植物生态学报 ›› 2021, Vol. 45 ›› Issue (1): 51-61.DOI: 10.17521/cjpe.2020.0101
阿依古丽•阿卜杜热伊木1,2, 焦芳芳1,2, 张爱勤1,2,*()
收稿日期:
2020-04-13
接受日期:
2020-11-21
出版日期:
2021-01-20
发布日期:
2021-01-14
通讯作者:
张爱勤
作者简介:
*(1131646332@qq.com)基金资助:
Ayiguli ABUDUREYIMU1,2, JIAO Fang-Fang1,2, ZHANG Ai-Qin1,2,*()
Received:
2020-04-13
Accepted:
2020-11-21
Online:
2021-01-20
Published:
2021-01-14
Contact:
ZHANG Ai-Qin
Supported by:
摘要:
异型花柱是受遗传控制的花柱多态现象, 被达尔文认为是植物通过在传粉者体表不同部位滞落花粉以促进型间花粉准确传递的一种适应。该现象虽已受到广泛关注, 但在一些花型变异较大且不稳定的传粉系统中, 不同传粉者对各花型繁殖所产生的影响仍知之甚少。该研究以分布于新疆天山南坡的一个有同长花柱共存的异型花柱植物喀什补血草(Limonium kaschgaricum)种群为研究对象, 对其花型构成及频率、传粉者及花粉转移效率等进行了调查分析。结果表明: 1)种群中除了存在雌/雄蕊长度交互对应的长(L)/短(S)花柱型花外, 还有雌/雄蕊同长的花(H型), 且各花型花的花冠口直径、花冠筒长及花粉量等参数间无差异, 但花粉纹饰和柱头乳突细胞形态具二型性。其中, H型花的花粉和柱头形态与L型花(或S型花)的一致。2)花型内和自花授粉均不亲和; 型间授粉时, 花粉和柱头形态不同的花型间亲和, 反之不亲和。3)种群内存在长/短吻两类传粉昆虫。在以短吻传粉者为主的盛花初、中期, L和H型花柱头上的异型花粉数均显著高于S型花的, 且L和S型花高位性器官间的异型花粉传递效率高于低位性器官间的; 而在以长吻传粉者为主的盛花后期, L和S型花的柱头间异型花粉数无显著差异, 且高/低位性器官间具有相同的异型花粉转移效率; 与传粉者出现时期相对应的、在花期不同阶段开放花的结实率也明显不同。4)长/短吻昆虫具明显不同的传粉功能, 短吻昆虫只能对L和H型花进行有效传粉, 且访花频率和型间花粉转移效率较低, 为低效传粉者; 而长吻昆虫对各花型均能有效传粉, 具高的访花频率和型间花粉转移效率, 为高效传粉者。因为长吻昆虫的阶段性出现所形成的不稳定传粉系统, 使低效的短吻昆虫可能会成为种群中花型变异的驱动力, 并使S型花受到更大的选择压力。H型花克服了柱头缩入的弊端, 可能会成为不稳定传粉系统下的一个替代花型而持续存在。
阿依古丽•阿卜杜热伊木, 焦芳芳, 张爱勤. 异型花柱植物喀什补血草的传粉者功能群与花粉转移效率. 植物生态学报, 2021, 45(1): 51-61. DOI: 10.17521/cjpe.2020.0101
Ayiguli ABUDUREYIMU, JIAO Fang-Fang, ZHANG Ai-Qin. Pollinator functional groups and their pollen transfer efficiency in heterostylous Limonium kaschgaricum (Plumbaginaceae). Chinese Journal of Plant Ecology, 2021, 45(1): 51-61. DOI: 10.17521/cjpe.2020.0101
图1 新疆天山南坡喀什补血草种群花型构成与频率。H, 同长花柱型花; L,长花柱型花; S, 短花柱型花。HL (或HS)指花粉纹饰和柱头表皮细胞形态与L (或S)型植株一致的H型植株; (L + HL)代表L和HL型植株的和; (S + HS)代表S和HS型植株的和。不同小写字母表示差异显著(p < 0.05)。
Fig. 1 Composition and frequency of floral morph in Limonium kaschgaricum in the south slope of Tianshan in Xinjiang. H, homostylyous flower; L, long-styled flower; S, short-styled flower. HL (or HS) indicate H type individuals whose morphology of pollen ornamentation and stigma mastoid cells are consistent with L (or S) type individuals. (L + HL) indicate the sum of L and HL type individuals. (S + HS) indicate the sum of S and HS types of individuals. Different lowercase letters indicate significant difference at the 0.05 level.
花部特征 Floral trait | L | S | H | F | p |
---|---|---|---|---|---|
花冠开口直径 Corolla diameter (mm) | 2.99 ± 0.06 a (n = 34) | 2.90 ± 0.07 a (n= 38) | 2.94 ± 0.09 a (n= 37) | 0.28 | 0.76 |
花冠筒长 Corolla tube length (mm) | 7.96 ± 0.07 a (n= 38) | 8.11 ± 0.98 a (n= 36) | 8.21 ± 0.11 a (n= 19) | 1.74 | 0.18 |
雌蕊长 Pistil length (mm) | 9.46 ± 0.10 aB (n= 34) | 7.85 ± 0.14 bA (n = 37) | 8.50 ± 0.13 c (n = 36) | 48.46 | 0 |
雄蕊长 Stamen length (mm) | 8.03 ± 0.11 aA (n = 34) | 9.05 ± 0.09 bB (n = 37) | 8.52 ± 0.14 c (n = 36) | 24.75 | 0 |
雄蕊间距 Distance of longest-shortest anther within one flower (mm) | 0.74 ± 0.07 a (n = 34) | 0.49 ± 0.06 b (n = 37) | 2.90 | 0.02 | |
雌雄蕊间距 Stigma-anther separation within one flower (mm) | 1.43 ± 0.11 a (n = 40) | 1.31 ± 0.09 a (n = 41) | 0.78 | 0.41 | |
花粉产量 Pollen production per flower (No.) | 941.18 ± 37.81 a (n = 11) | 937.63 ± 34.96 a (n = 11) | 0.07 | 0.95 |
表1 新疆天山南坡喀什补血草花部特征参数(平均值±标准误)
Table 1 Parameters of floral traits of Limonium kaschgaricum in the south slope of Tianshan in Xinjiang (mean ± SE)
花部特征 Floral trait | L | S | H | F | p |
---|---|---|---|---|---|
花冠开口直径 Corolla diameter (mm) | 2.99 ± 0.06 a (n = 34) | 2.90 ± 0.07 a (n= 38) | 2.94 ± 0.09 a (n= 37) | 0.28 | 0.76 |
花冠筒长 Corolla tube length (mm) | 7.96 ± 0.07 a (n= 38) | 8.11 ± 0.98 a (n= 36) | 8.21 ± 0.11 a (n= 19) | 1.74 | 0.18 |
雌蕊长 Pistil length (mm) | 9.46 ± 0.10 aB (n= 34) | 7.85 ± 0.14 bA (n = 37) | 8.50 ± 0.13 c (n = 36) | 48.46 | 0 |
雄蕊长 Stamen length (mm) | 8.03 ± 0.11 aA (n = 34) | 9.05 ± 0.09 bB (n = 37) | 8.52 ± 0.14 c (n = 36) | 24.75 | 0 |
雄蕊间距 Distance of longest-shortest anther within one flower (mm) | 0.74 ± 0.07 a (n = 34) | 0.49 ± 0.06 b (n = 37) | 2.90 | 0.02 | |
雌雄蕊间距 Stigma-anther separation within one flower (mm) | 1.43 ± 0.11 a (n = 40) | 1.31 ± 0.09 a (n = 41) | 0.78 | 0.41 | |
花粉产量 Pollen production per flower (No.) | 941.18 ± 37.81 a (n = 11) | 937.63 ± 34.96 a (n = 11) | 0.07 | 0.95 |
图2 新疆天山南坡喀什补血草种群各花型雌/雄蕊相对高度的分布。H, 同长花柱型花; L,长花柱型花; S, 短花柱型花。
Fig. 2 Distribution pattern of pistil and stamen relative height in Limonium kaschgaricum in the south slope of Tianshan in Xinjiang. H, homostylyous flower; L, long-styled flower; S, short-styled flower.
图3 新疆天山南坡喀什补血草的植株、花型与传粉者。A, 开花植株。B、D, 短吻传粉者隧蜂和食蚜蝇。C, 长吻传粉者蜂虻。E, 花型。F、G, 短花柱型花和HS柱头与花粉形态。H、I, 长花柱型花和HL的柱头与花粉形态。H, 同长花柱型花; HL (或HS), 花粉纹饰和柱头表皮细胞形态与长花柱型花(或短花柱型花)型植株一致的H型植株。
Fig. 3 Flowering plant, floral morphs and pollinators in Limonium kaschgaricum in the south slope of Tianshan in Xinjiang. A, Flowering plant. B, D, Short-tongued pollinators, Halictidae and Syrphidae. C, Long-tongued pollinator, Bombyliidae. E, Floral morphs. F, G, Stigma and pollen of short-styled flower and HS. H, I, Stigma and pollen of long-styled flower and HL. H, homostylyous flower; HL (or HS), H type individuals whose morphology of pollen ornamentation and stigma mastoid cells are consistent with long-styled flower (short-styled flower) type individuals.
花期 Flowering stage | 传粉者功能群 Pollinator functional groups | 访花频率 Visiting frequency | 柱头花粉数(异型花粉数)(平均值±标准误) Pollen deposition on stigmas (compatible pollen) (mean ± SE) | 有异型花粉的花的比例 Ratio of stigma with compatible pollen (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | S | H | L | S | H | |||||||||
盛花初期 Early stage of full flowering (05-01-05-07) | ST | 0.07 ± 0.02 A | 28.23 ± 3.19 a (0.61 ± 0.26 a) | 6.25 ± 1.70 b (0.04 ± 0.04 b) | 34.12 ± 8.08 a (0.61 ± 0.22 a) | 15.00 | 3.50 | 25.80 | ||||||
盛花中期 Medium stage of full flowering (05-08-05-12) | ST | 0.09 ± 0.02 A | 56.24 ± 3.94 a (0.98 ± 0.21 a) | 9.00 ± 1.52 b (0.42 ± 0.16 b) | 54.33 ± 3.93 a (0.88 ± 0.17 a) | 29.80 | 19.04 | 26.77 | ||||||
盛花后期 Later stage of full flowering (05-13-05-24) | ST、LT | 0.45 ± 0.06 B | 51.62 ± 11.12 a (3.12 ± 1.84 a) | 17.78 ± 2.27 b (3.40 ± 0.93 a) | 50.00 | 47.00 |
表2 2018年新疆天山南坡喀什补血草传粉者功能群、访花频率及柱头花粉沉积
Table 2 Pollinator functional group, visiting frequency and pollen deposition on stigmas of Limonium kaschgaricum in the south slope of Tianshan in Xinjiang in 2018
花期 Flowering stage | 传粉者功能群 Pollinator functional groups | 访花频率 Visiting frequency | 柱头花粉数(异型花粉数)(平均值±标准误) Pollen deposition on stigmas (compatible pollen) (mean ± SE) | 有异型花粉的花的比例 Ratio of stigma with compatible pollen (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L | S | H | L | S | H | |||||||||
盛花初期 Early stage of full flowering (05-01-05-07) | ST | 0.07 ± 0.02 A | 28.23 ± 3.19 a (0.61 ± 0.26 a) | 6.25 ± 1.70 b (0.04 ± 0.04 b) | 34.12 ± 8.08 a (0.61 ± 0.22 a) | 15.00 | 3.50 | 25.80 | ||||||
盛花中期 Medium stage of full flowering (05-08-05-12) | ST | 0.09 ± 0.02 A | 56.24 ± 3.94 a (0.98 ± 0.21 a) | 9.00 ± 1.52 b (0.42 ± 0.16 b) | 54.33 ± 3.93 a (0.88 ± 0.17 a) | 29.80 | 19.04 | 26.77 | ||||||
盛花后期 Later stage of full flowering (05-13-05-24) | ST、LT | 0.45 ± 0.06 B | 51.62 ± 11.12 a (3.12 ± 1.84 a) | 17.78 ± 2.27 b (3.40 ± 0.93 a) | 50.00 | 47.00 |
图4 新疆天山南坡喀什补血草花期不同阶段所开放花的结实率(平均值±标准误)。HL (或HS), 花粉纹饰和柱头表皮细胞形态与L (或S)型花一致的同长花柱型花; L, 长花柱型花; S, 短花柱型花。不同字母表示花型间差异显著(p < 0.05).
Fig. 4 Fruit sets of flowers opening at different stages of flowering in Limonium kaschgaricum in the south slope of Tianshan in Xinjiang (mean ± SE). H L (or HS), homostylyous flower whose morphology of pollen ornamentation and stigma mastoid cells are consistent with L (or S) -morph flowers; L, long-styled flower; S, short-styled flower. Different letters indicate significant differences among morphs at the 0.05 level.
花粉来源 Pollen source | 柱头花粉数(花粉转移效率) Average pollen deposition on stigmas (Pollen transfer proficiency) | |||||
---|---|---|---|---|---|---|
盛花初期 Early stage of full flowering | 盛花中期 Medium stage of full flowering | 盛花后期 Later stage of full flowering | ||||
长花柱型花 Long-styled flower | 短花柱型花 Short-styled flower | 长花柱型花 Long-styled flower | 短花柱型花 Short-styled flower | 长花柱型花 Long-styled flower | 短花柱型花 Short-styled flower | |
短花柱型花的花粉 Pollen of short-styled flower | 0.61 (0.65 × 10 -3) | 6.25 (6.67 × 10 -3) | 0.98 (1.10 × 10 -3) | 9.00 (9.90 × 10 -3) | 3.12 (3.35 × 10 -3) | 17.78 (19.0× 10-3) |
长花柱型花的花粉 Pollen of long-styled flower | 28.23 (30.0 × 10 -3) | 0.04 (0.04 × 10 -3) | 56.24 (59.70 × 10 -3) | 0.42 (0.44 × 10 -3) | 51.62 (54.80 × 10 -3) | 3.4 (3.60 × 10 -3) |
长花柱型花(或短花柱型花)的花粉损耗率 Pollen wastage of long-styled flower (or short- styled flower)(%) | 99.88 | (91.12) | 99.26 | (90.0) | 93.15 | (85.01) |
表3 新疆天山南坡喀什补血草花期不同阶段传粉者功能群的花粉转移效率
Table 3 Pollen transfer efficiency of pollinator functional groups at different flowering stages of Limonium kaschgaricum in the south slope of Tianshan in Xinjiang
花粉来源 Pollen source | 柱头花粉数(花粉转移效率) Average pollen deposition on stigmas (Pollen transfer proficiency) | |||||
---|---|---|---|---|---|---|
盛花初期 Early stage of full flowering | 盛花中期 Medium stage of full flowering | 盛花后期 Later stage of full flowering | ||||
长花柱型花 Long-styled flower | 短花柱型花 Short-styled flower | 长花柱型花 Long-styled flower | 短花柱型花 Short-styled flower | 长花柱型花 Long-styled flower | 短花柱型花 Short-styled flower | |
短花柱型花的花粉 Pollen of short-styled flower | 0.61 (0.65 × 10 -3) | 6.25 (6.67 × 10 -3) | 0.98 (1.10 × 10 -3) | 9.00 (9.90 × 10 -3) | 3.12 (3.35 × 10 -3) | 17.78 (19.0× 10-3) |
长花柱型花的花粉 Pollen of long-styled flower | 28.23 (30.0 × 10 -3) | 0.04 (0.04 × 10 -3) | 56.24 (59.70 × 10 -3) | 0.42 (0.44 × 10 -3) | 51.62 (54.80 × 10 -3) | 3.4 (3.60 × 10 -3) |
长花柱型花(或短花柱型花)的花粉损耗率 Pollen wastage of long-styled flower (or short- styled flower)(%) | 99.88 | (91.12) | 99.26 | (90.0) | 93.15 | (85.01) |
图5 新疆天山南坡喀什补血草不同授粉方式的结实率(平均值±标准误)。HS, 花粉纹饰和柱头表皮细胞形态与L (或S)型花一致的同长花柱型花; L, 长花柱型花; S, 短花柱型花。不同小写字母表示差异显著(p < 0.05)。
Fig. 5 Fruit sets of Limonium kaschgaricum under different pollination treatments in the south slope of Tianshan in Xinjiang (mean ± SE). H S, homostylyous flower individuals whose morphology of pollen ornamentation and stigma mastoid cells are consistent with L (or S) type individuals; L, long-styled flower; S, short-styled flower. Different lowercase letters indicate significant difference at the 0.05 level.
[1] |
Aigner PA (2001). Optimality modeling and fitness trade-offs: When should plants become pollinator specialists? Oikos, 95,177-184.
DOI URL |
[2] |
Al Wadi H, Richards AJ (1993). Primary homostyly in Primula L. subgenus Sphondylia (Duby) Rupr. and the evolution of distyly in Primula. New Phytologist, 124,329-338.
DOI URL |
[3] |
Alves Dos Santos I (2002). Flower-visiting bees and the breakdown of the tristylous breeding system of Eichhornia azurea (Swartz) Kunth (Pontederiaceae). Biological Journal of the Linnean Society, 77,499-507.
DOI URL |
[4] |
Armbruster WS, Pérez-Barrales R, Arroyo J, Edwards ME, Vargas P (2006). Three dimensional reciprocity of floral morphs in wild flax (Linum suffruticosum): a new twist on heterostyly. New Phytologist, 171,581-590.
PMID |
[5] |
Arroyo J, Barrett SCH, Hidalgo R, Cole WW (2002). Evolutionary maintenance of stigma-height dimorphism in Narcissus papyraceus (Amaryllidaceae). American Journal of Botany, 89,1242-1249.
DOI URL |
[6] |
Arroyo J, Dafni A (1995). Variations in habitat, season, flower traits and pollinators in dimorphic Narcissus tazetta L. (Amaryllidaceae) in Israel. New Phytologist, 129,135-145.
DOI URL |
[7] |
Barrett SCH (1990). The evolution and adaptive significance of heterostyly. Trends in Ecology & Evolution, 5,144-148.
DOI URL |
[8] | Barrett SCH (1992). Heterostylous genetic polymorphisms: model systems for evolutionary analysis//Barrett SCH. Evolution and Function of Heterostyly. Springer, Berlin.1-29. |
[9] |
Barrett SCH (2002a). The evolution of plant sexual diversity. Nature Reviews Genetics, 3,274-284.
DOI URL |
[10] |
Barrett SCH (2002b). Sexual interference of the floral kind. Heredity, 88,154-159.
DOI URL |
[11] |
Barrett SCH (2019). “A most complex marriage arrangement”: recent advances on heterostyly and unresolved questions. New Phytologist, 224,1051-1067.
DOI URL |
[12] | Barrett SCH, Shore JS (2008). New insights on heterostyly: comparative biology, ecology and genetics//Franklin-Tong V. Self-Incompatibility in Flowering Plants: Evolution, Diversity and Mechanisms. Springer-Verlag, Berlin.3-32. |
[13] |
Beach JH, Bawa KS (1980). Role of pollinators in the evolution of dioecy from distyly. Evolution, 34,1138-1142.
DOI PMID |
[14] |
Brys R, Jacquemyn H (2015). Disruption of the distylous syndrome in Primula veris. Annals of Botany, 115,27-39.
DOI URL |
[15] |
Campbell DR, Waser NM, Price MV (1996). Mechanisms of hummingbird-mediated selection for flower width in Ipomopsis aggregata. Ecology, 77,1463-1472.
DOI URL |
[16] | Chittka L, Thomson JD (2001). Cognitive Ecology of Pollination: Animal Behaviour and Floral Evolution. Cambridge University Press, New York. |
[17] |
Cohen JI (2010). “A case to which no parallel exists”: the influence of Darwin’s Different Forms of Flowers. American Journal of Botany, 97,701-716.
DOI URL |
[18] |
Cruden RW (1977). Pollen-ovule ratios: a conservative indicator of breeding system in flowering plants. Evolution, 31,32-46.
DOI URL |
[19] | Darwin C (1877). The Different forms of Flowers on Plants of the Same Species. John Murray, London. |
[20] |
Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004). Pollination syndromes and floral specialization. Annual Review of Ecology, Evolution and Systematics, 35,375-403.
DOI URL |
[21] | Grant V, Grant KA (1965). Flower Pollination in the Phlox Family. Columbia University Press, New York. |
[22] |
Ganders FR (1979). The biology of heterostyly. New Zealand Journal of Botany, 17,607-635.
DOI URL |
[23] | Haddadchi A, Fatemi M (2015). Self-compatibility and floral traits adapted for self-pollination allow homostylous Nymphoides geminat (Menyanthaceae) to persist in marginal habitats. Plant Systematics & Evolution, 301,239-250. |
[24] |
Huang SQ (2006). Debates enrich our understanding of pollination biology. Trends in Ecology & Evolution, 21,233-234.
DOI URL |
[25] |
Huang SQ (2007). Studies on plant-pollinator interaction and its significances. Biodiversity Science, 15,569-575.
DOI URL PMID |
[ 黄双全 (2007). 植物与传粉者相互作用的研究及其意义. 生物多样性, 15,569-575.]
DOI PMID |
|
[26] | Hudabardi M Xu JG (2000). Claves Plantarum Xinjiangensis. 3rd ed. Xinjiang University Press, Ürümqi. |
[ 米吉提•胡达拜尔地, 徐建国 (2000). 新疆高等植物检索表. 3版. 新疆大学出版社, 乌鲁木齐.] | |
[27] | Lloyd DG, Webb CJ (1992a). The evolution of heterostyly// Barrett SCH. Evolution and Function of Heterostyly. Springer-Verlag, Berlin.151-178. |
[28] | Lloyd DG, Webb CJ (1992b). The selection of heterostyly// Barrett SCH. Evolution and Function of Heterostyly. Springer-Verlag, Berlin.179-207. |
[29] |
Maruyama PK, Amorim FW, Oliveira PE (2010). Night and day service: distyly and mixed pollination system in Faramea cyanea (Rubiaceae). Flora, 205,818-824.
DOI URL |
[30] |
Naiki A (2012). Heterostyly and the possibility of its breakdown by polyploidization. Plant Species Biology, 27,3-29.
DOI URL |
[31] |
Nilsson LA (1988). The evolution of flowers with deep corolla tubes. Nature, 334,147-149.
DOI URL |
[32] |
Nishihiro J, Washitani I, Thomson JD, Thomson BA (2000). Patterns and consequences of stigma height variation in a natural population of a distylous plant Primula sieboldii. Functional Ecology, 14,502-512.
DOI URL |
[33] |
Pérez-Barrale R, Arroyo J (2010). Pollinator shifts and the loss of style polymorphism in Narcissus papyraceus (Amaryllidaceae). Journal of Evolutionary Biology, 23,1117-1128.
DOI URL |
[34] |
Pérez-Barrales R, Arroyo J, Scott Armbruster W (2007). Differences in pollinator faunas may generate geographic differences in floral morphology and integration in Narcissus papyraceus (Amaryllidaceae). Oikos, 116,1904-1918.
DOI URL |
[35] |
Richards JH, Koptur S (1993). Floral variation and distyly in Guettarda scabra (Rubiaceae). American Journal of Botany, 80,31-40.
DOI URL |
[36] |
Santos-Gally R, Pérez-Barrales R, Simón VI, Arroyo J (2013). The role of short-tongued insects in floral variation across the range of a style-dimorphic plant. Annals of Botany, 111,317-328.
DOI PMID |
[37] |
Simón-Porcar VI, Santos-Gally R, Arroyo J (2014). Long- tongued insects promote disassortative pollen transfer in style-dimorphic Narcissus papyraceus (Amaryllidaceae). Journal of Ecology, 102,116-125.
DOI URL |
[38] |
Stebbins GL (1970). Adaptive radiation of reproductive characteristics in angiosperms, I. Pollination mechanisms. Annual Review of Ecology and Systematics, 1,307-326.
DOI URL |
[39] |
Tamari F, Shore JS (2004). Distribution of style and pollen polygalacturonases among distylous and homostylous Turnera and Piriqueta spp. (Turneraceae). Heredity, 92,380-385.
DOI URL |
[40] | Traveset A, Jakobsson A (1999). Valladares F. Ecology of plant reproduction: mating systems and pollination//Pugnaire FI, Valladares F.Hand Book of Functional Plant Ecology. Marcel Dekker, New York. |
[41] |
Waser NM, Chittka L, Price MV, Williams NM, Ollerton J (1996). Generalization in pollination systems, and why it matters. Ecology, 77,1043-1060.
DOI URL |
[42] |
Webb CJ, Lloyd DG (1986). The avoidance of interference between the presentation of pollen and stigmas in angiosperms II. Herkogamy. New Zealand Journal of Botany, 24,163-178.
DOI URL |
[43] | Yang CF, Guo YH (2005). Floral evolution: beyond traditional viewpoint of pollinator mediated floral design. Chinese Science Bulletin, 50,2575-2582. |
[ 杨春锋, 郭友好 (2005). 被子植物花部进化: 传粉选择作用的客观评价. 科学通报, 50,2575-2582.] | |
[44] | Zhang DY (2004). Plant Life History Evolution and Reproductive Ecology. Science Press, Beijing. 302-321. |
[ 张大勇 (2004). 植物生活史进化与繁殖生态学. 科学出版社, 北京. 302-321.] | |
[45] |
Zhou W, Barrett SCH, Li HD, Wu ZK, Wang XJ, Wang H, Li DZ (2017). Phylogeographic insights on the evolutionary breakdown of heterostyly. New Phytologist, 214,1368-1380.
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19