植物生态学报 ›› 2019, Vol. 43 ›› Issue (1): 1-15.DOI: 10.17521/cjpe.2018.0091
所属专题: 生物多样性
• 研究论文 • 下一篇
收稿日期:
2018-04-18
接受日期:
2018-05-29
出版日期:
2019-01-20
发布日期:
2019-04-25
通讯作者:
王志恒
基金资助:
Dong-Ting ZOU1,Qing-Gang WANG2,Ao LUO1,Zhi-Heng WANG1,*()
Received:
2018-04-18
Accepted:
2018-05-29
Online:
2019-01-20
Published:
2019-04-25
Contact:
Zhi-Heng WANG
Supported by:
摘要:
蔷薇科(Rosaceae)是在中国广泛分布并具有重要经济价值的植物类群, 但蔷薇科资源植物的物种多样性格局及其保护状况尚缺乏较系统的评估。该文旨在: 1)整理中国蔷薇科资源植物名录, 显示其物种多样性格局及热点地区, 并探究这一格局的形成机制。2)评估中国蔷薇科资源植物的保护状况, 为其保护规划提供基础数据。通过广泛收集整理《中国植物志》、省级植物志等资料中关于蔷薇科的记录, 建立了中国蔷薇科物种名录(共914种), 确定了物种的主要经济用途(包括食用植物、园林绿化植物、药用植物和水果种质资源), 并建立了每种植物的高精度分布图。在此基础上, 估算了蔷薇科全部物种及主要资源植物类别的物种多样性格局, 并利用广义线性模型和冗余分析探讨了蔷薇科物种多样性格局与环境的关系。最后将物种分布与中国国家级和省级自然保护区进行叠加分析, 评估了蔷薇科植物的保护现状。结果显示: 1)四川盆地北部、东部和西部山区以及横断山区是中国蔷薇科植物的热点地区。2)蔷薇科植物多样性主要受水分因子影响。3)横断山区、云南东南部和西藏东南部等地是保护薄弱物种集中的区域, 而悬钩子属(Rubus)等类群的保护不足。
邹东廷, 王庆刚, 罗奥, 王志恒. 中国蔷薇科植物多样性格局及其资源植物保护现状. 植物生态学报, 2019, 43(1): 1-15. DOI: 10.17521/cjpe.2018.0091
Dong-Ting ZOU, Qing-Gang WANG, Ao LUO, Zhi-Heng WANG. Species richness patterns and resource plant conservation assessments of Rosaceae in China. Chinese Journal of Plant Ecology, 2019, 43(1): 1-15. DOI: 10.17521/cjpe.2018.0091
属名 Genus name | 物种总数 Number of species | 保护薄弱物 种数(比例) Number (proportion) of poorly protected species | 食用植物 Edible plants | 园林植物 Ornamental plants | 药用植物 Medicinal plants | 水果种质资源 Fruit germplasm resource | 资源物种总数 Total number of resource species | 保护薄弱的资源 物种总数(比例) Number (proportion) of poorly protected resource species |
---|---|---|---|---|---|---|---|---|
悬钩子属 Rubus | 206 | 74 (0.359) | 27 | 10 | 63 | 171 | 175 | 51 (0.291) |
蔷薇属 Rosa | 94 | 27 (0.287) | 10 | 53 | 37 | 36 | 57 | 3 (0.053) |
委陵菜属 Potentilla | 83 | 11 (0.133) | 4 | 16 | 36 | 0 | 40 | 0 |
绣线菊属 Spiraea | 67 | 13 (0.194) | 0 | 37 | 23 | 0 | 39 | 3 (0.077) |
花楸属 Sorbus | 64 | 13 (0.203) | 2 | 11 | 17 | 22 | 26 | 0 |
栒子属 Cotoneaster | 61 | 4 (0.066) | 0 | 20 | 16 | 55 | 58 | 3 (0.052) |
石楠属 Photinia | 43 | 17 (0.395) | 0 | 7 | 9 | 1 | 10 | 0 |
樱属 Cerasus | 38 | 0 | 5 | 13 | 15 | 19 | 23 | 0 |
苹果属 Malus | 23 | 2 (0.087) | 7 | 19 | 14 | 20 | 21 | 1 (0.048) |
山楂属 Crataegus | 18 | 5 (0.278) | 6 | 6 | 13 | 15 | 16 | 4 (0.250) |
绣线梅属 Neillia | 15 | 7 (0.467) | 0 | 6 | 3 | 0 | 6 | 0 |
表1 蔷薇科内超过15个物种的属及其资源和保护薄弱物种状况
Table 1 Numbers of resources plant species and poorly protected species in genera with ≥15 species in Rosaceae
属名 Genus name | 物种总数 Number of species | 保护薄弱物 种数(比例) Number (proportion) of poorly protected species | 食用植物 Edible plants | 园林植物 Ornamental plants | 药用植物 Medicinal plants | 水果种质资源 Fruit germplasm resource | 资源物种总数 Total number of resource species | 保护薄弱的资源 物种总数(比例) Number (proportion) of poorly protected resource species |
---|---|---|---|---|---|---|---|---|
悬钩子属 Rubus | 206 | 74 (0.359) | 27 | 10 | 63 | 171 | 175 | 51 (0.291) |
蔷薇属 Rosa | 94 | 27 (0.287) | 10 | 53 | 37 | 36 | 57 | 3 (0.053) |
委陵菜属 Potentilla | 83 | 11 (0.133) | 4 | 16 | 36 | 0 | 40 | 0 |
绣线菊属 Spiraea | 67 | 13 (0.194) | 0 | 37 | 23 | 0 | 39 | 3 (0.077) |
花楸属 Sorbus | 64 | 13 (0.203) | 2 | 11 | 17 | 22 | 26 | 0 |
栒子属 Cotoneaster | 61 | 4 (0.066) | 0 | 20 | 16 | 55 | 58 | 3 (0.052) |
石楠属 Photinia | 43 | 17 (0.395) | 0 | 7 | 9 | 1 | 10 | 0 |
樱属 Cerasus | 38 | 0 | 5 | 13 | 15 | 19 | 23 | 0 |
苹果属 Malus | 23 | 2 (0.087) | 7 | 19 | 14 | 20 | 21 | 1 (0.048) |
山楂属 Crataegus | 18 | 5 (0.278) | 6 | 6 | 13 | 15 | 16 | 4 (0.250) |
绣线梅属 Neillia | 15 | 7 (0.467) | 0 | 6 | 3 | 0 | 6 | 0 |
图1 中国蔷薇科物种多样性格局。不同颜色表示各个网格内蔷薇科的物种数。
Fig. 1 Species richness pattern of Rosaceae in China. Colors reflect number of Rosaceae species in each grid cell.
图2 中国蔷薇科各资源类别(食用植物、园林绿化植物、药用植物、水果种质资源)的物种多样性格局及其热点地区。第一列为物种多样性格局, 第二列为热点地区(颜色表示物种丰富度在所有网格中的分位数), 第三列为资源物种占蔷薇科全部物种的比例。
Fig. 2 Species richness patterns and hotspots of the four main resource groups (edible, ornamental, medicinal plants and fruit germplasm resources) of Rosaceae. The left column shows species richness patterns. The central column shows species richness hotspots (different colors represent different quantiles of species richness in each grid cell). The right column shows the ratios of the number of resource species and the number of all species in each grid cell.
图3 中国蔷薇科各资源类别(食用植物、园林绿化植物、药用植物、水果种质资源)物种多样性热点地区叠加图。橙红深浅表示该热点地区资源类别的种数, 详见材料与方法1.5。绿色表示我国国家级和省级自然保护区的分布。
Fig. 3 The overlaid map of species richness hotspots of the four resource groups (edible, ornamental, medicinal plants and fruit germplasm resources) of Rosaceae. The orange and red colors represent the number of resource groups sharing the grid cell as their hotspot (see Materials and Methods 1.5). Green color represents national and provincial natural reserves in China.
环境变量 Environmental variables | 总体 All species | 食用植物 Edible plants | 园林植物 Ornamental plants | 药用植物 Medicinal plants | 水果资源 Fruit Germplasm Resource |
---|---|---|---|---|---|
气温 Temperature | |||||
MAT | 14.4 | 24.1 | 15.4 | 16.6 | 19.0 |
MTCQ | 21.4 | 20.5 | 18.0 | 18.1 | 29.2 |
MTWQ | 3.7 | 20.1 | 7.7 | 9.3 | 3.7 |
降水 Precipitaion | |||||
AP | 25.2 | 27.3 | 21.6 | 25.9 | 27.9 |
MI | 35.0 | 24.3 | 28.7 | 31.1 | 36.2 |
AET | 23.2 | 35.3 | 24.7 | 28.4 | 28.0 |
气候季节性 Climate Seasonality | |||||
TSN | -19.3 | -5.2 | -9.7 | -8.2 | -30.6 |
PSN | -11.1 | -8.6 | -9.8 | -12.7 | -12.0 |
生境异质性 Habitat heterogeneity | |||||
logELER | 21.0 | 2.4 | 11.3 | 10.9 | 19.4 |
logMATR | 20.1 | 2.0 | 10.8 | 10.2 | 18.7 |
logAPR | 9.3 | 2.3 | 5.6 | 5.8 | 7.1 |
末次盛冰期以 来的气候变化 Climate Change since the LGM | |||||
anomaly_MAT | -12.7 | -7.7 | -7.1 | -9.0 | -17.1 |
anomaly_AP | -5.5 | n.s. | -3.7 | -1.8 | -6.8 |
velocity_MAT | -25.3 | -10.6 | -17.2 | -17.4 | -30.9 |
velocity_AP | -11.5 | -15.9 | -11.9 | -10.5 | -17.8 |
表2 蔷薇科全部物种及各资源类别(食用植物、园林绿化植物、药用植物、水果种质资源)物种多样性格局与环境因子的关系
Table 2 Relationships between species richness patterns and environmental variables for all species combined and for the four main resource groups (i.e. edible, ornamental, medicinal plants and fruit germplasm resources) of Rosaceae
环境变量 Environmental variables | 总体 All species | 食用植物 Edible plants | 园林植物 Ornamental plants | 药用植物 Medicinal plants | 水果资源 Fruit Germplasm Resource |
---|---|---|---|---|---|
气温 Temperature | |||||
MAT | 14.4 | 24.1 | 15.4 | 16.6 | 19.0 |
MTCQ | 21.4 | 20.5 | 18.0 | 18.1 | 29.2 |
MTWQ | 3.7 | 20.1 | 7.7 | 9.3 | 3.7 |
降水 Precipitaion | |||||
AP | 25.2 | 27.3 | 21.6 | 25.9 | 27.9 |
MI | 35.0 | 24.3 | 28.7 | 31.1 | 36.2 |
AET | 23.2 | 35.3 | 24.7 | 28.4 | 28.0 |
气候季节性 Climate Seasonality | |||||
TSN | -19.3 | -5.2 | -9.7 | -8.2 | -30.6 |
PSN | -11.1 | -8.6 | -9.8 | -12.7 | -12.0 |
生境异质性 Habitat heterogeneity | |||||
logELER | 21.0 | 2.4 | 11.3 | 10.9 | 19.4 |
logMATR | 20.1 | 2.0 | 10.8 | 10.2 | 18.7 |
logAPR | 9.3 | 2.3 | 5.6 | 5.8 | 7.1 |
末次盛冰期以 来的气候变化 Climate Change since the LGM | |||||
anomaly_MAT | -12.7 | -7.7 | -7.1 | -9.0 | -17.1 |
anomaly_AP | -5.5 | n.s. | -3.7 | -1.8 | -6.8 |
velocity_MAT | -25.3 | -10.6 | -17.2 | -17.4 | -30.9 |
velocity_AP | -11.5 | -15.9 | -11.9 | -10.5 | -17.8 |
热点地区类型 Type of hotspot | 网格数 Number of grid cells | 被保护区覆盖的 网格比例 Proportion of grid cells covered by natural reserves | 网格内保护区的 平均个数 Mean number of natural reserves in each grid cell | 保护区覆盖面积比例 Proportion of area covered by natural reserves | 保护区覆盖面积小于10%的网格数量比例 Proportion of grid cells with < 10% of area covered by natural reserve |
---|---|---|---|---|---|
所有物种 All species | 189 | 0.693 | 1.47 | 0.135 | 0.397 |
食用植物 Edible plants | 165 | 0.721 | 1.58 | 0.102 | 0.327 |
园林植物 Ornamental plants | 187 | 0.717 | 1.52 | 0.124 | 0.380 |
药用植物 Medicinal plants | 185 | 0.735 | 1.55 | 0.122 | 0.373 |
水果种质资源 Fruit germplasm resource | 172 | 0.727 | 1.57 | 0.137 | 0.424 |
四类热点 Type IV hotspot | 78 | 0.782 | 2.01 | 0.161 | 0.333 |
三类热点 Type III hotspot | 94 | 0.691 | 1.18 | 0.091 | 0.426 |
二类热点 Type II hotspot | 25 | 0.680 | 1.40 | 0.116 | 0.360 |
单一热点 Type I hotspot | 65 | 0.631 | 1.11 | 0.068 | 0.446 |
表3 蔷薇科物种多样性热点地区的保护状况
Table 3 Conservation status of species diversity hotspots of Rosaceae
热点地区类型 Type of hotspot | 网格数 Number of grid cells | 被保护区覆盖的 网格比例 Proportion of grid cells covered by natural reserves | 网格内保护区的 平均个数 Mean number of natural reserves in each grid cell | 保护区覆盖面积比例 Proportion of area covered by natural reserves | 保护区覆盖面积小于10%的网格数量比例 Proportion of grid cells with < 10% of area covered by natural reserve |
---|---|---|---|---|---|
所有物种 All species | 189 | 0.693 | 1.47 | 0.135 | 0.397 |
食用植物 Edible plants | 165 | 0.721 | 1.58 | 0.102 | 0.327 |
园林植物 Ornamental plants | 187 | 0.717 | 1.52 | 0.124 | 0.380 |
药用植物 Medicinal plants | 185 | 0.735 | 1.55 | 0.122 | 0.373 |
水果种质资源 Fruit germplasm resource | 172 | 0.727 | 1.57 | 0.137 | 0.424 |
四类热点 Type IV hotspot | 78 | 0.782 | 2.01 | 0.161 | 0.333 |
三类热点 Type III hotspot | 94 | 0.691 | 1.18 | 0.091 | 0.426 |
二类热点 Type II hotspot | 25 | 0.680 | 1.40 | 0.116 | 0.360 |
单一热点 Type I hotspot | 65 | 0.631 | 1.11 | 0.068 | 0.446 |
资源类型 Resource type | 物种总数 Total number of species | 保护薄弱物种数 Number of poorly protected species | 保护薄弱物种占比 Proportion of poorly protected species |
---|---|---|---|
食用植物 Edible plants | 120 | 1 | 0.008 |
园林植物 Ornamental plants | 286 | 12 | 0.042 |
药用植物 Medicinal plants | 495 | 8 | 0.016 |
水果种质资源 Fruit germplasm resource | 398 | 61 | 0.153 |
表4 蔷薇科各资源类别(食用植物、园林绿化植物、药用植物、水果种质资源)内保护薄弱物种的数量
Table 4 The number of poorly protected species of the four main resource groups (edible, ornamental, medicinal plants and fruit germplasm resources) of Rosaceae
资源类型 Resource type | 物种总数 Total number of species | 保护薄弱物种数 Number of poorly protected species | 保护薄弱物种占比 Proportion of poorly protected species |
---|---|---|---|
食用植物 Edible plants | 120 | 1 | 0.008 |
园林植物 Ornamental plants | 286 | 12 | 0.042 |
药用植物 Medicinal plants | 495 | 8 | 0.016 |
水果种质资源 Fruit germplasm resource | 398 | 61 | 0.153 |
图4 蔷薇科内保护薄弱物种的物种多样性格局。保护薄弱物种定义为狭域物种(分布区最小的25%物种)与受保护较弱的物种(分布范围被保护区覆盖的网格数最小的25%)的交集。
Fig. 4 Species richness pattern of poorly protected species in Rosaceae. The definition of poorly protected species is the intersection between narrowly-ranged species (bottom 25% of range sizes) and the species whose distributed grid cells are less protected (bottom 25% numbers of distributed grids covered by natural reserves).
[1] | Ai TM ( 2016). Medicinal Flora of China. Vol. 3. Peking University Medical Press, Beijing. |
[ 艾铁民 ( 2016). 中国药用植物志. 第3卷. 北京大学医学出版社, 北京.] | |
[2] | Aldasoro JJ, Aedo C, Navarro C ( 2005). Phylogenetic and phytogeographical relationships in Maloideae(Rosaceae) based on morphological and anatomical characters. Blumea—?Biodiversity, Evolution and Biogeography of Plants, 50, 3-32. |
[3] | Amsellem L, Noyer JL, Le BT, Hossaertmckey M ( 2000). Comparison of genetic diversity of the invasive weed Rubus alceifolius Poir.(Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers. Molecular Ecology, 9, 443-455. |
[4] |
Araiso T, Dunford HB ( 2005). A test of the higher-taxon approach in the identification of candidate sites for marine reserves. Biodiversity and Conservation, 14, 3151-3168.
DOI URL |
[5] |
Araújo MB, Rahbek C ( 2008). Quaternary climate changes explain diversity among reptiles and amphibians. Ecography, 31, 8-15.
DOI URL |
[6] |
Brehm JM, Maxted N, Martins-Loução MA, Ford-Lloyd BV ( 2010). New approaches for establishing conservation priorities for socio-economically important plant species. Biodiversity and Conservation, 19, 2715-2740.
DOI URL |
[7] |
Brown JH ( 2014). Why are there so many species in the tropics? Journal of Biogeography, 41, 8-22.
DOI URL PMID |
[8] | Bureau of Local Products and Wastes,Ministry of Commerce,People’s Republic of China,Institute of Botany,Chinese Academy of Sciences ( 2012). Flora of Economic Plants of China. Science Press, Beijing. |
[ 中华人民共和国商业部土产废品局, 中国科学院植物研究所 ( 2012). 中国经济植物志. 科学出版社, 北京.] | |
[9] |
Cavender-Bares J, Cortes P, Rambal S, Joffre R, Miles B, Rocheteau A ( 2005). Summer and winter sensitivity of leaves and xylem to minimum freezing temperatures: A comparison of co-occurring mediterranean oaks that differ in leaf lifespan. New Phytologist, 168, 597-612.
DOI URL PMID |
[10] |
Chin SW, Shaw J, Haberle R, Wen J, Potter D ( 2014). Diversification of almonds, peaches, plums and cherries— Mmolecular systematics and biogeographic history of Prunus(Rosaceae). Molecular Phylogenetics & Evolution, 76, 34-48.
DOI URL PMID |
[11] |
Collins JP, Halliday T ( 2005). Forecasting changes in amphibian biodiversity: Aiming at a moving target. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 360, 309-314.
DOI URL PMID |
[12] |
Currie DJ ( 1991). Energy and large-scale patterns of animal- and plant-species richness. The American Naturalist, 137, 27-49.
DOI URL |
[13] |
Dobeš C, Paule J ( 2010). A comprehensive chloroplast DNA- based phylogeny of the genus Potentilla(Rosaceae): Implications for its geographic origin, phylogeography and generic circumscription. Molecular Phylogenetics & Evolution, 56, 156-175.
DOI URL PMID |
[14] | Dong YC, Liu X ( 2006). Crops and Their Wild Relatives in China. China Agricultural Press, Beijing. |
[ 董玉琛, 刘旭 ( 2006). 中国作物及其野生近缘植物. 中国农业出版社, 北京.] | |
[15] |
Faith DP ( 1992). Conservation evaluation and phylogenetic diversity. Biological Conservation, 61, 1-10.
DOI URL |
[16] |
Fan L, Zhang MY, Liu QZ, Li LT, Song Y, Wang LF, Zhang SL, Wu J ( 2013). Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Molecular Biology Reporter, 31, 1271-1282.
DOI URL PMID |
[17] | Fang JY, Wang ZH, Tang ZY ( 2011). Atlas of Woody Plants in China: Distribution and Climate. Springer-Verlag, Berlin. |
[18] |
Fjeldså J, Bowie RCK, Rahbek C ( 2012). The role of mountain ranges in the diversification of birds. Annual Review of Ecology Evolution & Systematics, 43, 249-265.
DOI URL |
[19] |
Forest F, Grenyer R, Rouget M, Davies TJ, Cowling RM, Faith DP, Balmford A, Manning JC, Proches S, van der Bank M, Reeves G, Hedderson TAJ, Savolainen V ( 2007). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 445, 757-760.
DOI URL PMID |
[20] |
Gaston KJ ( 2000). Global patterns in biodiversity. Nature, 405, 220-227.
DOI |
[21] |
Gent PR, Danabasoglu G ( 2011). Response to increasing southern hemisphere winds in CCSM4. Journal of Climate, 24, 4992-4998.
DOI URL |
[22] |
Hawkins BA, Porter EE ( 2003). Relative influences of current and historical factors on mammal and bird diversity patterns in deglaciated North America. Global Ecology & Biogeography, 12, 475-481.
DOI URL |
[23] |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A ( 2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
DOI URL |
[24] | Hu XS ( 1955). Handbook of Economic Plants. Science Press, Beijing. |
[ 胡先骕 ( 1955). 经济植物手册. 科学出版社, 北京.] | |
[25] |
Hughes CE, Atchison GW ( 2015). The ubiquity of alpine plant radiations: From the Andes to the Hengduan Mountains. New Phytologist, 207, 275-282.
DOI URL PMID |
[26] |
Jetz W, Rahbek C ( 2002). Geographic range size and determinants of avian species richness. Science, 297, 1548-1551.
DOI URL |
[27] | Kerr JT, Packer L ( 1997). Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385, 252-254. |
[28] | Kimura MK, Uchiyama K, Nakao K, Moriguchi Y, San Jose-Maldia L, Tsumura Y ( 2014). Evidence for cryptic northern refugia in the last glacial period in Cryptomeria japonica. Annals of Botany, 114, 1687-1700. |
[29] |
Laity T, Laffan SW, González-Orozco CE, Faith DP, Dan FR, Byrne M, Miller JT, Grayn D, Costion C, Moritz CC, Newport K ( 2015). Phylodiversity to inform conservation policy: An Australian example. Science of the Total Environment, 534, 131-143.
DOI URL PMID |
[30] |
Lee S, Wen J ( 2001). A phylogenetic analysis of Prunus and the Amygdaloideae (Rosaceae) using its sequences of nuclear ribosomal DNA. American Journal of Botany, 88, 150-160.
DOI URL PMID |
[31] | Li Y ( 1999). An investigation and studies on the origin and evolution of Malus domestica Borkh. in the world. Acta Horticulturae Sinica, 26, 213-220. |
[32] |
Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, Mcghie TK, Espley RV, Hellens RP, Allan AC ( 2010). An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biology, 10, 50-66.
DOI URL PMID |
[33] |
Liston A, Cronn R, Ashman TL ( 2014). Fragaria: A genus with deep historical roots and ripe for evolutionary and ecological insights. American Journal of Botany, 101, 1686-1699.
DOI URL PMID |
[34] | Liu YM, Huang QN ( 2012). Ornamental Plant Species 1000. Fujian Science and Technology Press, Fuzhou. |
[ 刘与明, 黄全能 ( 2012). 园林植物1000种. 福建科学技术出版社, 福州.] | |
[35] |
Liu YP, Shen ZH, Wang QG, Su XY, Zhang WJ, Shrestha N, Xu XT, Wang ZH ( 2017). Determinants of richness patterns differ between rare and common species: Implications for Gesneriaceae conservation in China. Diversity & Distributions, 23, 235-246.
DOI URL |
[36] |
Lo EYY, Stefanović S, Christensen KI, Dickinson TA ( 2009). Evidence for genetic association between East Asian and western North American Crataegus L.(Rosaceae) and rapid divergence of the eastern North American lineages based on multiple DNA sequences. Molecular Phylogenetics & Evolution, 51, 157-168.
DOI URL PMID |
[37] |
Loarie SR, Duffy PB, Hamilton H, Asner GP, Field CB, Ackerly DD ( 2009). The velocity of climate change. Nature, 462, 1052-1055.
DOI URL PMID |
[38] |
López-Pujol J, Zhang FM, Sun HQ, Ying TS, Ge S ( 2011). Centres of plant endemism in China: Places for survival or for speciation? Journal of Biogeography, 38, 1267-1280.
DOI URL |
[39] |
Mccabe GJJ, Wolock DM, Hay LE, Ayers MA ( 1990). Effects of climatic change on the Thornthwaite moisture index. Jawra Journal of the American Water Resources Association, 26, 633-643.
DOI URL |
[40] |
Mcglone MS ( 1996). When history matters: Scale, time, climate and tree diversity. Global Ecology & Biogeography Letters, 5, 309-314.
DOI URL |
[41] | Mendoza W, Cano A ( 2011). Diversity of the genus Polylepis(Rosaceae, Sanguisorbeae) in the Peruvian Andes. Revista Peruana De Biología, 18, 197-200. |
[42] |
Montoya D, Rodríguez MA, Zavala MA, Hawkins BA ( 2007). Contemporary richness of holarctic trees and the historical pattern of glacial retreat. Ecography, 30, 173-182.
DOI URL |
[43] |
Morales CG, Pino MT, Pozo AD ( 2013). Phenological and physiological responses to drought stress and subsequent rehydration cycles in two raspberry cultivars. Scientia Horticulturae, 162, 234-241.
DOI URL |
[44] |
Myers N, Mittermeier RA, Mittermeier CG, Fonseca GA, Kent J ( 2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853-858.
DOI URL PMID |
[45] |
Normand S, Ricklefs RE, Flemming S, Jesper B, Oliver T, Jens-Christian S ( 2011). Postglacial migration supplements climate in determining plant species ranges in Europe. Proceedings of the Royal Society B: Biological Sciences, 278, 3644-3653.
DOI URL PMID |
[46] |
O’Brien EM ( 1993). Climatic gradients in woody plant species richness: Towards an explanation based on an analysis of southern Africa’s woody flora. Journal of Biogeography, 20, 181-198.
DOI URL |
[47] |
Oh SH, Potter D ( 2005). Molecular phylogenetic systematics and biogeography of tribe Neillieae(Rosaceae) using DNA sequences of cpDNA, rDNA, and LEAFY. American Journal of Botany, 92, 179-192.
DOI URL PMID |
[48] |
Orme CDL, Davies RG, Burgess M, Eigenbrod F, Pickup N, Olson VA, Webster AJ, Ding TS, Rasmussen PC, Ridgely RS, Stattersfield AJ, Bennett PM, Blackburn TM, Gaston KJ, Owens PF ( 2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016-1019.
DOI URL PMID |
[49] |
Palmer MW, White PS ( 1994). Scale dependence and the species-?area relationship. The American Naturalist, 144, 717-740.
DOI URL |
[50] | Peyravi M ( 2015). Prioritizing areas for conservation of Rosaceae in Iran based on the geographic distribution analysis. Iranian Journal of Botany, 21, 47-57. |
[51] | Potter D, Eriksson T, Evans RC, Oh S, Smedmark JEE, Morgan DR, Kerr M, Roberston KR, Arsenault M, Dickinson TA, Campbell CS ( 2007). Phylogeny and classification of Rosaceae. Plant Systematics & Evolution, 266, 5-43. |
[52] |
Qin HN, Yang Y, Dong SY, He Q, Jia Y, Zhao LN, Yu SX, Liu HY, Liu B, Yan YH, Xiang JY, Xia NH, Peng H, Li ZY, Zhang ZX, He XJ, Yin LK, Lin YL, Liu QR, Hou YT, Liu Y, Liu QX, Cao W, Li JQ, Chen SL, Jin XH, Gao TG, Chen WL, Ma HY, Geng YY, Jin XF, Chang CY, Jiang H, Cai L, Zang CX, Wu JY, Ye JF, Lai CJ, Liu B, Lin QW, Xue NX ( 2017). Threatened species list of China’s higher plants. Biodiversity Science, 25, 696-744.
DOI URL |
[ 覃海宁, 杨永, 董仕勇, 何强, 贾渝, 赵莉娜, 于胜祥, 刘慧圆, 刘博, 严岳鸿, 向建英, 夏念和, 彭华, 李振宇, 张志翔, 何兴金, 尹林克, 林余霖, 刘全儒, 侯元同, 刘演, 刘启新, 曹伟, 李建强, 陈世龙, 金效华, 高天刚, 陈文俐, 马海英, 耿玉英, 金孝锋, 常朝阳, 蒋宏, 蔡蕾, 臧春鑫, 武建勇, 叶建飞, 赖阳均, 刘冰, 林秦文, 薛纳新 ( 2017). 中国高等植物受威胁物种名录. 生物多样性, 25, 696-744.]
DOI URL |
|
[53] |
Ricklefs RE ( 2004). A comprehensive framework for global patterns in biodiversity. Ecology Letters, 7, 1-15.
DOI URL |
[54] |
Ru S, Main D, Evans K, Peace C ( 2015). Current applications, challenges, and perspectives of marker-assisted seedling selection in Rosaceae tree fruit breeding. Tree Genetics & Genomes, 11, 8. DOI: 10.1007/s11295-015-0834-5.
DOI URL |
[55] |
Salick J, Yang YP, Amend A ( 2005). Tibetan land use and change near Khawa Karpo, eastern Himalayas. Economic Botany, 59, 312-325.
DOI URL |
[56] |
Sandel B, Arge L, Dalsgaard B, Davies RG, Gaston KJ, Sutherland WJ, Svenning JC ( 2011) The influence of Late Quaternary climate-change velocity on species endemism. Science, 334, 660-664.
DOI URL |
[57] |
Schmitt CB, Senbeta F, Woldemariam T, Rudner M, Denich M ( 2013). Importance of regional climates for plant species distribution patterns in moist Afromontane forest. Journal of Vegetation Science, 24, 553-568.
DOI URL |
[58] |
Schneider GW, Childers NF ( 1941). Influence of soil moisture on photosynthesis, respiration and transpiration of apple leaves. Plant Physiology, 16, 565-583.
DOI URL PMID |
[59] | Scientific Investigation Team for Qinghai-Xizang Plateau,Chinese Academy of Sciences (1993). Vascular Plants in Hengduan Mountains. Science Press, Beijing. |
[ 中国科学院青藏高原综合科学考察队 ( 1993). 横断山区维管植物. 科学出版社, 北京.] | |
[60] | Sher H, Ali H, Rehman S ( 2012). Identification and conservation of important plant areas (IPAs) for the distribution of medicinal, aromatic and economic plants in the Hindukush-Himalaya mountain range. Pakistan Journal of Botany, 44, 187-194. |
[61] |
Shi S, Li J, Sun J, Yu J, Zhou S ( 2013). Phylogeny and classification of Prunus sensu lato(Rosaceae). Journal of Integrative Plant Biology, 55, 1069-1079.
DOI URL PMID |
[62] |
Shrestha N, Su XY, Xu XT, Wang ZH ( 2018). The drivers of high Rhododendron diversity in southwest China: Does seasonality matter? Journal of Biogeography, 45, 438-447.
DOI URL |
[63] | Staff Room of Pharmacognosy of Department of Pharmacy of Second Military Medical University ( 1960). Illustrated Handbook of Chinese Medicinal Plants. Shanghai Education Press, Shanghai. |
[ 第二军医大学药学系生药学教研室 ( 1960). 中国药用植物图鉴. 上海教育出版社, 上海.] | |
[64] |
Stein A, Gerstner K, Kreft H ( 2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17, 866-880.
DOI URL PMID |
[65] |
Svenning JC, Skov F ( 2007 a). Ice age legacies in the geographical distribution of tree species richness in Europe. Global Ecology & Biogeography, 16, 234-245.
DOI |
[66] |
Svenning JC, Skov F ( 2007 b). Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecology Letters, 10, 453-460.
DOI URL PMID |
[67] | Thornthwaite C, Hare FK ( 1955). Climatic classification in forestry. Unasylva, 9, 51-59. |
[68] | Wang RX ( 2010). Pictures of Ornamental Plants. China Machine Press, Beijing. |
[ 汪荣先 ( 2010). 园林景观植物树木图典. 机械工业出版社, 北京.] | |
[69] |
Wang SY, Xu XT, Shrestha N, Zimmermann NE, Tang ZY, Wang ZH ( 2017). Response of spatial vegetation distribution in China to climate changes since the last glacial maximum (LGM). PLOS ONE, 12, e0175742. DOI: 10.?1371/journal.pone.0175742.
DOI URL PMID |
[70] |
Wang ZH, Fang JY, Tang ZY, Lin X ( 2011). Patterns, determinants and models of woody plant diversity in China. Proceedings of the Royal Society B: Biological Sciences, 278, 2122-2132.
DOI URL PMID |
[71] |
Wang ZH, Fang JY, Tang ZY, Lin X ( 2012 a). Relative role of contemporary environment versus history in shaping diversity patterns of China’s woody plants. Ecography, 35, 1124-1133.
DOI URL |
[72] |
Wang ZH, Fang JY, Tang ZY, Shi L ( 2012 b). Geographical patterns in the beta diversity of China’s woody plants: The influence of space, environment and range size. Ecography, 35, 1092-1102.
DOI URL |
[73] |
Wang ZH, Tang ZY, Fang JY ( 2009). The species-energy hypothesis as a mechanism for species richness patterns. Biodiversity Science, 17, 613-624.
DOI URL |
[ 王志恒, 唐志尧, 方精云 ( 2009). 物种多样性地理格局的能量假说. 生物多样性, 17, 613-624.]
DOI URL |
|
[74] | Wang ZY ( 2017). Apple futures: Based on serving for “Three Rural” issues and to help anti-poverty. China Securities Journal, 2017-12-12. |
[ 王朱莹 ( 2017). 苹果期货: 立足服务“三农”助力脱贫攻坚. 中国证券报, 2017-12-12.] | |
[75] |
Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M ( 2011). MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4, 845-872.
DOI URL |
[76] | Wells CE, Glenn DM, Eissenstat DM ( 2002). Changes in the risk of fine-root mortality with age: A case study in peach,Prunus persica(Rosaceae). American Journal of Botany, 89, 79-87. |
[77] |
Wheeler JK, Sperry JS, Hacke UG, Hoang N ( 2005). Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: A basis for a safety versus efficiency trade-off in xylem transport. Plant, Cell & Environment, 28, 800-812.
DOI URL |
[78] |
Whittaker R, Nogues-Bravo D, Araújo M ( 2007). Geographical gradients of species richness: A test of the water-energy conjecture of Hawkins et al. ( 2003) using European data for five taxa. Global Ecology & Biogeography, 16, 76-89.
DOI URL |
[79] |
Wiens JJ, Donoghue MJ ( 2004). Historical biogeography, ecology and species richness. Trends in Ecology and Evolution, 19, 639-644.
DOI URL PMID |
[80] | Wu ZY, Raven P ( 1994-2009). Flora of China. Science Press & Missouri Botanical Garden Press, Beijing & St Louis. |
[81] | Xiang YZ, Huang C, Hu Y, Wen J, Li SS, Yi TS, Chen HY, Xiang J, Ma H ( 2017). Well-resolved Rosaceae nuclear phylogeny facilitates feological time and genome duplication analyses and ancestral fruit character reconstruction. Molecular Biology and Evolution, 34, 262-281. |
[82] |
Xing Y, Ree RH ( 2017). Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 114, 3444-3451.
DOI URL PMID |
[83] |
Xu XT, Wang ZH, Rahbek C, Lessard J, Fang JY ( 2013). Evolutionary history influences the effects of water-energy dynamics on oak diversity in Asia. Journal of Biogeography, 40, 2146-2155.
DOI URL |
[84] |
Xu XT, Wang ZH, Rahbek C, Sanders NJ, Fang JY ( 2016). Geographical variation in the importance of water and energy for oak diversity. Journal of Biogeography, 43, 279-288.
DOI URL |
[85] | Ye HG, Zou B, Zeng FY ( 2014). Chinese Medicinal Plants. Vol. 1. Chemical Industry Press, Beijing. |
[ 叶华谷, 邹滨, 曾飞燕 ( 2014). 中国药用植物(一). 化学工业出版社, 北京.] | |
[86] | Yu DJ, Lu LT, Gu CZ, Li CL, Guan KJ (1989). Flora Reipublicae Popularis Sinicae.. Vol.36-38(Rosaceae,Connaraceae). Science Press, Beijing. |
[ 俞德浚, 陆玲娣, 谷粹芝, 李朝銮, 关克俭 ( 1989). 中国植物志. 第36-38卷(蔷薇科、牛栓藤科). 科学出版社, 北京.] | |
[87] |
Zhang SD, Jin JJ, Chen SY, Chase MW, Soltis DE, Li HT, Yang JB, Li DZ, Yi TS ( 2017). Diversification of Rosaceae since the late Cretaceous based on plastid phylogenomics. New Phytologist, 214, 1355-1367.
DOI URL PMID |
[88] |
Zhang ZJ, He JS, Li JS, Tang ZY ( 2015). Distribution and conservation of threatened plants in China. Biological Conservation, 192, 454-460.
DOI URL |
[89] | Zheng HC, Shun QS, Yu GD, Feng ZJ, Quan SC ( 2003). Chinese Edible Herbs. Vol. Plants. Shanghai Lexicographical Publishing House, Shanghai. |
[ 郑汉臣, 顺庆生, 余国奠, 冯志坚, 全山丛 ( 2003). 中国食用本草, 植物卷. 上海辞书出版社, 上海.] | |
[90] |
Zhong DL, Ding L ( 1996). Rising process of the Qinghai-?Xizang (Tibet) Plateau and its mechanism. Science in China Series D, 39, 369-379.
DOI URL |
[91] | Zhou HY ( 2009). Illustrated Handbook of Landscape Plant Species. China Forestry Publishing House, Beijing. |
[ 周洪义 ( 2009). 园林景观植物图鉴. 中国林业出版社, 北京.] |
[1] | 牛一迪, 蔡体久. 大兴安岭北部次生林演替过程中物种多样性的变化及其影响因子[J]. 植物生态学报, 2024, 48(3): 349-363. |
[2] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[3] | 杨鑫, 任明迅. 环南海区域红树物种多样性分布格局及其形成机制[J]. 植物生态学报, 2023, 47(8): 1105-1115. |
[4] | 于笑, 纪若璇, 任天梦, 夏新莉, 尹伟伦, 刘超. 中国北方蒙古莸群落的分布、特征和分类[J]. 植物生态学报, 2023, 47(8): 1182-1192. |
[5] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[6] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[7] | 朱华, 谭运洪. 中国热带雨林的群落特征、研究现状及问题[J]. 植物生态学报, 2023, 47(4): 447-468. |
[8] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
[9] | 董六文, 任正炜, 张蕊, 谢晨笛, 周小龙. 功能多样性比物种多样性更好解释氮添加对高寒草地生物量的影响[J]. 植物生态学报, 2022, 46(8): 871-881. |
[10] | 曾凯娜, 孙浩然, 申益春, 任明迅. 海南羊山湿地的传粉网络及其季节动态[J]. 植物生态学报, 2022, 46(7): 775-784. |
[11] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[12] | 陈丽, 田新民, 任正炜, 董六文, 谢晨笛, 周小龙. 养分添加对天山高寒草地植物多样性和地上生物量的影响[J]. 植物生态学报, 2022, 46(3): 280-289. |
[13] | 郝建锋, 周润惠, 姚小兰, 喻静, 陈聪琳, 向琳, 王姚瑶, 苏天成, 齐锦秋. 二代野猪放牧对夹金山针阔混交林物种多样性与土壤理化性质的影响[J]. 植物生态学报, 2022, 46(2): 197-207. |
[14] | 张义, 程杰, 苏纪帅, 程积民. 长期封育演替下典型草原植物群落生产力与多样性关系[J]. 植物生态学报, 2022, 46(2): 176-187. |
[15] | 宋语涵, 张鹏, 金光泽. 阔叶红松林不同演替阶段灌木叶片碳氮磷化学计量特征及其影响因素[J]. 植物生态学报, 2021, 45(9): 952-960. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19