[12] | Fang WP (方文培), Song ZP (宋滋圃), Li HY (栗和毅) (2004). Flora Reipublicae Popularis Sinicae (中国植物志) Tomus 52-2. Science Press, Beijing. (in Chinese) |
[13] |
Herrera CM, Pérez R, Alonso C (2006). Extreme intraplant variation in nectar sugar composition in an insect- pollinated perennial herb. American Journal of Botany, 93,575-581.
URL PMID |
[14] | Hu JQ (胡江琴), Wang LL (王利琳), Xiang TH (向太和), Pang JL (庞基良) (2008). Studies on the megasporogenesis and microsporegenesis and the development of the female gametophyte and male gametophyte in Camptotheca acuminate Decne. Journal of Molecular Cell Biology(分子细胞生物学报), 41,367-375. (in Chinese with English abstract) |
[15] | Huth CJ, Pellmyr O (1997). Non-random fruit retention in Yucca filamentosa: consequences for an obligate mutualism. Oikos, 78,576-584. |
[16] |
Itagaki T, Sakai S (2006). Relationship between floral longevity and sex allocation among flowers within inflorescences in Aquilegia buergeriana var.oxysepala (Ranunculaceae). American Journal of Botany, 93,1320-1327.
DOI URL PMID |
[17] | Kudo G, Maeda T, Narita K (2001). Variation in floral sex allocation and reproductive success within inflorescences of Corydalis ambigua (Fumariaceae): pollination efficiency or resource limitation? Journal of Ecology, 89,48-56. |
[18] | Liu ZJ (刘左军), Du GZ (杜国祯), Chen JK (陈家宽) (2003). Relationship between habitats and resource allocation of inflorescence structure in Ligularia virgaurea. Acta Phytoecologica Sinica (植物生态学报), 27,344-351. (in Chinese with English abstract) |
[19] | Lloyd DG (1980). Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytologist, 86,69-79. |
[20] |
Medrano M, Guitián P, Guitián J (2000). Patterns of fruit and seed set within inflorescences of Pancratium maritimum (Amaryllidaceae): Nonuniform pollination, resource limitation, or architectural effects? American Journal of Botany, 87,493-501.
URL PMID |
[21] | Ortiz PL, Berjano R, Talavera M, Arista M (2009). The role of resources and architecture in modeling floral variability for the monoecious amphicarpic Emex spinosa (Polygonaceae). American Journal of Botany, 96,2062-2073. |
[22] | Pritchard K, Edwards W (2005). Architectural constraint in fruit production of Crotalaria spectabilis (Fabaceae). Plant Species Biology, 20,41-46. |
[23] |
Quesada-Aguilar A, Kalisz S, Ashman TL (2008). Flower morphology and pollinator dynamics in Solanum carolinense (Solanaceae): implications for the evolution of andromonoecy. American Journal of Botany, 95,974-984.
DOI URL PMID |
[24] | Thomson JD (1985). Pollination and seed set in Diervilla lonicera (Caprifoliaceae): temporal patterns of flower and ovule deployment. American Journal of Botany, 72,737-740. |
[25] | Wang CC (王翠翠), Liu WZ (刘文哲), Zhang Y (张莹) (2009). Flowering characteristics and breeding system in Camptotheca acuminata Decne. Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 17,275-282. (in Chinese with English abstract) |
[26] | Wang LL (王玲丽), Liu WZ (刘文哲) (2005). Contents of camptothecin in Camptotheca acuminata from different provenances. Chinese Bulletin of Botany(植物学通报), 22,584-589. (in Chinese with English abstract) |
[27] |
Williams JL, Conner JK (2001). Sources of phenotypic variation in floral traits in wild radish,Raphanus raphanistrum (Brassicaceae). American Journal of Botany, 88,1577-1581.
URL PMID |
[28] | Wolfe LM, Denton W (2001). Morphological constraints on fruit size in Linaria canadensis. International Journal of Plant Sciences, 162,1313-1316. |
[29] | Zhao ZG (赵志刚), Du GZ (杜国祯), Liu ZJ (刘左军) (2005). Sex allocation in hermaphroditic plants. Acta Ecologica Sinica (生态学报), 25,2725-2733. (in Chinese with English abstract) |
[30] | Zhao ZG, Meng JL, Fan BL, Du GZ (2008). Reproductive patterns within racemes in protandrous Aconitum gymnandrum (Ranunculaceae): potential mechanism and among- family variation. Plant Systematics and Evolution, 273,247-256. |
[1] | 周建 王焓. 森林径级结构研究:从统计描述到理论演绎[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张增可, 李曾燕, 杨柏钰, 赛碧乐, 杨安娜, 张立, 牟凌, 郑俊勇, 金乐薇, 赵钊, 王万胜, 杜运才, 阎恩荣. 上海大金山岛常见木本植物功能性状对生长和死亡的影响[J]. 植物生态学报, 2023, 47(10): 1398-1406. |
[3] | 李巧峡, 黄小霞, 陈纹, 王镛, 孙坤. 紫花地丁两型花相互转变过程中花部形态结构的变化式样研究[J]. 植物生态学报, 2017, 41(11): 1190-1198. |
[4] | 于洋, 于涛, 王洋, 阎秀峰. 接种时期对丛枝菌根喜树幼苗喜树碱含量的影响[J]. 植物生态学报, 2010, 34(6): 687-694. |
[5] | 谢田朋, 杜国祯, 张格非, 赵志刚. 黄帚橐吾种子生产的花序位置效应及其对幼苗建植的影响[J]. 植物生态学报, 2010, 34(4): 418-426. |
[6] | 赵昕, 宋瑞清, 阎秀峰. 接种AM真菌对喜树幼苗生长及光合特性的影响[J]. 植物生态学报, 2009, 33(4): 783-790. |
[7] | 汪贵斌, 蔡金峰, 何肖华. 涝渍胁迫对喜树幼苗形态和生理的影响[J]. 植物生态学报, 2009, 33(1): 134-140. |
[8] | 万宏伟, 杨阳, 白世勤, 徐云虎, 白永飞. 羊草草原群落6种植物叶片功能特性对氮素添加的响应[J]. 植物生态学报, 2008, 32(3): 611-621. |
[9] | 赵昕, 阎秀峰. 丛枝菌根对喜树幼苗生长和氮、磷吸收的影响[J]. 植物生态学报, 2006, 30(6): 947-953. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19