植物生态学报 ›› 2021, Vol. 45 ›› Issue (5): 552-561.DOI: 10.17521/cjpe.2020.0293
所属专题: 微生物生态学
罗明没1,2, 陈悦1,2, 杨刚3, 胡斌1, 李玮1,2,*(), 陈槐4,*(
)
收稿日期:
2020-08-27
接受日期:
2020-11-20
出版日期:
2021-05-20
发布日期:
2021-01-07
通讯作者:
李玮,陈槐
作者简介:
Chen H:chenhuai@cib.ac.cn)基金资助:
LUO Ming-Mo1,2, CHEN Yue1,2, YANG Gang3, HU Bin1, LI Wei1,2,*(), CHEN Huai4,*(
)
Received:
2020-08-27
Accepted:
2020-11-20
Online:
2021-05-20
Published:
2021-01-07
Contact:
LI Wei,CHEN Huai
Supported by:
摘要:
退化泥炭地的恢复是目前受关注的重要环境问题。若尔盖退化泥炭地原核微生物群落结构对水位恢复的早期响应可以为其生态恢复提供理论依据。为探究原核微生物群落结构对水位恢复的短期响应, 该研究以若尔盖退化泥炭地为研究对象, 设置水位恢复(10和30 cm)和对照组(-10 cm), 进行了1年野外原位水位恢复试验。采集0-15 cm土壤样品, 测定土壤有机碳(SOC)、总氮(TN)、总磷(TP)含量和pH等化学性质, 采用16S rRNA基因高通量测序技术分析微生物群落结构。结果表明: 水位恢复一定程度上能提高SOC、TN、TP含量及其化学计量比, 但与对照组差异不显著。主要优势微生物在门水平为酸杆菌(Acidobacteria)、变形菌(Proteobacteria)和疣微菌(Verrucomicrobia)。短期水位恢复(10和30 cm)对土壤原核微生物的α多样性没有显著影响, 而只是显著降低疣微菌和Spartobacteria的相对丰度, 增加了产甲烷菌种类。疣微菌和Spartobacteria相对丰度与水位和土壤pH呈显著负相关关系。退化泥炭地水位恢复过程中原核微生物群落结构对C:P、N:P和SOC含量响应较为敏感。综上, 短期水位恢复没有改变原核微生物α多样性, 而主要降低了疣微菌和Spartobacteria的相对丰度, 增加了产甲烷菌种类, 这将可能导致甲烷产生途径发生变化。土壤C:P、N:P和SOC含量控制了退化泥炭地随短期水位恢复过程中原核微生物群落结构变异。该研究在一定程度上丰富了原核微生物群落结构对短期水位响应的认识。
罗明没, 陈悦, 杨刚, 胡斌, 李玮, 陈槐. 若尔盖退化泥炭地土壤原核微生物群落结构对水位恢复的短期响应. 植物生态学报, 2021, 45(5): 552-561. DOI: 10.17521/cjpe.2020.0293
LUO Ming-Mo, CHEN Yue, YANG Gang, HU Bin, LI Wei, CHEN Huai. Short-term response of soil prokaryotic community structure to water level restoration in degraded peatland of the Zoigê Plateau. Chinese Journal of Plant Ecology, 2021, 45(5): 552-561. DOI: 10.17521/cjpe.2020.0293
对照组 Control group | 恢复组 Recovery group | p | ||
---|---|---|---|---|
-10 cm水位 -10 cm water level | 10 cm水位 10 cm water level | 30 cm水位 30 cm water level | ||
pH | 5.52 ± 0.04b | 5.95 ± 0.03a | 5.89 ± 0.04a | <0.05 |
土壤有机碳含量 SOC content (g·kg-1) | 130.90 ± 23.20a | 187.74 ± 22.75a | 187.20 ± 25.62a | >0.05 |
总氮含量 TN content (g·kg-1) | 9.86 ± 1.76a | 14.94 ± 1.55a | 14.73 ± 1.99a | >0.05 |
总磷含量 TP content (g·kg-1) | 1.41 ± 0.13a | 1.49 ± 0.06a | 1.58 ± 0.06a | >0.05 |
碳氮比 C:N | 13.31 ± 0.26a | 12.52 ± 0.24a | 12.70 ± 0.19a | >0.05 |
碳磷比 C:P | 91.39 ± 8.59a | 126.23 ± 16.46a | 119.85 ± 20.62a | >0.05 |
氮磷比 N:P | 6.88 ± 0.69a | 10.04 ± 1.13a | 9.43 ± 1.59a | >0.05 |
表1 水位恢复处理对若尔盖泥炭地土壤化学性质的影响(平均值±标准误)
Table 1 Influence of water table recovery on chemical properties of soil in degraded peatland of the Zoigê Plateau (mean ± SE)
对照组 Control group | 恢复组 Recovery group | p | ||
---|---|---|---|---|
-10 cm水位 -10 cm water level | 10 cm水位 10 cm water level | 30 cm水位 30 cm water level | ||
pH | 5.52 ± 0.04b | 5.95 ± 0.03a | 5.89 ± 0.04a | <0.05 |
土壤有机碳含量 SOC content (g·kg-1) | 130.90 ± 23.20a | 187.74 ± 22.75a | 187.20 ± 25.62a | >0.05 |
总氮含量 TN content (g·kg-1) | 9.86 ± 1.76a | 14.94 ± 1.55a | 14.73 ± 1.99a | >0.05 |
总磷含量 TP content (g·kg-1) | 1.41 ± 0.13a | 1.49 ± 0.06a | 1.58 ± 0.06a | >0.05 |
碳氮比 C:N | 13.31 ± 0.26a | 12.52 ± 0.24a | 12.70 ± 0.19a | >0.05 |
碳磷比 C:P | 91.39 ± 8.59a | 126.23 ± 16.46a | 119.85 ± 20.62a | >0.05 |
氮磷比 N:P | 6.88 ± 0.69a | 10.04 ± 1.13a | 9.43 ± 1.59a | >0.05 |
对照组 Control group | 恢复组 Recovery group | p | ||
---|---|---|---|---|
-10 cm水位 -10 cm water level | 10 cm水位 10 cm water level | 30 cm水位 30 cm water level | ||
Chao1指数 Chao1 index | 4 905.22 ± 175.52a | 4 509.04 ± 1 134.68a | 5 825.92 ± 237.11a | >0.05 |
观测到的OTUs数目 Observed OTUs | 2 911.87 ± 84.81a | 2 850.07 ± 336.23a | 3 508.07 ± 84.90a | >0.05 |
香农-威纳指数 Shannon-Wiener index | 9.41 ± 0.12b | 9.57 ± 0.79ab | 10.52 ± 0.13a | >0.05 |
辛普森指数 Simpson index | 0.99 ± 0.00b | 0.99 ± 0.01ab | 1.00 ± 0.00a | >0.05 |
表2 水位恢复处理对原核微生物群落多样性影响(平均值±标准误)
Table 2 Influence of water table recovery on diversity of prokaryotic microbial communities (mean ± SE)
对照组 Control group | 恢复组 Recovery group | p | ||
---|---|---|---|---|
-10 cm水位 -10 cm water level | 10 cm水位 10 cm water level | 30 cm水位 30 cm water level | ||
Chao1指数 Chao1 index | 4 905.22 ± 175.52a | 4 509.04 ± 1 134.68a | 5 825.92 ± 237.11a | >0.05 |
观测到的OTUs数目 Observed OTUs | 2 911.87 ± 84.81a | 2 850.07 ± 336.23a | 3 508.07 ± 84.90a | >0.05 |
香农-威纳指数 Shannon-Wiener index | 9.41 ± 0.12b | 9.57 ± 0.79ab | 10.52 ± 0.13a | >0.05 |
辛普森指数 Simpson index | 0.99 ± 0.00b | 0.99 ± 0.01ab | 1.00 ± 0.00a | >0.05 |
图1 水位恢复处理下若尔盖退化泥炭地门水平原核微生物群落相对丰度(平均值±标准误)。*, p < 0.05。
Fig. 1 Relative abundance of prokaryotic microbial communities at the phylum level in Zoigê degraded peatland under water level restoration (mean ± SE). *, p < 0.05.
图2 水位恢复处理下若尔盖退化泥炭地纲水平优势原核微生物群落相对丰度(平均值±标准误)。*, p < 0.05。
Fig. 2 Relative abundance of prokaryotic microbial communities at the class level in Zoigê degraded peatland under water level restoration (mean ± SE). *, p < 0.05.
图3 水位恢复处理下若尔盖退化泥炭地目水平产甲烷菌相对丰度(平均值±标准误)。
Fig. 3 Relative abundance of methanogenic groups at the order level in Zoigê degraded peatland under water level restoration (mean ± SE).
图4 水位恢复处理下若尔盖退化泥炭地土壤化学性质与原核微生物优势类群相对丰度间相关性。SOC, 土壤有机碳; TN, 总氮; TP, 总磷; Water level, 水位。**, p < 0.01; *, p < 0.05。
Fig. 4 Correlation between soil chemical properties and relative abundance of prokaryotic microbial dominant groups in Zoigê degraded peatland under water level restoration. SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus. **, p < 0.01; *, p < 0.05.
图5 水位恢复处理下若尔盖退化泥炭地土壤化学性质与门水平优势原核微生物群落结构的冗余分析。SOC, 土壤有机碳; TN, 总氮; TP, 总磷; Water level, 水位。
Fig. 5 Redundancy analysis between the soil chemical and prokaryotic microbial community structure at the phylum level in Zoigê degraded peatland under water level restoration. SOC, soil organic carbon; TN, total nitrogen; TP, total phosphorus.
[1] |
Andersen R,Chapman SJ,Artz RRE(2013).Microbial communities in natural and disturbed peatlands: a review.Soil Biology & Biochemistry,57, 979-994.
DOI URL |
[2] | Bao SD(2000).Agrochemical Analysis of Soil. 3rd ed.3rd ed. Chinese Agriculture Press,Beijing. |
[鲍士旦(2000).土壤农化分析. 三版.中国农业出版社,北京.] | |
[3] |
Borrel G,Jézéquel D,Biderre-Petit C,Morel-Desrosiers N,Morel JP,Peyret P,Fonty G,Lehours AC(2011).Production and consumption of methane in freshwater lake ecosystems.Research in Microbiology,162, 832-847.
DOI URL |
[4] |
Caporaso JG,Kuczynski J,Stombaugh J,Bittinger K,Bushman FD,Costello EK,Fierer N,Peña AG,Goodrich JK,Gordon JI,Huttley GA,Kelley ST,Knights D,Koenig JE,Ley RE,et al.(2010).QIIME allows analysis of high-throughput community sequencing data.Nature Methods,7, 335-336.
DOI PMID |
[5] |
Caporaso JG,Lauber CL,Walters WA,Berg-Lyons D,Huntley J,Fierer N,Owens SM,Betley J,Fraser L,Bauer M,Gormley N,Gilbert JA,Smith G,Knight R(2012).Ultra-high- throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms.The ISME Journal,6, 1621-1624.
DOI URL |
[6] |
Chen H,Wu N,Yao SP,Gao YH,Wang YF,Tian JQ,Yuan XZ(2010).Diurnal variation of methane emissions from an alpine wetland on the eastern edge of Qinghai-Tibetan Plateau.Environmental Monitoring and Assessment,164, 21-28.
DOI URL |
[7] |
Chen H,Yang G,Peng CH,Zhang Y,Zhu D,Zhu QA,Hu J,Wang M,Zhan W,Zhu EX,Bai ZZ,Li W,Wu N,Wang YF,Gao YH,Tian JQ,Kang XM,Zhao XQ,Wu JH(2014).The carbon stock of alpine peatlands on the Qinghai- Tibetan Plateau during the Holocene and their future fate.Quaternary Science Reviews,95, 151-158.
DOI URL |
[8] |
Cregger MA,Schadt CW,McDowell NG,Pockman WT,Classen AT(2012).Response of the soil microbial community to changes in precipitation in a semiarid ecosystem.Applied and Environmental Microbiology,78, 8587-8594.
DOI URL |
[9] |
Fierer N,Bradford MA,Jackson RB(2007).Toward an ecological classification of soil bacteria.Ecology,88, 1354-1364.
PMID |
[10] |
Fierer N,Lauber CL,Ramirez KS,Zaneveld J,Bradford MA,Knight R(2012).Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients.The ISME Journal,6, 1007-1017.
DOI URL |
[11] |
Frolking S,Talbot J,Jones MC,Treat CC,Kauffman JB,Tuittila ES,Roulet N(2011).Peatlands in the Earth’s 21st century climate system.Environmental Reviews,19, 371-396.
DOI URL |
[12] |
Galand PE,Fritze H,Conrad R,Yrjälä K(2005).Pathways for methanogenesis and diversity of methanogenic Archaea in three boreal peatland ecosystems.Applied and Environmental Microbiology,71, 2195-2198.
PMID |
[13] |
Galand PE,Saarnio S,Fritze H,Yrjälä K(2002).Depth related diversity of methanogen Archaea in Finnish oligotrophic Fen.FEMS Microbiology Ecology,42, 441-449.
DOI URL |
[14] | Gao Y,Liu GH,Du LS,Hu LL,Kang B(2016).Effects of water table level and soil temperature on CH4 emissions in Zoigê Peatlands.Research of Environmental Sciences,29, 516-521. |
[高燕,刘高慧,杜乐山,胡理乐,康冰(2016).地下水位和土壤温度对若尔盖泥炭地CH4排放的影响.环境科学研究,29, 516-521.] | |
[15] |
Hanson RS,Hanson TE(1996).Methanotrophic bacteria.Microbiological Reviews,60, 439-471.
PMID |
[16] |
Høj L,Rusten M,Haugen LE,Olsen RA,Torsvik VL(2006).Effects of water regime on archaeal community composition in Arctic soils.Environmental Microbiology,8, 984-996.
DOI URL |
[17] | Huang JY,Yu HL,Liu JL,Ma F,Han L(2018).Effects of precipitation levels on the C:N stoichiometry in plants, microbes, and soils in a desert steppe in China.Acta Ecologica Sinica,38, 5362-5373. |
[黄菊莹,余海龙,刘吉利,马飞,韩磊(2018).控雨对荒漠草原植物、微生物和土壤C、N、P化学计量特征的影响.生态学报,38, 5362-5373.] | |
[18] | Islam T,Jensen S,Reigstad LJ,Larsen O,Birkeland NK(2008).Methane oxidation at 55 degrees C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia Phylum.Proceedings of the National Academy of Sciences of the United States of America,105, 300-304. |
[19] |
Jaatinen K,Fritze H,Laine J,Laiho R(2007).Effects of short- and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland.Global Change Biology,13, 491-510.
DOI URL |
[20] | Jiang N,Chen ZJ,Cao Y,Tian JQ,Wang YF,Dong XZ(2013).Methanogenic Archaea and their mediated methanogenic pathways in cold wetland.Microbiology China,40, 137-145. |
[蒋娜,陈紫娟,曹轶,田建卿,王艳芬,东秀珠(2013).低温湿地甲烷古菌及其介导的甲烷产生途径.微生物学通报,40, 137-145.] | |
[21] | Li L,Gao JQ,Lei GC,Lü C,Suo L(2011).Distribution patterns of soil organic carbon and total nitrogen in Zoige peat land with different ground water table.Chinese Journal of Ecology,30, 2449-2455. |
[李丽,高俊琴,雷光春,吕偲,索郎夺尔基(2011).若尔盖不同地下水位泥炭湿地土壤有机碳和全氮分布规律.生态学杂志,30, 2449-2455.] | |
[22] |
Li W,Chen H,Yan ZY,Yang G,Rui JP,Wu N,He YX(2020).Variation in the soil prokaryotic community under simulated warming and rainfall reduction in different water table peatlands of the Zoige plateau.Frontiers in Microbiology,11, 343. DOI:10.3389/fmicb.2020.00343.
DOI URL |
[23] |
Limpens J,Berendse F,Blodau C,Canadell JG,Freeman C,Holden J,Roulet N,Rydin H,Schaepman-Strub G(2008).Peatlands and the carbon cycle: from local processes to global implications—A synthesis.Biogeosciences,5, 1475-1491.
DOI URL |
[24] | Liu DY,Ding WX(2011).Progress on spatial variation of methanogens and their influencing factors in natural wetlands.Scientia Geographica Sinica,31, 136-142. |
[刘德燕,丁维新(2011).天然湿地土壤产甲烷菌及其影响因子研究进展.地理科学,31, 136-142.] | |
[25] |
Liu LF,Chen H,Jiang L,Hu J,Zhan W,He YX,Zhu D,Zhong QP,Yang G(2018).Water table drawdown reshapes soil physicochemical characteristics in Zoige peatlands.CATENA,170, 119-128.
DOI URL |
[26] |
Liu YC,Whitman WB(2008).Metabolic, phylogenetic, and ecological diversity of the methanogenic Archaea.Annals of the New York Academy of Sciences,1125, 171-189.
DOI URL |
[27] |
Lu M,Ren YL,Wang SJ,Tian K,Sun XY,Peng SX(2019).Contribution of soil variables to bacterial community composition following land use change in Napahai plateau wetlands.Journal of Environmental Management,246, 77-84.
DOI URL |
[28] | Sheng XC,Shao XX,Wu M,Ning X,Ye XQ(2015).Effects of water level on organic carbon, total nitrogen and total phosphoruse in soil in reed wetlands of Hangzhou bay.Journal of Ecology and Rural Environment,31, 718-723. |
[盛宣才,邵学新,吴明,宁潇,叶小齐(2015).水位对杭州湾芦苇湿地土壤有机碳、氮、磷含量的影响.生态与农村环境学报,31, 718-723.] | |
[29] | Tang J,Xu QR,Wang LM,Ding X,Tang B,Wu LS,Feng S,Sun Q,Yang ZR,Zhang J(2011).Soil bacterial community diversity under different stages of degradation in Zoige wetland.Microbiology China,38, 677-686. |
[唐杰,徐青锐,王立明,丁祥,汤博,吴俐莎,冯甦,孙群,杨志荣,张杰(2011).若尔盖高原湿地不同退化阶段的土壤细菌群落多样性.微生物学通报,38, 677-686.] | |
[30] | Tang LZ,Haibara K,Toda H,Huang BL(2005).Dynamics of ferrous iron, redox potential and pH of forested wetland soils.Acta Ecologica Sinica,25, 103-107. |
[唐罗忠,生原喜久雄,户田浩人,黄宝龙(2005).湿地林土壤的Fe2+, Eh及pH值的变化.生态学报,25, 103-107.] | |
[31] |
Tian HQ,Chen GS,Zhang C,Melillo JM,Hall CAS(2010).Pattern and variation of C:N ratios in China’s soils: a synthesis of observational data.Biogeochemistry,98, 139-151.
DOI URL |
[32] |
Tian JQ,Shu C,Chen H,Qiao YC,Yang G,Xiong W,Wang L,Sun JZ,Liu XZ(2015).Response of archaeal communities to water regimes under simulated warming and drought conditions in Tibetan Plateau wetlands.Journal of Soils and Sediments,15, 179-188.
DOI URL |
[33] |
Urbanová Z,Bárta J(2016).Effects of long-term drainage on microbial community composition vary between peatland types.Soil Biology & Biochemistry,92, 16-26.
DOI URL |
[34] | Wang SQ,Yu GR(2008).Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements.Acta Ecologica Sinica,28, 3937-3947. |
[王绍强,于贵瑞(2008).生态系统碳氮磷元素的生态化学计量学特征.生态学报,28, 3937-3947.] | |
[35] | Wang YT,Li JP,Jing L,Zhang Y,Zhang J(2020).Effects of different precipitation treatments on soil ecological chemistry and microbial diversity in the Loess Plateau.Acta Ecologica Sinica,40, 1517-1531. |
[王誉陶,李建平,井乐,张翼,张娟(2020).模拟降雨对黄土高原典型草原土壤化学计量及微生物多样性的影响.生态学报,40, 1517-1531.] | |
[36] |
Xiang S,Guo RQ,Wu N,Sun SC(2009).Current status and future prospects of Zoige Marsh in Eastern Qinghai-Tibet Plateau.Ecological Engineering,35, 553-562.
DOI URL |
[37] |
Yang G,Chen H,Wu N,Tian JQ,Peng CH,Zhu QA,Zhu D,He YX,Zheng QY,Zhang CB(2014).Effects of soil warming, rainfall reduction and water table level on CH4 emissions from the Zoige peatland in China.Soil Biology & Biochemistry,78, 83-89.
DOI URL |
[38] |
Yang G,Tian JQ,Chen H,Jiang L,Zhan W,Hu J,Zhu EX,Peng CH,Zhu QA,Zhu D,He YX,Li MX,Dong FQ(2019).Peatland degradation reduces methanogens and methane emissions from surface to deep soils.Ecological Indicators,106, 105488. DOI:10.1016/j.ecolind.2019.105488.
DOI URL |
[39] | Yang GR,Tong CL,Zhang WJ,Wu JS(2005).Decomposition of organic matter by soil microorganisms in terrestrial carbon cycling and its influence factors.Chinese Journal of Soil Science,36, 605-609. |
[杨钙仁,童成立,张文菊,吴金水(2005).陆地碳循环中的微生物分解作用及其影响因素.土壤通报,36, 605-609.] | |
[40] |
Yang WG,Zi HB,Chen KY,Ade LJ,Hu L,Wang X,Wang GX,Wang CT(2019).Ecological stoichiometric characteristics of shrubs and soils in different forest types in Qinghai, China.Chinese Journal of Plant Ecology,43, 352-364.
DOI URL |
[杨文高,字洪标,陈科宇,阿的鲁骥,胡雷,王鑫,王根绪,王长庭(2019).青海森林生态系统中灌木层和土壤生态化学计量特征.植物生态学报,43, 352-364.] | |
[41] | Yang YX,Wang SY(2001).Human disturbances on mire and peat soils in the Zoige plateau.Resources Science,23, 37-41. |
[杨永兴,王世岩(2001).人类活动干扰对若尔盖高原沼泽土、泥炭土资源影响的研究.资源科学,23, 37-41.] | |
[42] |
Yao F,Yang S,Wang ZR,Wang X,Ye J,Wang XG,DeBruyn JM,Feng X,Jiang Y,Li H(2017).Microbial taxa distribution is associated with ecological trophic cascades along an elevation gradient.Frontiers in Microbiology,8, 2071. DOI:10.3389/fmicb.2017.02071.
DOI URL |
[43] |
Yao MJ,Rui JP,Li JB,Dai YM,Bai YF,Heděnec P,Wang JM,Zhang SH,Pei KQ,Liu C,Wang YF,Frouz J,Li XZ(2014).Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe.Soil Biology & Biochemistry,79, 81-90.
DOI URL |
[44] | Zhai SQ,Shi CG,Du LS,Gu B,Wang M(2015).Effect on CO2 emissions of water tables and soil temperatures in zoigê peatlands.Wetland Science,13, 332-337. |
[翟生强,史长光,杜乐山,辜彬,王敏(2015).若尔盖泥炭地地下水位和土壤温度对二氧化碳排放的影响.湿地科学,13, 332-337.] | |
[45] |
Zhang GS,Tian JQ,Jiang N,Guo XP,Wang YF,Dong XZ(2008).Methanogen community in Zoige wetland of Tibetan Plateau and phenotypic characterization of a dominant uncultured methanogen cluster ZC-I.Environmental Microbiology,10, 1850-1860.
DOI URL |
[46] |
Zhang KP,Shi Y,Jing X,He JS,Sun RB,Yang YF,Shade A,Chu HY(2017).Corrigendum: effects of short-term warming and altered precipitation on soil microbial communities in alpine grassland of the Tibetan Plateau.Frontiers in Microbiology,8, 1032. DOI:10.3389/fmicb.2016.01032.
DOI URL |
[47] |
Zhang NL,Liu WX,Yang HJ,Yu XJ,Gutknecht JLM,Zhang Z,Wan SQ,Ma KP(2013).Soil microbial responses to warming and increased precipitation and their implications for ecosystem C cycling.Oecologia,173, 1125-1142.
DOI URL |
[48] |
Zhang NL,Wan SQ,Guo JX,Han GD,Gutknecht J,Schmid B,Yu L,Liu WX,Bi J,Wang Z,Ma KP(2015).Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands.Soil Biology & Biochemistry,89, 12-23.
DOI URL |
[49] | Zhang WT,Wang JZ,Hu ZY,Li Y,Yan ZQ,Zhang XD,Wu HD,Yan L,Zhang KR,Kang XM(2020).The primary drivers of greenhouse gas emissions along the water table gradient in the Zoigê alpine peatland.Water, Air, & Soil Pollution,231, 1-12. |
[50] | Zhao KY,He CQ(2000).Influence of human activities on the mire in Zoige plateau and countermeasure.Scientia Geographica Sinica,20, 444-449. |
[赵魁义,何池全(2000).人类活动对若尔盖高原沼泽的影响与对策.地理科学,20, 444-449.] | |
[51] |
Zhong QP,Chen H,Liu LF,He YX,Zhu D,Jiang L,Zhan W,Hu J(2017).Water table drawdown shapes the depth-dependent variations in prokaryotic diversity and structure in Zoige peatlands.FEMS Microbiology Ecology,93, fix049. DOI:10.1093/femsec/fix049.
DOI |
[1] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[2] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[3] | 赵孟娟, 金光泽, 刘志理. 阔叶红松林3种典型蕨类叶功能性状的垂直变异[J]. 植物生态学报, 2023, 47(8): 1131-1143. |
[4] | 胡昭佚, 陈天松, 赵丽, 许培轩, 吴正江, 董李勤, 张昆. 水位下降对若尔盖高寒草本沼泽木里薹草氮磷重吸收的影响[J]. 植物生态学报, 2023, 47(6): 847-855. |
[5] | 杨丽琳, 邢万秋, 王卫光, 曹明珠. 新安江源区杉木树干液流速率变化及其对环境因子的响应[J]. 植物生态学报, 2023, 47(4): 571-583. |
[6] | 张潇, 武娟娟, 贾国栋, 雷自然, 张龙齐, 刘锐, 吕相融, 代远萌. 降水控制对侧柏液流变化特征及其水分来源的影响[J]. 植物生态学报, 2023, 47(11): 1585-1599. |
[7] | 赵镇贤, 陈银萍, 王立龙, 王彤彤, 李玉强. 河西走廊荒漠区不同功能类群植物叶片建成成本的比较[J]. 植物生态学报, 2023, 47(11): 1551-1560. |
[8] | 郑宁, 李素英, 王鑫厅, 吕世海, 赵鹏程, 臧琛, 许玉珑, 何静, 秦文昊, 高恒睿. 基于环境因子对叶绿素影响的典型草原植物生活型优势研究[J]. 植物生态学报, 2022, 46(8): 951-960. |
[9] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[10] | 王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟. 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022, 46(5): 539-551. |
[11] | 王俐爽, 同小娟, 孟平, 张劲松, 刘沛荣, 李俊, 张静茹, 周宇. 辽西半干旱地区两种典型人工林生态系统能量通量及蒸散特征[J]. 植物生态学报, 2022, 46(12): 1508-1522. |
[12] | 黄杰, 李晓玲, 王雪松, 杨进, 黄成名. 三峡库区不同消落带下中华蚊母树群落特征及其与土壤环境因子的关系[J]. 植物生态学报, 2021, 45(8): 844-859. |
[13] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[14] | 赵文芹, 席本野, 刘金强, 刘洋, 邹松言, 宋午椰, 陈立欣. 不同灌溉条件下杨树人工林蒸腾过程及环境响应[J]. 植物生态学报, 2021, 45(4): 370-382. |
[15] | 李媛媛, 张芸, 孔昭宸, 杨振京. 新疆阿尔泰红山嘴地区的表土孢粉与现代植被[J]. 植物生态学报, 2021, 45(2): 174-186. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19