植物生态学报 ›› 2022, Vol. 46 ›› Issue (6): 700-711.DOI: 10.17521/cjpe.2022.0110
所属专题: 植物功能性状
翟江维1, 林馨慧1, 武瑞哲1, 徐义昕1, 靳豪豪1, 金光泽2, 刘志理2,*()
收稿日期:
2022-04-01
接受日期:
2022-05-19
出版日期:
2022-06-20
发布日期:
2022-06-09
通讯作者:
刘志理
作者简介:
*(liuzl2093@126.com)基金资助:
ZHAI Jiang-Wei1, LIN Xin-Hui1, WU Rui-Zhe1, XU Yi-Xin1, JIN Hao-Hao1, JIN Guang-Ze2, LIU Zhi-Li2,*()
Received:
2022-04-01
Accepted:
2022-05-19
Online:
2022-06-20
Published:
2022-06-09
Contact:
LIU Zhi-Li
Supported by:
摘要:
在叶水平上, 叶柄(支撑结构)与叶片(同化结构)的权衡关系受多种因素的影响, 研究不同功能型植物柄叶性状之间的权衡关系有助于更好地理解植物的生长特性与生活史策略。该研究选定小兴安岭地区典型阔叶红松(Pinus koraiensis)林林内乔木、灌木、草本植物, 采用最小显著差异法比较植物叶片性状与叶柄性状在不同生活型间的变异, 并用标准化主轴法从生活型、叶型、耐阴性3个方面研究叶片与叶柄性状之间的权衡关系。结果表明: (1)不同生活型、叶型植物以及不同耐阴性乔木叶片性状与叶柄干质量之间具有显著的异速生长关系, 且斜率均小于1; (2)随着叶柄干质量增加, 乔木叶片鲜质量、叶片干质量增长速度比灌木、草本更快, 但相同叶柄干质量, 乔木叶柄所能支撑的叶片面积最小; (3)单叶植物叶片面积-叶柄干质量的回归斜率显著大于复叶植物, 叶片鲜质量-叶柄干质量的回归斜率小于复叶植物, 并且相同叶柄干质量下, 单叶植物的叶片干质量总是大于复叶植物; (4)比起喜光树种, 相同叶柄干质量, 耐阴树种的叶柄能够支撑的叶片面积与叶片鲜质量更大, 并且叶柄生物量分配比例(叶柄干质量/叶干质量)与叶片性状的回归斜率均表现为喜光树种>0, 耐阴树种<0。该研究结果表明叶片大小(叶片面积、叶片鲜质量、叶片干质量)与叶柄性状之间存在典型的权衡关系, 其在不同生活型、叶型植物及不同耐阴性乔木内的差异有助于揭示不同功能型植物的生长特性与生活史策略。
翟江维, 林馨慧, 武瑞哲, 徐义昕, 靳豪豪, 金光泽, 刘志理. 小兴安岭不同功能型阔叶植物的柄叶权衡. 植物生态学报, 2022, 46(6): 700-711. DOI: 10.17521/cjpe.2022.0110
ZHAI Jiang-Wei, LIN Xin-Hui, WU Rui-Zhe, XU Yi-Xin, JIN Hao-Hao, JIN Guang-Ze, LIU Zhi-Li. Trade-offs between petiole and lamina of different functional plants in Xiao Hinggan Mountains, China. Chinese Journal of Plant Ecology, 2022, 46(6): 700-711. DOI: 10.17521/cjpe.2022.0110
种 Species | 科 Family | 属 Genus | 生活型 Life form | 叶型 Leaf type | 耐阴性 Shade tolerance |
---|---|---|---|---|---|
白桦 Betula platyphylla | 桦木科 Betulaceae | 桦木属 Betula | >乔木 Tree | 单叶 Simple leaf | 喜光 Shade intolerant |
硕桦 Betula costata | 桦木科 Betulaceae | 桦木属 Betula | >乔木 Tree | 单叶 Simple leaf | 喜光 Shade intolerant |
裂叶榆 Ulmus laciniata | 榆科 Ulmaceae | 榆属 Ulmus | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
五角枫 Acer pictum subsp. mono | 槭树科 Aceraceae | 槭属 Acer | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
紫椴 Tilia amurensis | 椴树科 Tiliaceae | 椴属 Tilia | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
水曲柳 Fraxinus mandshurica | 木樨科 Oleaceae | 梣属 Fraxinus | >乔木 Tree | 复叶 Compound leaf | 喜光 Shade intolerant |
东北茶藨子 Ribes mandshuricum | 虎耳草科 Saxifragaceae | 茶藨子属 Ribes | >灌木 Shrub | 单叶 Simple leaf | |
毛榛 Corylus mandshurica | 桦木科 Betulaceae | 榛属 Corylus | >灌木 Shrub | 单叶 Simple leaf | |
忍冬 Lonicera japonica | 忍冬科 Caprifoliaceae | 忍冬属 Lonicera | >灌木 Shrub | 单叶 Simple leaf | |
山梅花 Philadelphus incanus | 虎耳草科 Saxifragaceae | 山梅花属Philadelphus | >灌木 Shrub | 单叶 Simple leaf | |
溲疏 Deutzia scabra | 虎耳草科 Saxifragaceae | 溲疏属 Deutzia | >灌木 Shrub | 单叶 Simple leaf | |
卫矛 Euonymus alatus | 卫矛科 Celastraceae | 卫矛属 Euonymus | >灌木 Shrub | 单叶 Simple leaf | |
刺五加 Eleutherococcus senticosus | 五加科 Araliaceae | 五加属Acanthopanax | >灌木 Shrub | 复叶 Compound leaf | |
露珠草 Circaea cordata | 柳叶菜科 Onagraceae | 露珠草属 Circaea | >草本 Herb | 单叶 Simple leaf | |
荨麻 Urtica fissa | 荨麻科 Urticaceae | 荨麻属 Urtica | >草本 Herb | 单叶 Simple leaf | |
水金凤 Impatiens noli-tangere | 凤仙花科 Balsaminaceae | 凤仙花属 Impatiens | >草本 Herb | 单叶 Simple leaf | |
透茎冷水花 Pilea pumila | 荨麻科 Urticaceae | 冷水花属 Pilea | >草本 Herb | 单叶 Simple leaf | |
中国茜草 Rubia chinensis | 茜草科 Rubiaceae | 茜草属 Rubia | >草本 Herb | 单叶 Simple leaf | |
北野豌豆 Vicia ramuliflora | 豆科 Leguminosae | 野豌豆属 Vicia | >草本 Herb | 复叶 Compound leaf | |
升麻 Cimicifuga foetida | 毛茛科 Ranunculaceae | 升麻属 Cimicifuga | >草本 Herb | 复叶 Compound leaf |
表1 小兴安岭不同功能型物种统计信息
Table 1 Species statistical information of different functional plants in Xiao Hinggan Mountains
种 Species | 科 Family | 属 Genus | 生活型 Life form | 叶型 Leaf type | 耐阴性 Shade tolerance |
---|---|---|---|---|---|
白桦 Betula platyphylla | 桦木科 Betulaceae | 桦木属 Betula | >乔木 Tree | 单叶 Simple leaf | 喜光 Shade intolerant |
硕桦 Betula costata | 桦木科 Betulaceae | 桦木属 Betula | >乔木 Tree | 单叶 Simple leaf | 喜光 Shade intolerant |
裂叶榆 Ulmus laciniata | 榆科 Ulmaceae | 榆属 Ulmus | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
五角枫 Acer pictum subsp. mono | 槭树科 Aceraceae | 槭属 Acer | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
紫椴 Tilia amurensis | 椴树科 Tiliaceae | 椴属 Tilia | >乔木 Tree | 单叶 Simple leaf | 耐阴 Shade tolerant |
水曲柳 Fraxinus mandshurica | 木樨科 Oleaceae | 梣属 Fraxinus | >乔木 Tree | 复叶 Compound leaf | 喜光 Shade intolerant |
东北茶藨子 Ribes mandshuricum | 虎耳草科 Saxifragaceae | 茶藨子属 Ribes | >灌木 Shrub | 单叶 Simple leaf | |
毛榛 Corylus mandshurica | 桦木科 Betulaceae | 榛属 Corylus | >灌木 Shrub | 单叶 Simple leaf | |
忍冬 Lonicera japonica | 忍冬科 Caprifoliaceae | 忍冬属 Lonicera | >灌木 Shrub | 单叶 Simple leaf | |
山梅花 Philadelphus incanus | 虎耳草科 Saxifragaceae | 山梅花属Philadelphus | >灌木 Shrub | 单叶 Simple leaf | |
溲疏 Deutzia scabra | 虎耳草科 Saxifragaceae | 溲疏属 Deutzia | >灌木 Shrub | 单叶 Simple leaf | |
卫矛 Euonymus alatus | 卫矛科 Celastraceae | 卫矛属 Euonymus | >灌木 Shrub | 单叶 Simple leaf | |
刺五加 Eleutherococcus senticosus | 五加科 Araliaceae | 五加属Acanthopanax | >灌木 Shrub | 复叶 Compound leaf | |
露珠草 Circaea cordata | 柳叶菜科 Onagraceae | 露珠草属 Circaea | >草本 Herb | 单叶 Simple leaf | |
荨麻 Urtica fissa | 荨麻科 Urticaceae | 荨麻属 Urtica | >草本 Herb | 单叶 Simple leaf | |
水金凤 Impatiens noli-tangere | 凤仙花科 Balsaminaceae | 凤仙花属 Impatiens | >草本 Herb | 单叶 Simple leaf | |
透茎冷水花 Pilea pumila | 荨麻科 Urticaceae | 冷水花属 Pilea | >草本 Herb | 单叶 Simple leaf | |
中国茜草 Rubia chinensis | 茜草科 Rubiaceae | 茜草属 Rubia | >草本 Herb | 单叶 Simple leaf | |
北野豌豆 Vicia ramuliflora | 豆科 Leguminosae | 野豌豆属 Vicia | >草本 Herb | 复叶 Compound leaf | |
升麻 Cimicifuga foetida | 毛茛科 Ranunculaceae | 升麻属 Cimicifuga | >草本 Herb | 复叶 Compound leaf |
性状 Trait | 参数 Parameter | 生活型 Life form | ||
---|---|---|---|---|
乔木 Tree | 灌木 Shrub | 草本 Herb | ||
叶片面积 Lamina area (cm2) | 样本量 No. of samples | 568 | 380 | 246 |
平均值 Mean | 75.353a | 42.500b | 26.668c | |
范围 Range | 3.960-512.455 | 2.600-262.338 | 1.912-240.509 | |
标准差 SD | 96.168 | 44.125 | 39.218 | |
标准误 SE | 4.035 | 2.264 | 2.500 | |
变异系数 CV (%) | 127.6 | 103.8 | 147.1 | |
叶片鲜质量 Lamina fresh mass (g) | 平均值 Mean | 1.288a | 0.501b | 0.230c |
范围 Range | 0.037-8.456 | 0.028-3.637 | 0.015-2.147 | |
标准差 SD | 1.918 | 0.600 | 0.321 | |
标准误 SE | 0.080 | 0.0308 | 0.020 | |
变异系数 CV (%) | 148.8 | 119.8 | 139.5 | |
叶片干质量 Lamina dry mass (g) | 平均值 Mean | 0.449a | 0.138b | 0.059c |
范围 Range | 0.014-3.035 | 0.006-0.864 | 0.005-0.484 | |
标准差 SD | 0.652 | 0.149 | 0.091 | |
标准误 SE | 0.027 | 0.008 | 0.006 | |
变异系数 CV (%) | 145.3 | 107.7 | 155.7 | |
叶柄干质量 Petiole dry mass (g) | 平均值 Mean | 0.061a | 0.012b | 0.007b |
范围 Range | 0.001-0.442 | 0.001-0.112 | 0.001-0.081 | |
标准差 SD | 0.109 | 0.020 | 0.013 | |
标准误 SE | 0.005 | 0.001 | 0.001 | |
变异系数 CV (%) | 178.4 | 167.4 | 193.7 | |
叶柄/叶干质量 Petiole/leaf dry mass ratio | 平均值 Mean | 0.085a | 0.060b | 0.086a |
范围 Range | 0.004-0.393 | 0.002-0.435 | 0.003-0.304 | |
标准差 SD | 0.049 | 0.052 | 0.051 | |
标准误 SE | 0.002 | 0.003 | 0.003 | |
变异系数 CV (%) | 58.0 | 86.4 | 59.5 |
表2 小兴安岭3种生活型植物叶功能性状差异(平均值±标准误)
Table 2 Variation in functional leaf traits among three life-form plants in Xiao Hinggan Mountains (mean ± SE)
性状 Trait | 参数 Parameter | 生活型 Life form | ||
---|---|---|---|---|
乔木 Tree | 灌木 Shrub | 草本 Herb | ||
叶片面积 Lamina area (cm2) | 样本量 No. of samples | 568 | 380 | 246 |
平均值 Mean | 75.353a | 42.500b | 26.668c | |
范围 Range | 3.960-512.455 | 2.600-262.338 | 1.912-240.509 | |
标准差 SD | 96.168 | 44.125 | 39.218 | |
标准误 SE | 4.035 | 2.264 | 2.500 | |
变异系数 CV (%) | 127.6 | 103.8 | 147.1 | |
叶片鲜质量 Lamina fresh mass (g) | 平均值 Mean | 1.288a | 0.501b | 0.230c |
范围 Range | 0.037-8.456 | 0.028-3.637 | 0.015-2.147 | |
标准差 SD | 1.918 | 0.600 | 0.321 | |
标准误 SE | 0.080 | 0.0308 | 0.020 | |
变异系数 CV (%) | 148.8 | 119.8 | 139.5 | |
叶片干质量 Lamina dry mass (g) | 平均值 Mean | 0.449a | 0.138b | 0.059c |
范围 Range | 0.014-3.035 | 0.006-0.864 | 0.005-0.484 | |
标准差 SD | 0.652 | 0.149 | 0.091 | |
标准误 SE | 0.027 | 0.008 | 0.006 | |
变异系数 CV (%) | 145.3 | 107.7 | 155.7 | |
叶柄干质量 Petiole dry mass (g) | 平均值 Mean | 0.061a | 0.012b | 0.007b |
范围 Range | 0.001-0.442 | 0.001-0.112 | 0.001-0.081 | |
标准差 SD | 0.109 | 0.020 | 0.013 | |
标准误 SE | 0.005 | 0.001 | 0.001 | |
变异系数 CV (%) | 178.4 | 167.4 | 193.7 | |
叶柄/叶干质量 Petiole/leaf dry mass ratio | 平均值 Mean | 0.085a | 0.060b | 0.086a |
范围 Range | 0.004-0.393 | 0.002-0.435 | 0.003-0.304 | |
标准差 SD | 0.049 | 0.052 | 0.051 | |
标准误 SE | 0.002 | 0.003 | 0.003 | |
变异系数 CV (%) | 58.0 | 86.4 | 59.5 |
图1 小兴安岭3种生活型植物叶柄-叶片性状相关关系及叶片性状-叶柄生物量分配比例相关关系在不同生活型植物间的差异。LA, 叶片面积; LDM, 叶片干质量; LFM, 叶片鲜质量; PDM, 叶柄干质量; Petiole/leaf dry mass ratio, 叶柄在叶中的生物量分配比例。p值代表斜率间差异的显著性。Common slope, 共同斜率; Slope, 斜率。***, p < 0.001。
Fig. 1 Differences in petiole-lamina trait correlations and lamina trait-petiole biomass allocation ratio correlations among three life-form plants in Xiao Hinggan Mountains. LA, lamina area; LDM, lamina dry mass; LFM, lamina fresh mass; PDM, petiole dry mass; Petiole/leaf dry mass ratio, petiole biomass allocation ratio in leaves. p value represents the significance of difference in slopes. ***, p < 0.001.
图2 小兴安岭单叶植物和复叶植物叶柄-叶片性状相关关系及叶片性状-叶柄生物量分配比例相关关系的差异。LA, 叶片面积; LDM, 叶片干质量; LFM, 叶片鲜质量; PDM, 叶柄干质量; Petiole/leaf dry mass ratio, 叶柄在叶中的生物量分配比例。p值代表斜率间差异的显著性。Common slope, 共同斜率; Slope, 斜率。*, p < 0.05; ***, p < 0.001。
Fig. 2 Differences in petiole-lamina trait correlations and leaf trait-petiole biomass allocation ratio correlations between simple- and compound-leaved species in Xiao Hinggan Mountains. LA, lamina area; LDM, lamina dry mass; LFM, lamina fresh mass; PDM, petiole dry mass; Petiole/leaf dry mass ratio, petiole biomass allocation ratio in leaves. p value represents the significance of difference in slopes. *, p < 0.05; ***, p < 0.001.
图3 小兴安岭不同耐阴性乔木叶柄-叶片性状相关关系及叶片性状-叶柄生物量分配比例相关关系的差异。LA, 叶片面积; LDM, 叶片干质量; LFM, 叶片鲜质量; PDM, 叶柄干质量; Petiole/leaf dry mass ratio, 叶柄在叶中的生物量分配比例。p值代表斜率间差异的显著性。Common slope, 共同斜率; Slope, 斜率。***, p < 0.001。
Fig. 3 Differences in petiole-lamina trait correlations and lamina trait-petiole biomass allocation ratio relationships in different shade tolerant tree species in Xiao Hinggan Mountains. LA, lamina area; LDM, lamina dry mass; LFM, lamina fresh mass; PDM, petiole dry mass; Petiole/leaf dry mass ratio, petiole biomass allocation ratio in leaves. p value represents the significance of difference in slopes. ***, p < 0.001.
[1] |
Bazzaz FA, Carlson RW (1982). Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia, 54, 313-316.
DOI PMID |
[2] |
Carins Murphy MR, Jordan GJ, Brodribb TJ (2016). Cell expansion not cell differentiation predominantly co-ordinates veins and stomata within and among herbs and woody angiosperms grown under sun and shade. Annals of Botany, 118, 1127-1138.
DOI URL |
[3] |
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I, Garnier E, Bönisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
DOI URL |
[4] |
Enquist BJ (2002). Universal scaling in tree and vascular plant allometry: toward a general quantitative theory linking plant form and function from cells to ecosystems. Tree Physiology, 22, 1045-1064.
PMID |
[5] | Feng QH, Shi ZM, Dong LL (2008). Response of plant functional traits to environment and its application. Scientia Silvae Sinicae, 44(4), 125-131. |
[冯秋红, 史作民, 董莉莉 (2008). 植物功能性状对环境的响应及其应用. 林业科学, 44(4), 125-131.] | |
[6] |
Galia Selaya N, Oomen RJ, Netten JJC, Werger MJA, Anten NPR (2008). Biomass allocation and leaf life span in relation to light interception by tropical forest plants during the first years of secondary succession. Journal of Ecology, 96, 1211-1221.
DOI URL |
[7] |
Gebauer R, Vanbeveren SPP, Volařík D, Plichta R, Ceulemans R (2016). Petiole and leaf traits of poplar in relation to parentage and biomass yield. Forest Ecology and Management, 362, 1-9.
DOI URL |
[8] |
He PC, Wright IJ, Zhu SD, Onoda Y, Liu H, Li RH, Liu XR, Hua L, Oyanoghafo OO, Ye Q (2019). Leaf mechanical strength and photosynthetic capacity vary independently across 57 subtropical forest species with contrasting light requirements. New Phytologist, 223, 607-618.
DOI URL |
[9] |
Hess AS, Hess JR (2017). Understanding tests of the association of categorical variables: the Pearson Chi-square test and Fisher's exact test. Transfusion, 57, 877-879.
DOI URL |
[10] |
Huang WW, Reddy GVP, Li YY, Larsen JB, Shi PJ (2020). Increase in absolute leaf water content tends to keep pace with that of leaf dry mass-Evidence from bamboo plants. Symmetry, 12, 1345. DOI: 10.3390/sym12081345.
DOI URL |
[11] |
Jiang F, Cadotte MW, Jin GZ (2021). Individual-level leaf trait variation and correlation across biological and spatial scales. Ecology and Evolution, 11, 5344-5354.
DOI PMID |
[12] |
Kazda M, Miladera JC, Salzer J (2009). Optimisation of spatial allocation patterns in lianas compared to trees used for support. Trees, 23, 295-304.
DOI URL |
[13] |
Kikuzawa K, Koyama H, Umeki K, Lechowicz MJ (1996). Some evidence for an adaptive linkage between leaf phenology and shoot architecture in sapling trees. Functional Ecology, 10, 252-257.
DOI URL |
[14] |
Kleiman D, Aarssen LW (2007). The leaf size/number trade-off in trees. Journal of Ecology, 95, 376-382.
DOI URL |
[15] |
Lee KH, Ehsani R, Castle WS (2010). A laser scanning system for estimating wind velocity reduction through tree windbreaks. Computers and Electronics in Agriculture, 73, 1-6.
DOI URL |
[16] |
Li GY, Yang DM, Sun SC (2008). Allometric relationships between lamina area, lamina mass and petiole mass of 93 temperate woody species vary with leaf habit, leaf form and altitude. Functional Ecology, 22, 557-564.
DOI URL |
[17] |
Li Y, He NP, Hou JH, Xu L, Liu CC, Zhang JH, Wang QF, Zhang XM, Wu XQ (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution, 6, 64. DOI: 10.3389/fevo.2018.00064.
DOI URL |
[18] |
Li YN, Kang XM, Zhou JY, Zhao ZG, Zhang ST, Bu HY, Qi W (2021). Geographic variation in the petiole-lamina relationship of 325 eastern Qinghai-Tibetan woody species: analysis in three dimensions. Frontiers in Plant Science, 12, 748125. DOI: 10.3389/fpls.2021.748125.
DOI URL |
[19] |
Lintunen A, Kalliokoski T (2010). The effect of tree architecture on conduit diameter and frequency from small distal roots to branch tips in Betula pendula, Picea abies and Pinus sylvestris. Tree Physiology, 30, 1433-1447.
DOI PMID |
[20] | Liu XJ, Ma KP (2015). Plant functional traits-Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] | |
[21] | Long JY, Zhao YM, Kong XQ, Chen ZY, Wang XS, Zhao K, Cao R, Huang LS, Lü J, Cui Y, Yu YL, Xu CY (2018). Trade-offs between twig and leaf traits of ornamental shrubs grown in shade. Acta Ecologica Sinica, 38, 8022- 8030. |
[龙嘉翼, 赵宇萌, 孔祥琦, 陈治羊, 王秀松, 赵凯, 曹然, 黄丽莎, 吕娇, 崔义, 余玉磊, 徐程扬 (2018). 观赏灌木小枝和叶性状在林下庇荫环境中的权衡关系. 生态学报, 38, 8022-8030.] | |
[22] |
Malhado ACM, Whittaker RJ, Malhi Y, Ladle RJ ter Steege H, Phillips O, Aragão LEOC, Baker TR, Arroyo L, Almeida S, Higuchi N, Killeen TJ, Monteagudo A, Pitman NCA, Prieto A, et al. (2010). Are compound leaves an adaptation to seasonal drought or to rapid growth? Evidence from the Amazon rain forest. Global Ecology and Biogeography, 19, 852-862.
DOI URL |
[23] |
Meng FQ, Zhang GF, Li XC, Niklas KJ, Sun SC (2015). Growth synchrony between leaves and stems during twig development differs among plant functional types of subtropical rainforest woody species. Tree Physiology, 35, 621-631.
DOI URL |
[24] |
Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos, 90, 517-524.
DOI URL |
[25] |
Niinemets Ü (1996). Plant growth-form alters the relationship between foliar morphology and species shade-tolerance ranking in temperate woody taxa. Vegetatio, 124, 145-153.
DOI URL |
[26] |
Niinemets Ü, Kull O (1999). Biomass investment in leaf lamina versus lamina support in relation to growth irradiance and leaf size in temperate deciduous trees. Tree Physiology, 19, 349-358.
PMID |
[27] |
Niinemets Ü, Portsmuth A, Tena D, Tobias M, Matesanz S, Valladares F (2007a). Do we underestimate the importance of leaf size in plant economics? Disproportional scaling of support costs within the spectrum of leaf physiognomy. Annals of Botany, 100, 283-303.
DOI URL |
[28] |
Niinemets Ü, Portsmuth A, Tobias M (2006). Leaf size modifies support biomass distribution among stems, petioles and mid-ribs in temperate plants. New Phytologist, 171, 91-104.
PMID |
[29] | Niinemets Ü, Portsmuth A, Tobias M (2007b). Leaf shape and venation pattern alter the support investments within leaf lamina in temperate species: a neglected source of leaf physiological differentiation? Functional Ecology, 21, 28-40. |
[30] |
Niinemets Ü, Valladares F (2006). Tolerance to shade, drought, and waterlogging of temperate Northern Hemisphere trees and shrubs. Ecological Monographs, 76, 521-547.
DOI URL |
[31] |
Niklas KJ (1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
DOI URL |
[32] |
Niklas KJ, Cobb ED, Niinemets Ü, Reich PB, Sellin A, Shipley B, Wright IJ (2007). “Diminishing returns” in the scaling of functional leaf traits across and within species groups. Proceedings of the National Academy of Sciences of the United States of America, 104, 8891-8896.
PMID |
[33] |
Niklas KJ, Enquist BJ (2002). Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 89, 812-819.
DOI PMID |
[34] |
Oktavia D, Jin GZ (2020). Variations in leaf morphological and chemical traits in response to life stages, plant functional types, and habitat types in an old-growth temperate forest. Basic and Applied Ecology, 49, 22-33.
DOI URL |
[35] |
Pan SA, Peng GQ, Yang DM (2015). Biomass allocation strategies within a leaf: implication for leaf size optimization. Chinese Journal of Plant Ecology, 39, 971-979.
DOI URL |
[潘少安, 彭国全, 杨冬梅 (2015). 从叶内生物量分配策略的角度理解叶大小的优化. 植物生态学报, 39, 971-979.]
DOI |
|
[36] |
Poorter L (2009). Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist, 181, 890-900.
DOI URL |
[37] |
Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology, 87, 483-491.
DOI URL |
[38] |
Smith DD, Sperry JS, Adler FR (2016). Convergence in leaf size versus twig leaf area scaling: Do plants optimize leaf area partitioning? Annals of Botany, 119, 447-456.
DOI URL |
[39] |
Song J, Yang D, Niu CY, Zhang WW, Wang M, Hao GY (2018). Correlation between leaf size and hydraulic architecture in five compound-leaved tree species of a temperate forest in NE China. Forest Ecology and Management, 418, 63-72.
DOI URL |
[40] |
Takenaka A (1994). Effects of leaf blade narrowness and petiole length on the light capture efficiency of a shoot. Ecological Research, 9, 109-114.
DOI URL |
[41] |
Valladares F, Niinemets Ü (2008). Shade tolerance, a key plant feature of complex nature and consequences. Annual Review of Ecology, Evolution, and Systematics, 39, 237-257.
DOI URL |
[42] |
Wang MQ, Jin GZ, Liu ZL (2019). Variation and relationships between twig and leaf traits of species across successional status in temperate forests. Scandinavian Journal of Forest Research, 34, 647-655.
DOI URL |
[43] |
Warman L, Moles AT, Edwards W (2011). Not so simple after all: searching for ecological advantages of compound leaves. Oikos, 120, 813-821.
DOI URL |
[44] |
Warton DI, Wright IJ, Falster DS, Westoby M (2006). Bivariate line-fitting methods for allometry. Biological Reviews, 81, 259-291.
PMID |
[45] |
Westoby M, Wright IJ (2003). The leaf size-twig size spectrum and its relationship to other important spectra of variation among species. Oecologia, 135, 621-628.
PMID |
[46] |
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets Ü, Reich PB, Sack L, Villar R, et al. (2017). Global climatic drivers of leaf size. Science, 357, 917-921.
DOI PMID |
[47] |
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
DOI URL |
[48] |
Wu BD, Liu J, Jiang K, Zhou JW, Wang CY (2019). Differences in leaf functional traits between simple and compound leaves of Canavalia maritime. Polish Journal of Environmental Studies, 28, 1425-1432.
DOI URL |
[49] |
Xiang S, Wu N, Sun SC (2009). Within-twig biomass allocation in subtropical evergreen broad-leaved species along an altitudinal gradient: allometric scaling analysis. Trees, 23, 637-647.
DOI URL |
[50] |
Yan ER, Wang XH, Chang SX, He FL (2013). Scaling relationships among twig size, leaf size and leafing intensity in a successional series of subtropical forests. Tree Physiology, 33, 609-617.
DOI URL |
[51] | Yang DM, Zhang JJ, Zhou D, Qian MJ, Zheng Y, Jin LM (2012). Leaf and twig functional traits of woody plants and their relationships with environmental change: a review. Chinese Journal of Ecology, 31, 702-713. |
[杨冬梅, 章佳佳, 周丹, 钱敏杰, 郑瑶, 金灵妙 (2012). 木本植物茎叶功能性状及其关系随环境变化的研究进展. 生态学杂志, 31, 702-713.] | |
[52] | Yin FJ, Wang MQ, Jin GZ, Liu ZL (2021). Trade-off between twig and leaf of Pinus koraiensis at different life history stages. Scientia Silvae Sinicae, 57(3), 54-62. |
[尹凤娟, 王明琦, 金光泽, 刘志理 (2021). 红松不同生活史阶段的枝叶权衡. 林业科学, 57(3), 54-62.] | |
[53] |
Zhu GJ, Niklas KJ, Li M, Sun J, Lyu M, Chen XP, Wang MT, Zhong QL, Cheng DL (2019). “Diminishing Returns” in the scaling between leaf area and twig size in three forest communities along an elevation gradient of Wuyi Mountain, China. Forests, 10, 1138. DOI: 10.3390/f10121138.
DOI URL |
[54] |
Zhu JD, Meng TT, Ni J, Su HX, Xie ZQ, Zhang SR, Zheng YR, Xiao CW (2011). Within-leaf allometric relationships of mature forests in different bioclimatic zones vary with plant functional types. Chinese Journal of Plant Ecology, 35, 687-698.
DOI URL |
[祝介东, 孟婷婷, 倪健, 苏宏新, 谢宗强, 张守仁, 郑元润, 肖春旺 (2011). 不同气候带间成熟林植物叶性状间异速生长关系随功能型的变异. 植物生态学报, 35, 687-698.] | |
[55] | Zhu YJ, Yang FY, Zhao JF, Liu JS (2011). Plant functional type and its application in ecosystem modeling. Chinese Journal of Ecology, 30, 138-144. |
[朱玉洁, 杨霏云, 赵俊芳, 刘峻杉 (2011). 植物功能型研究方法在生态系统模型中的应用. 生态学杂志, 30, 138-144.] |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 杜旭龙, 黄锦学, 杨智杰, 熊德成. 增温对植物叶片和细根氧化损伤与防御特征及其相互关联影响的研究进展[J]. 植物生态学报, 2024, 48(2): 135-146. |
[3] | 孙佳慧, 史海兰, 陈科宇, 纪宝明, 张静. 植物细根功能性状的权衡关系研究进展[J]. 植物生态学报, 2023, 47(8): 1055-1070. |
[4] | 周莹莹, 林华. 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023, 47(5): 733-744. |
[5] | 刘婧, 缑倩倩, 王国华, 赵峰侠. 晋西北丘陵风沙区柠条锦鸡儿叶片与土壤生态化学计量特征[J]. 植物生态学报, 2023, 47(4): 546-558. |
[6] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[7] | 王文伟, 韩伟鹏, 刘文文. 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应[J]. 植物生态学报, 2023, 47(2): 216-226. |
[8] | 和璐璐, 张萱, 章毓文, 王晓霞, 刘亚栋, 刘岩, 范子莹, 何远洋, 席本野, 段劼. 辽东山区不同坡向长白落叶松人工林树冠特征与林木生长关系[J]. 植物生态学报, 2023, 47(11): 1523-1539. |
[9] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[10] | 林马震, 黄勇, 李洋, 孙建. 高寒草地植物生存策略地理分布特征及其影响因素[J]. 植物生态学报, 2023, 47(1): 41-50. |
[11] | 姚萌, 康荣华, 王盎, 马方园, 李靳, 台子晗, 方运霆. 利用15N示踪技术研究木荷与马尾松幼苗叶片对NO2的吸收与分配[J]. 植物生态学报, 2023, 47(1): 114-122. |
[12] | 李一丁, 桑清田, 张灏, 刘龙昌, 潘庆民, 王宇, 刘伟, 袁文平. 内蒙古半干旱地区空气和土壤加湿对幼龄樟子松生长的影响[J]. 植物生态学报, 2022, 46(9): 1077-1085. |
[13] | 李露, 金光泽, 刘志理. 阔叶红松林3种阔叶树种柄叶性状变异与相关性[J]. 植物生态学报, 2022, 46(6): 687-699. |
[14] | 彭鑫, 金光泽. 植物特性和环境因子对阔叶红松林暗多样性的影响[J]. 植物生态学报, 2022, 46(6): 656-666. |
[15] | 程思祺, 姜峰, 金光泽. 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022, 46(6): 678-686. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19