Chin J Plant Ecol ›› 2019, Vol. 43 ›› Issue (7): 585-600.doi: 10.17521/cjpe.2019.0060

• Research Articles • Previous Articles     Next Articles

Diversity and geographical variations of germplasm resources of Armeniaca mandshurica

XU Hao(),LIU Ming-Guo(),DONG Sheng-Jun,WU Yue-Liang,ZHANG Hao-Kai   

  1. College of Forestry, Shenyang Agricultural University, Shenyang 110161, China
  • Received:2019-03-18 Accepted:2019-05-15 Online:2019-12-12 Published:2019-07-20
  • Contact: XU Hao ORCID:0000-0001-7250-3940,LIU Ming-Guo E-mail:2017220539@stu.syau.edu.cn;liumingguo916@163.com
  • Supported by:
    Supported by the Distinguished Professor Foundation Project of Liaoning Province, China

Abstract:

Aims Armeniaca mandshurica is an important species which serves the need of ornamental, wood and other economical uses. This species has been in wild or semi-wild state for a long time and few studies about this species have been conducted. This paper aimed to provide an important reference for the collection, evaluation and protection of germplasm resources of A. mandshurica.
Methods The status of the germplasm resources in the main distribution area of A. mandshurica was investigated. In total, 47 typical sample trees from Liaoning, Jilin and Heilongjiang Provinces were selected. For each tree, 22 quantitative traits and 7 qualitative traits were measured. The diversity of quantitative traits was represented by indicators such as coefficient of variation, and the diversity of qualitative traits was represented by indicators such as frequency distribution. Trend surface analysis was used to explore the geographical variation in the quantitative traits. A total of 115 pairs of SSR primers were used for PCR amplification for 47 A. mandshurica germplasms, and the genetic diversity of A. mandshurica germplasms was analyzed using genetic similarity coefficient. Germplasms were classified by cluster analysis based on phenotypic traits and SSR markers separately.
Important findings High phenotypic diversity was found among different germplasms in A. mandshurica. The coefficients of variation (CV) of the 19 quantitative traits ranged from 9.40% to 55.98%. Among the 19 traits, twig length had the highest CV and kernel width had the lowest CV. The Shannon-Wiener index of 7 qualitative traits ranged from 0.58 to 1.22. Due to the significant correlation between geographical locations and main climatic factors within the study area, the quantitative traits of A. mandshurica germplasms were closely related to their geographical locations. Among them, twig length increased from east to west, twig thickness and seed mass increased from north to south, and fruit handle length increased from northeast to southwest. Twig length and fruit handle length were positively correlated with altitude, twig thickness was negatively correlated with altitude, and seed mass was not correlated with altitude. Clustering analysis based on 26 phenotypic traits showed that the 47 A. mandshurica germplasms could be divided into 4 categories, which mainly reflected the difference of the germplasm characteristics in A. mandshurica and to some extent also reflected the difference of germplasm productions. Clustering analysis based on genetic similarity coefficients showed that the 47 A. mandshurica germplasms were also divided into 4 categories, which reflected the difference of germplasm productions. Chi-square test showed that the correlation between the two clustering results was not significant, and that the external environment was the key factor affecting phenotypic variations in A. mandshurica.

Key words: Armeniaca mandshurica, diversity, phenotypic traits, geographical variations, SSR markers

Table 1

Geographic locations of sampled Armeniaca mandshurica germplasms"

种质编号
Germplasm No.
地点
Site
海拔
Altitude (m)
经纬度
Longitude (E)
and Latitude (N)
种质编号
Germplasm No.
地点
Site
海拔
Altitude (m)
经纬度
Longitude (E)
and Latitude (N)
701 凤城 Fengcheng 185.6 123.95°, 40.42° 747 桦甸 Huadian 268.5 127.04°, 42.98°
702 凤城 Fengcheng 187.6 123.95°, 40.42° 748 敦化 Dunhua 495.0 128.22°, 43.38°
703 凤城 Fengcheng 185.4 123.95°, 40.42° 749 敦化 Dunhua 509.6 128.22°, 43.38°
704 本溪 Benxi 406.0 123.96°, 40.88° 750 敦化 Dunhua 517.3 128.22°, 43.38°
705 本溪 Benxi 405.8 123.96°, 40.88° 751 敦化 Dunhua 598.8 128.54°, 43.41°
706 本溪 Benxi 406.3 123.96°, 40.88° 752 敦化 Dunhua 599.1 128.54°, 43.41°
707 桓仁 Huanren 277.6 125.37°, 41.25° 753 敦化 Dunhua 595.3 128.54°, 43.41°
708 桓仁 Huanren 272.6 125.37°, 41.25° 755 吉林 Jilin 301.4 126.80°, 43.97°
709 桓仁 Huanren 283.3 125.37°, 41.25° 756 吉林 Jilin 302.2 126.80°, 43.97°
710 新宾 Xinbin 387.1 125.10°, 41.77° 757 吉林 Jilin 303.7 126.80°, 43.97°
711 新宾 Xinbin 416.5 125.10°, 41.77° 758 吉林 Jilin 200.0 126.55°, 43.85°
712 新宾 Xinbin 419.1 125.10°, 41.77° 772 宁安 Ningan 263.8 129.52°, 44.42°
713 清原 Qingyuan 315.7 124.81°, 42.34° 773 宁安 Ningan 262.2 129.52°, 44.42°
714 清原 Qingyuan 318.7 124.81°, 42.34° 774 宁安 Ningan 268.6 129.52°, 44.42°
715 清原 Qingyuan 315.7 124.81°, 42.34° 775 宁安 Ningan 279.6 129.52°, 44.42°
724 沈阳 Shenyang 60.0 123.57°, 41.82° 776 尚志 Shangzhi 327.6 127.55°, 45.27°
729 沈阳 Shenyang 58.0 123.55°, 41.82° 777 鸡西 Jixi 303.6 130.52°, 45.21°
730 沈阳 Shenyang 65.0 123.55°, 41.82° 778 鸡西 Jixi 282.6 130.54°, 45.18°
741 抚松 Fusong 461.9 127.20°, 42.34° 779 鸡西 Jixi 372.4 130.69°, 45.02°
742 抚松 Fusong 460.9 127.20°, 42.34° 783 阿城 Acheng 243.0 127.05°, 45.44°
743 抚松 Fusong 449.7 127.20°, 42.34° 784 阿城 Acheng 262.0 127.05°, 45.43°
744 磐石 Panshi 399.2 126.06°, 42.86° 785 阿城 Acheng 262.1 127.05°, 45.43°
745 磐石 Panshi 402.5 126.06°, 42.86° 786 阿城 Acheng 216.4 127.06°, 45.44°
746 磐石 Panshi 401.3 126.06°, 42.86°

Table 2

Phenotypic traits and their description of Armeniaca mandshurica germplasms"

序号 No. 性状 Traits 表型性状描述 Description of phenotypic traits
1 小枝色泽 Twig color (1)绿色 Green (2)黄褐色 Tawny (3)灰褐色 Grayish-brown
2 叶背被毛 Leaf back fuzzed (1)有 Hairy (2)无 Glabrous
3 叶表被毛 Leaf surface fuzzed (1)有 Hairy (2)无 Glabrous
4 叶基形状 Leaf base shape (1)宽楔形 Wide wedge (2)圆形 Round (3)窄楔形 Narrow wedge
5 叶缘形状 Leaf edge shape (1)锐重锯齿 Sharp double sawtooth (2)钝重锯齿 Blunt double sawtooth
6 腺体数量 Number of glands (1) 1个 One (2) 2个 Two (3)无 Zero
7 果实形状 Fruit shape (1)球形 Sphericity (2)扁球形 Flat sphericity (3)扁长球形 Prolate sphericity
(4)扁宽球形 Flat and broad sphericity (5)长球形 Long sphericity
8 树高 Tree height 树木从根颈到树梢之间的距离 The distance between the treetop and the root neck of tree
9 胸径 Diameter at breast height 树干1.3 m高度处的直径 Diameter of the trunk at 1.3 m height
10 冠幅 Crown diameter 树冠南北和东西方向宽度的平均值 The average value of the north-south and east-west width of tree crown
11 主枝基角 Main branch base angle 主枝与中心干之间的分枝角度 Angle between the main branch and the center stem of tree
12 小枝长度 Twig length 一年生枝平均长度 Average length of annual branches
13 小枝粗度 Twig width 一年生枝平均粗度 Average width of annual branches
14 叶长 Leaf length 从叶基切线至叶尖顶部的长度 Length from the tangent of leaf base to the top of leaf tip
15 叶宽 Leaf width 叶片最宽处的长度 The length of the blade at its widest point
16 叶柄长 Petiole length 叶柄的长度 Length of petiole
17 单果质量 Single fruit mass 单个成熟果实的质量 The mass of single ripe fruit
18 果长 Fruit length 成熟果实从顶部到底部的最大距离 Maximum distance from top to bottom of ripe fruit
19 果宽 Fruit width 成熟果实两条缝合线之间的最大距离 Maximum distance between two sutures of ripe fruit
20 果厚 Fruit thickness 成熟果实腹面观时的最大距离 Maximum distance from the ventral view of ripe fruit
21 果柄长 Fruit handle length 果柄的长度 Length of fruit handle
22 种子质量 Seed mass 单个成熟种子的质量 The mass of single ripe seed
23 种子长 Seed length 成熟种子从顶部到底部的最大距离 Maximum distance from top to bottom of ripe seed
24 种子宽 Seed width 成熟种子脊背到缝翅的最大距离 Maximum distance from ridge to sewed wing of ripe seed
25 种子厚 Seed thickness 成熟种子腹面观时的最大距离 Maximum distance from the ventral view of ripe seed
26 种仁质量 Kernel mass 单个成熟种仁的质量 The mass of single mature kernel
27 种仁长 Kernel length 成熟种仁从顶部到底部的最大距离 Maximum distance from top to bottom of ripe kernel
28 种仁宽 Kernel width 成熟种仁两条缝合线之间的最大距离 Maximum distance between two sutures of ripe kernel
29 种仁厚 Kernel thickness 成熟种仁腹面观时的最大距离 Maximum distance from the ventral view of ripe kernel

Table 3

Frequency distribution and diversity index of the qualitative traits of Armeniaca mandshurica germplasms."

序号
No.
性状
Traits
频率分布 Frequency distribution (%) Shannon-Wiener 多样性指数
Shannon-Wiener diversity index
1 2 3 4 5
1 小枝色泽 Twig color 80.85 14.89 4.26 0.59
2 叶背被毛 Leaf back fuzzed 74.47 25.53 0.57
3 叶表被毛 Leaf surface fuzzed 68.09 31.91 0.63
4 叶基形状 Leaf base shape 74.47 23.40 2.13 0.64
5 叶缘形状 Leaf edge shape 51.06 48.94 0.69
6 腺体数量 Number of glands 34.04 40.43 25.53 1.08
7 果实形状 Fruit shape 23.41 53.19 14.89 6.38 2.13 1.22

"

性状
Traits
极小值
Min
极大值
Max
平均值
$\bar{X}$
标准偏差
SD
变异系数
CV
K-S
K-S value
显著性
p
主枝基角 MBBA (°) 18.00 51.00 33.60 7.04 0.2096 0.833 0.491
小枝长度 TL (cm) 10.23 120.00 59.82 33.49 0.5598 0.622 0.835
小枝粗度 TW (mm) 1.19 3.18 2.02 0.58 0.2868 0.897 0.397
叶长 LL (mm) 76.59 122.53 98.08 11.20 0.1142 0.822 0.509
叶宽 LW (mm) 44.96 78.46 62.36 7.34 0.1177 0.289 1.000
叶柄长 PL (mm) 18.48 45.29 30.25 6.19 0.2048 0.745 0.636
单果质量 SFM (g) 1.83 8.70 4.44 1.55 0.3477 0.971 0.302
果长 FL (mm) 15.17 24.93 20.38 2.31 0.1133 0.447 0.988
果宽 FW (mm) 12.92 26.16 19.92 2.72 0.1365 1.031 0.238
果厚 FT (mm) 10.65 24.06 17.49 2.89 0.1651 0.816 0.518
种子质量 SM (g) 0.58 1.45 1.01 0.24 0.2352 0.736 0.650
种子长 SL (mm) 13.11 24.01 16.51 1.95 0.1181 1.052 0.218
种子宽 SW (mm) 11.57 20.87 14.46 1.57 0.1085 0.914 0.374
种子厚 ST (mm) 8.66 15.72 10.34 1.16 0.1121 0.981 0.291
种仁质量 KM (g) 0.14 0.40 0.29 0.06 0.1936 0.572 0.898
种仁长 KL (mm) 8.65 13.59 11.27 1.06 0.0944 0.793 0.556
种仁宽 KW (mm) 6.68 11.11 8.59 0.81 0.0940 0.886 0.412
种仁厚 KT (mm) 4.21 7.69 5.71 0.82 0.1439 0.520 0.950
果柄长 FHL (mm) 3.24 14.52 7.04 2.87 0.4071 1.503 0.022

Table 5

Correlation between geographic locations and climatic factors within the study area"

指标
Index
年均气温 AAT (℃) 7月平均最高气温 JAMT1 (℃) 1月平均最低气温 JAMT2 (℃) 年降水量 AAP (mm)
相关系数
R
显著性
p
相关系数
R
显著性
p
相关系数
R
显著性
p
相关系数
R
显著性
p
经度 Longitude -0.810** <0.001 -0.649** 0.009 -0.589* 0.021 -0.693** 0.004
纬度 Latitude -0.785** 0.001 -0.322 0.242 -0.656** 0.008 -0.864** <0.001
海拔 Altitude -0.633* 0.011 -0.778** 0.001 -0.529* 0.043 -0.132 0.639

Table 6

Correlation between the quantitative traits and geographic locations of Armeniaca mandshurica germplasms"

性状
Traits
经度
Longitude (E)
p 纬度
Latitude (N)
p 海拔
Altitude (m)
p
主枝基角 Main branch base angle 0.277 0.060 0.351* 0.016 0.043 0.774
小枝长度 Twig length -0.307* 0.036 -0.370* 0.011 0.289* 0.049
小枝粗度 Twig width -0.330* 0.023 -0.341* 0.019 -0.274 0.062
叶长 Leaf length 0.121 0.417 0.081 0.589 0.100 0.502
叶宽 Leaf width -0.305* 0.037 -0.226 0.127 -0.109 0.466
叶柄长 Petiole length -0.088 0.555 -0.138 0.354 0.176 0.236
单果质量 Single fruit mass -0.181 0.222 0.130 0.383 -0.214 0.149
果长 Fruit length 0.053 0.721 0.264 0.073 -0.111 0.459
果宽 Fruit width -0.243 0.100 0.036 0.810 -0.238 0.106
果厚 Fruit thickness -0.167 0.261 0.144 0.336 -0.254 0.085
种子质量 Seed mass -0.348* 0.016 -0.447** 0.002 -0.013 0.929
种子长 Seed length 0.163 0.273 0.080 0.594 0.200 0.177
种子宽 Seed width -0.195 0.190 -0.188 0.205 0.084 0.576
种子厚 Seed thickness -0.106 0.479 -0.073 0.625 0.167 0.261
种仁质量 Kernel mass -0.080 0.592 0.037 0.805 -0.163 0.273
种仁长 Kernel length 0.043 0.776 -0.073 0.625 0.067 0.656
种仁宽 Kernel width -0.146 0.327 -0.099 0.510 -0.178 0.232
种仁厚 Kernel thickness -0.019 0.900 0.102 0.495 0.053 0.721
果柄长 Fruit handle length -0.434** 0.002 -0.539** <0.001 0.234 0.114

Table 7

Polynomial regression analysis of the quantitative traits and geographic locations of Armeniaca mandshurica germplasms"

性状
Traits
多项式变量
Polynomial variable
分项系数
Coefficient
标准误差
Standard Error
系数显著性
p of coefficient
方程显著性
p of equation
拟合系数
C
主枝基角
Main branch base angle
常数项 Constant term -24.139 81.028 0.767 0.123 0.124
纬度 Latitude 1.746 1.186 0.148
经度 Longitude -0.143 0.950 0.881
海拔 Altitude 0.002 0.009 0.808
小枝长度
Twig length
常数项 Constant term 949.078 349.745 0.010 0.003 0.278
纬度 Latitude -1.059 5.121 0.837
经度 Longitude -6.967 4.099 0.096
海拔 Altitude 0.115 0.040 0.006
小枝粗度
Twig width
常数项 Constant term 5.605 6.419 0.387 0.030 0.186
纬度 Latitude -0.151 0.094 0.115
经度 Longitude 0.026 0.075 0.728
海拔 Altitude -0.001 0.001 0.082
叶宽
Leaf width
常数项 Constant term 210.474 85.886 0.018 0.232 0.094
纬度 Latitude 0.261 1.257 0.836
经度 Longitude -1.261 1.007 0.217
海拔 Altitude 0.001 0.010 0.925
种子质量
Seed mass
常数项 Constant term 3.809 2.608 0.151 0.021 0.200
纬度 Latitude -0.071 0.038 0.070
经度 Longitude 0.002 0.031 0.950
海拔 Altitude 1.853 × 10-6 <0.001 0.995
果柄长
Fruit handle length
常数项 Constant term 87.172 27.568 0.003 <0.001 0.388
纬度 Latitude -0.528 0.404 0.198
经度 Longitude -0.475 0.323 0.149
海拔 Altitude 0.008 0.003 0.012

Fig. 1

Trend surface analyses between the quantitative traits and the geographical coordinates (i.e. latitude and longitude) of Armeniaca mandshurica germplasms. A, Trend surface map between twig length (TL), latitude and longitude. B, Trend surface map between twig width (TW), latitude and longitude. C, Trend surface map between seed mass (SM), latitude and longitude. D, Trend surface map between fruit handle length (FHL), latitude and longitude."

Fig. 2

Relationships between quantitative traits and altitude of Armeniaca mandshurica germplasms. A, Trend curve between twig length (TL) and altitude. B, Trend curve between twig width (TW) and altitude. C, Trend curve between seed mass (SM) and altitude. D, Trend curve between fruit handle length (FHL) and altitude."

Table 8

Principal component analysis on the phenotypic traits of Armeniaca mandshurica germplasms"

性状
Traits
主成分 Principal component
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10
主枝基角 Main branch base angle 0.005 0.009 0.282 0.008 0.097 0.007 0.091 0.239 0.009 0.015
小枝长度 Twig length 0.001 0.002 0.450 0.000 0.174 0.027 0.019 0.076 0.052 0.001
小枝粗度 Twig width 0.008 0.004 0.004 0.290 0.144 0.064 0.120 0.003 0.004 0.005
叶长 Leaf length 0.000 0.049 0.337 0.282 0.012 0.019 0.041 0.004 0.061 0.006
叶宽 Leaf width 0.000 0.011 0.108 0.120 0.074 0.019 0.093 0.003 0.407 0.000
叶柄长 Petiole length 0.006 0.216 0.112 0.068 0.008 0.164 0.002 0.007 0.021 0.056
单果质量 Single fruit mass 0.591 0.139 0.001 0.004 0.009 0.009 0.007 0.001 0.003 0.019
果长 Fruit length 0.659 0.006 0.053 0.023 0.000 0.141 0.003 0.008 0.011 0.002
果宽 Fruit width 0.648 0.129 0.022 0.006 0.039 0.000 0.026 0.004 0.000 0.006
果厚 Fruit thickness 0.665 0.184 0.020 0.011 0.028 0.001 0.001 0.032 0.001 0.000
种子质量 Seed mass 0.455 0.192 0.074 0.036 0.006 0.002 0.008 0.001 0.006 0.003
种子长 Seed length 0.337 0.283 0.010 0.047 0.058 0.097 0.000 0.075 0.001 0.031
种子宽 Seed width 0.476 0.145 0.009 0.014 0.006 0.094 0.050 0.039 0.020 0.001
种子厚 Seed thickness 0.449 0.096 0.002 0.012 0.049 0.172 0.004 0.046 0.001 0.020
种仁质量 Kernel mass 0.461 0.005 0.104 0.084 0.040 0.014 0.026 0.029 0.008 0.000
种仁长 Kernel length 0.334 0.178 0.032 0.016 0.033 0.180 0.001 0.015 0.000 0.035
种仁宽 Kernel width 0.319 0.046 0.058 0.153 0.105 0.064 0.008 0.038 0.006 0.020
种仁厚 Kernel thickness 0.066 0.023 0.186 0.047 0.085 0.130 0.116 0.000 0.023 0.072
果柄长 Fruit handle length 0.016 0.033 0.112 0.052 0.377 0.043 0.037 0.014 0.016 0.015
小枝色泽 Twig color 0.227 0.205 0.090 0.023 0.134 0.139 0.149 0.159 0.016 0.168
叶背被毛 Leaf back fuzzed 0.014 0.056 0.016 0.116 0.069 0.028 0.186 0.006 0.099 0.146
叶表被毛 Leaf surface fuzzed 0.000 0.212 0.155 0.177 0.041 0.051 0.007 0.047 0.054 0.000
叶基形状 Leaf base shape 0.030 0.273 0.017 0.205 0.238 0.250 0.304 0.156 0.069 0.044
叶缘形状 Leaf edge shape 0.001 0.262 0.214 0.122 0.002 0.001 0.019 0.088 0.049 0.010
腺体数量 Number of glands 0.068 0.230 0.037 0.263 0.098 0.021 0.098 0.129 0.137 0.055
果实形状 Fruit shape 0.210 0.388 0.141 0.163 0.317 0.345 0.424 0.151 0.205 0.398
特征根 Eigenvalue 6.047 3.376 2.644 2.345 2.244 2.083 1.841 1.369 1.280 1.127
贡献率(%) Contribution rate 18.896 10.549 8.261 7.329 7.013 6.510 5.754 4.279 4.001 3.521
累积贡献率(%)
Cumulative contribution rate
18.896 29.445 37.706 45.035 52.048 58.558 64.312 68.591 72.592 76.113

Fig. 3

Clustering result of Armeniaca mandshurica germplasms based on phenotypic traits."

Table 9

Statistics of the quantitative traits of Armeniaca mandshurica germplasms in each category"

类别
Categories
单果质量
SFM (g)
种子质量
SM (g)
种仁质量
SM (g)
小枝长度
TL (cm)
小枝粗度
TW (mm)
主枝基角 MBBA (°) 叶长
LL (mm)
叶宽
LW (mm)
叶柄长
PL (mm)
果柄长
FHL (mm)
A 4.35
(0.89)
1.11
(0.21)
0.30
(0.05)
67.80
(34.75)
2.25
(0.58)
30.61
(6.37)
97.92
(9.43)
63.25
(7.02)
31.58
(6.75)
8.02
(3.15)
B 5.27
(1.84)
1.04
(0.26)
0.28
(0.42)
36.80
(22.20)
1.98
(0.66)
39.86
(6.47)
101.79
(13.00)
63.80
(4.65)
31.09
(6.20)
5.23
(0.56)
C 6.01
(1.95)
1.03
(0.15)
0.32
(0.40)
57.00
(42.44)
1.76
(0.36)
35.57
(7.91)
97.22
(12.64)
60.10
(7.68)
27.01
(5.61)
7.43
(6.38)
D 2.99
(0.81)
0.73
(0.10)
0.24
(0.06)
59.55
(25.85)
1.68
(0.43)
34.70
(5.19)
96.45
(13.82)
60.91
(9.54)
28.87
(4.77)
5.78
(1.24)
群体平均值
Average value
of population
4.65
(1.30)
0.98
(0.17)
0.29
(0.03)
55.29
(13.15)
1.92
(0.26)
35.18
(3.79)
98.35
(2.37)
62.02
(1.79)
29.64
(2.11)
6.61
(1.32)

Fig. 4

Clustering result of Armeniaca mandshurica germplasms based on SSR molecular markers. Germplasm No. see Table 1."

Table 10

Relationship between clustering results based on phenotypic traits and SSR molecular markers of Armeniaca mandshurica germplasms"

表型性状聚类
Clustering based on phenotypic traits
SSR分子标记聚类 Clustering based on SSR molecular markers χ2 p
1 2 3 4
1 13 1 5 4 3.250a 0.777
2 0 0 4 3
3 1 2 3 1
4 1 0 5 3
[1] Bai SQ, Gou WL, Zhang XQ, Zhang XY, Gao R, Liu SG ( 2002). Ecological characteristics and morphological variations of centipedegrass in different populations. Journal of Beijing Forestry University, 24(4), 97-101.
[ 白史且, 苟文龙, 张新全, 张新跃, 高荣, 刘世贵 ( 2002). 假俭草种群变异与生态特性的研究. 北京林业大学学报, 24(4), 97-101.]
[2] Cao Q, Liao K, Liu J, Sun Q, Liu H, Feng BB ( 2015). Analysis of Daxigou wild apricot genetic diversity in Xinjiang based on ISSR molecular markers. Xinjiang Agricultural Sciences, 52, 1600-1606.
[ 曹倩, 廖康, 刘娟, 孙琪, 刘欢, 冯贝贝 ( 2015). 基于ISSR分子标记分析新疆野杏遗传多样性. 新疆农业科学, 52, 1600-1606.]
[3] Diao SF, Shao WH, Jiang JM, Dong RX, Sun HG ( 2014). Phenotypic diversity in natural populations of Sapindus mukorossi based on fruit and seed traits. Acta Ecologica Sinica, 34, 1451-1460.
[ 刁松锋, 邵文豪, 姜景民, 董汝湘, 孙洪刚 ( 2014). 基于种实性状的无患子天然群体表型多样性研究. 生态学报, 34, 1451-1460.]
[4] Gao ZY, Zhang HF, Chen GP, Feng XM, Zhao TJ, Gao X, Shi FC ( 2017). Fruit stone morphology and geographic variation in Juglans mandshurica populations. Chinese Journal of Applied and Environmental Biology, 23, 609-615.
[ 高张莹, 张海峰, 陈国平, 冯小梅, 赵铁建, 高鑫, 石福臣 ( 2017). 核桃楸种群果核形态及地理变异. 应用与环境生物学报, 23, 609-615.]
[5] Guo Q, Li XY, Dong L, Cao S, Feng Y, Sun YH, Wen YZ, Niu DS, Liu JP, Yang ZH, Li Y ( 2019). Analysis of leaf phenotypic diversity of Robinia pseudoacia germplasm resources in Shanxi. Molecular Plant Breeding, 17, 4479-4487.
[ 郭琪, 李秀宇, 董黎, 曹森, 冯玥, 孙宇涵, 文彦忠, 牛东升, 刘佳平, 杨志恒, 李云 ( 2019). 山西刺槐种质资源的叶片表型多样性分析. 分子植物育种, 17, 4479-4487.]
[6] He QH, Yang SZ, Li YG, Shen X, Liu XH ( 2018). Phenotypic variations in seed and fruit traits of Liquidambar formosana populations. Chinese Journal of Plant Ecology, 42, 752-763.
doi: 10.17521/cjpe.2017.0229
[ 何庆海, 杨少宗, 李因刚, 沈鑫, 柳新红 ( 2018). 枫香树种群种子与果实表型性状变异分析. 植物生态学报, 42, 752-763.]
doi: 10.17521/cjpe.2017.0229
[7] Ji ZF ( 2013). Study on Phenotypic Diversity of Natural Population in Acer mono Maxim in Shanxi. Master degree dissertation, Shanxi Normal University, Linfen, Shanxi.
[ 姬志峰 ( 2013). 山西五角枫天然种群表型多样性研究. 硕士学位论文, 山西师范大学, 山西临汾.]
[8] Jin L, Liu MG, Dong SJ, Wu YL, Zhang X ( 2018). Genetic diversity and fingerprints of 97 Armeniaca sibiria clones based on SSR markers. Scientia Silvae Sinicae, 54(7), 51-61.
[ 金玲, 刘明国, 董胜君, 吴月亮, 张欣 ( 2018). 97个山杏无性系的遗传多样性及SSR指纹图谱. 林业科学, 54(7), 51-61.]
[9] Kundu SK, Tigerstedt PMA ( 1997). Geographical variation in seed and seedling traits of neem ( Azadirachta indica A. Juss.) among ten populations studied in growth chamber. Silvae Genetica, 46, 129-137.
[10] Lei ML, Yang ZD, Dong SJ, Ma FW, Wu YL ( 2012). Studies on variabilities of quantitative characters and correlation with economic character of Armeniaca vulgaris seedlings in Pengyang County of Ningxia. Northern Horticulture, ( 12), 21-24.
[ 雷鸣雷, 杨正德, 董胜君, 马发旺, 吴月亮 ( 2012). 宁夏彭阳县山杏群体数量性状变异及其与经济性状的相关性. 北方园艺, ( 12), 21-24.]
[11] Li JH, Peng GQ, Yang DM ( 2017). Effect of stem length to stem slender ratio of current-year twigs on the leaf display efficiency in evergreen and deciduous broadleaved trees. Chinese Journal of Plant Ecology, 41, 650-660.
doi: 10.17521/cjpe.2016.0376
[ 李俊慧, 彭国全, 杨冬梅 ( 2017). 常绿和落叶阔叶物种当年生小枝茎长度和茎纤细率对展叶效率的影响. 植物生态学报, 41, 650-660.]
doi: 10.17521/cjpe.2016.0376
[12] Li JR, Song T ( 2013). Effects of different branch bending angles on the canopy microclimate and growth and fruiting of Luntai white apricot. Northern Horticulture, ( 20), 13-16.
[ 李军如, 宋涛 ( 2013). 不同主枝开张角度下轮台白杏树冠微域气候及生长结果差异分析. 北方园艺, ( 20), 13-16.]
[13] Li M, Zhao Z, Yang JA, Lu B ( 2011 a). Genetic diversity analysis on germplasm of Armeniaca sibirica in different counties in Loess Plateau. Journal of Northwest A & F University (Natural Science Edition), 39(2), 143-149, 156.
doi: 10.1007/s11356-019-06538-4 pmid: 31838703
[ 李明, 赵忠, 杨吉安, 卢斌 ( 2011 a). 黄土高原不同县域山杏种质遗传多样性研究. 西北农林科技大学学报(自然科学版), 39(2), 143-149, 156.]
doi: 10.1007/s11356-019-06538-4 pmid: 31838703
[14] Li M, Zhao Z, Yang JA, Lu B, Miao XJ ( 2011 b). Classification on germplasm resources of Armeniaca sibirica in the Loess Plateau. Journal of Northwest Forestry University, 26(1), 8-12.
[ 李明, 赵忠, 杨吉安, 卢斌, 苗兴军 ( 2011 b). 黄土高原山杏种质资源分类研究. 西北林学院学报, 26(1), 8-12.]
[15] Li M, Zheng Y, Guo YR, Cheng L, Lu HD, Guo BQ, Zhong QL, Cheng DL ( 2017). Scaling relationships between twig size and leaf size of Pinus hwangshanensis along an altitudinal gradient in Wuyi Mountains, China. Chinese Journal of Applied Ecology, 28, 537-544.
doi: 10.13287/j.1001-9332.201702.039 pmid: 29749162
[ 李曼, 郑媛, 郭英荣, 程林, 卢宏典, 郭炳桥, 钟全林, 程栋梁 ( 2017). 武夷山不同海拔黄山松枝叶大小关系. 应用生态学报, 28, 537-544.]
doi: 10.13287/j.1001-9332.201702.039 pmid: 29749162
[16] Li WY, Gu WC ( 2005). Study on phenotypic diversity of natural population in Quercus mongolica. Scientia Silvae Sinicae, 41(1), 49-56.
[ 李文英, 顾万春 ( 2005). 蒙古栎天然群体表型多样性研究. 林业科学, 41(1), 49-56.]
[17] Liao BY, Chen LJ, Wang F, He X, Liu MQ, Chen HB, Ren Y, Chen XY ( 2016). Trend surface analysis of provenance geographic variation of Melia azedarach stone and seed. Forest Research, 29, 784-792.
[ 廖柏勇, 陈丽君, 王芳, 何霞, 刘明骞, 陈涵斌, 任颖, 陈晓阳 ( 2016). 苦楝种源果核和种子性状地理变异的趋势面分析. 林业科学研究, 29, 784-792.]
[18] Lin W, Zhou P, Zhou XB, Wu LY, Zhao YX, Zhao S, Chen XY ( 2016). Geographic variation in seed traits of different Zenia insignis provenances. Journal of South China Agricultural University, 37(4), 69-74.
[ 林玮, 周鹏, 周祥斌, 吴林瑛, 赵艳新, 赵帅, 陈晓阳 ( 2016). 任豆种源种子性状地理变异研究. 华南农业大学学报, 37(4), 69-74.]
[19] Liu HZ, Zhu H, Guo CL, Xia DA ( 1997). Study on the provenance of Fraxinus mandshurica. Journal of Forestry Research, 8, 10-12.
doi: 10.1002/jcp.29399 pmid: 31838757
[20] Liu JQ, Yin MY, Zuo SY, Yang SB, Wuyun T ( 2017). Phenotypic variations in natural populations of Amygdalus pedunculata. Chinese Journal of Plant Ecology, 41, 1091-1102.
doi: 10.17521/cjpe.2017.0104
[ 柳江群, 尹明宇, 左丝雨, 杨绍斌, 乌云塔娜 ( 2017). 长柄扁桃天然种群表型变异. 植物生态学报, 41, 1091-1102.]
doi: 10.17521/cjpe.2017.0104
[21] Liu MG, Li M, Wu YL, Dong SJ ( 2015). Study on pollen morphological characteristics and its relationship with pollen germination in Armeniaca sibirica. Journal of Shenyang Agricultural University, 46, 166-172.
[ 刘明国, 李民, 吴月亮, 董胜君 ( 2015). 山杏花粉形态特征与花粉萌发的关系. 沈阳农业大学学报, 46, 166-172.]
[22] Liu MG, Zhao GL, Dong SJ ( 2006). Analysis of peroxidase isoenzyme and seed soluble protein in Armeniaca sibiria. Journal of Shenyang Agricultural University, 37, 582-586.
[ 刘明国, 赵桂玲, 董胜君 ( 2006). 山杏种内POD同工酶及种子可溶性蛋白分析. 沈阳农业大学学报, 37, 582-586.]
[23] Liu RL, Hu MJ, Li J, Liu JH ( 2016). Study on geographic variation of fruit sizes in Vaccinium bracteatum. Nonwood Forest Research, 34(3), 114-120.
[ 刘仁林, 胡明娇, 李江, 刘江华 ( 2016). 乌饭树果实大小的地理变异研究. 经济林研究, 34(3), 114-120.]
[24] Liu XL, Gu WY, Wei HB ( 2015). Survey of walnut germplasm resources in Qinghai Plateau phenotype and diversity analysis of its nut phenotipic. Northern Horticulture, ( 13), 34-36.
[ 刘小利, 顾文毅, 魏海斌 ( 2015). 青海高原核桃种质资源调查及坚果表型多样性分析. 北方园艺, ( 13), 34-36.]
[25] Liu Y, Chen T, Zhang J, Wang J, Wang H, Tang HR, Wang XR ( 2016). Genetic diversity analysis of Chinese cherry landraces ( Prunus pseudocerasus) based on phenotypic traits. Acta Horticulturae Sinica, 43, 2119-2132.
[ 刘胤, 陈涛, 张静, 王珏, 王浩, 汤浩茹, 王小蓉 ( 2016). 中国樱桃地方种质资源表型性状遗传多样性分析. 园艺学报, 43, 2119-2132.]
[26] McDonald PG, Fonseca CR, Overton JM, Westoby M ( 2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57.
doi: 10.1046/j.1365-2435.2003.00698.x
[27] Nei M, Li WH ( 1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the United States of America, 76, 5269-5273.
doi: 10.1073/pnas.76.10.5269 pmid: 291943
[28] Niklas KJ ( 1999). A mechanical perspective on foliage leaf form and function. New Phytologist, 143, 19-31.
doi: 10.1046/j.1469-8137.1999.00441.x
[29] Pang ZW, Li XY, Zheng Z, Zhao XJ ( 2001). Cultivation techniques and benefit analysis of Armeniaca mandshurica. Forestry Science & Technology, 26(5), 48-50.
doi: 10.1111/gcb.14962 pmid: 31838767
[ 庞振伟, 李绪尧, 郑重, 赵晓军 ( 2001). 东北杏栽培技术与效益分析. 林业科技, 26(5), 48-50.]
doi: 10.1111/gcb.14962 pmid: 31838767
[30] Peng XM, Wu JC, Zheng YX, Zhang YP, Li GQ ( 2012). Phenotypic variation in cultivated populations of Azadirachta indica in Yunnan, China. Chinese Journal of Plant Ecology, 36, 560-571.
doi: 10.3724/SP.J.1258.2012.00560
[ 彭兴民, 吴疆翀, 郑益兴, 张燕平, 李根前 ( 2012). 云南引种印楝实生种群的表型变异. 植物生态学报, 36, 560-571.]
doi: 10.3724/SP.J.1258.2012.00560
[31] Peng Y, Su ZX, Zhang SL ( 2008). Detecting genetic diversity by morphological characteristics of leaves and ISSR markers in Citrus grandis. Journal of Northwest A & F University (Natural Science Edition), 36(4), 104-110.
doi: 10.1007/s11356-019-06538-4 pmid: 31838703
[ 彭瑜, 苏智先, 张素兰 ( 2008). 利用叶片形态学性状和ISSR标记检测柚类的遗传多样性. 西北农林科技大学学报(自然科学版), 36(4), 104-110.]
doi: 10.1007/s11356-019-06538-4 pmid: 31838703
[32] Qin Q, Wang NN, Li JH, Su GC ( 2016). Diversity and cluster analysis on phenotypic traits and SSR of olive cultivars. Forest Research, 29, 676-681.
[ 秦倩, 王楠楠, 李金花, 苏光灿 ( 2016). 油橄榄品种表型和SSR标记的多样性及聚类分析. 林业科学研究, 29, 676-681.]
[33] Ren HJ, Feng Z, Qiao Q, An K, Ye MJ, Si FF, Zhang L, Sun ZK ( 2018). Geographic variation trend of leaf morphology in Acer truncatum. Journal of Northwest Forestry University, 33(1), 113-119.
doi: 10.1088/0952-4746/33/1/113 pmid: 23296360
[ 任红剑, 丰震, 乔谦, 安凯, 叶美静, 司芬芬, 张林, 孙忠奎 ( 2018). 元宝枫叶片形态特征的地理变异. 西北林学院学报, 33(1), 113-119.]
doi: 10.1088/0952-4746/33/1/113 pmid: 23296360
[34] Shao WH, Diao SF, Dong RX, Jiang JM, Yue HF ( 2013). Study on geographic variation of morphology and economic character of fruit and seed of Sapindus mukorossi. Forest Research, 26, 603-608.
[ 邵文豪, 刁松锋, 董汝湘, 姜景民, 岳华峰 ( 2013). 无患子种实形态及经济性状的地理变异. 林业科学研究, 26, 603-608.]
[35] Su BH, Fan CH, Li GD, Zhang JK, Han MY ( 2008). Effects of modifying between light distribution, yield and quality of different shapes on “Red Fuji” apple. Journal of Northwest A & F University (Natural Science Edition), 36(1), 158-162.
doi: 10.1007/s11356-019-06538-4 pmid: 31838703
[ 苏渤海, 范崇辉, 李国栋, 张军科, 韩明玉 ( 2008). 红富士苹果改形过程中不同树形光照分布及其对产量品质的影响. 西北农林科技大学学报(自然科学版), 36(1), 158-162.]
doi: 10.1007/s11356-019-06538-4 pmid: 31838703
[36] Su SP, Li Y, Chong PF, Gao Q ( 2013). Correlation analysis of phenotypic traits of Reaumuria soongorica seed in different natural populations in the Gansu Corridor. Acta Prataculturae Sinica, 22(1), 87-94.
[ 苏世平, 李毅, 种培芳, 高茜 ( 2013). 河西走廊不同红砂天然群体种子表型性状相关性研究. 草业学报, 22(1), 87-94.]
[37] Sun RY ( 2002). Foundations in Ecology. Higher Education Press, Beijing.
[ 孙儒泳 ( 2002). 基础生态学. 高等教育出版社, 北京.]
[38] Wan XQ, Zhang F ( 2013). An overview of Populus genetic resources in southwest China. Forestry Chronicle, 89, 79-87.
doi: 10.5558/tfc2013-013
[39] Wang LB ( 2010). Geographic distribution and botanical characters of 3 Armeniaca plant in China. Forest Research, 23, 435-439.
[ 王利兵 ( 2010). 我国3种杏的地理分布及其植物学性状. 林业科学研究, 23, 435-439.]
[40] Wang YK, Wu GL, Zhao AL, Li DK ( 2014). Phenotypic genetic diversity of Jujube germplasm resources. Scientia Silvae Sinicae, 50(10), 33-41.
[ 王永康, 吴国良, 赵爱玲, 李登科 ( 2014). 枣种质资源的表型遗传多样性. 林业科学, 50(10), 33-41.]
[41] Wang Z, Kang M, Liu HB, Gao J, Zhang ZD, Li YY, Wu RL, Pang XM ( 2014). High-level genetic diversity and complex population structure of siberian apricot ( Prunus sibirica L.) in China as revealed by nuclear SSR markers. PLOS ONE, 9, e87381. DOI: 10.1371/journal.pone.0087381.
doi: 10.1371/journal.pone.0087381 pmid: 24516551
[42] Wu YL, Liu MG, Dong SJ, Ma FW, Zhao GL, Liu P, Liu QB, Yao LJ, Liu MZ, Liu LX, Yu QF, Fan CZ, Zheng YT, Qin J, Liu Y ( 2015). DB21/T 2462-2015 Technical Regulations for Investigation and Evaluation of Armeniaca Sibirica Germplasm Resources. Liaoning Supervision Bureau of Quality and Technical, Shengyang.
[ 吴月亮, 刘明国, 董胜君, 马发旺, 赵桂玲, 刘平, 刘青柏, 姚丽杰, 刘明忠, 刘立新, 于庆福, 樊春志, 郑永涛, 秦静, 刘勇 ( 2015). DB21/T 2462-2015 山杏种质资源调查及评价技术规程. 辽宁省质量技术监督局, 沈阳.]
[43] Wu YL, Yi GJ, Zhou BR, Zeng JW, Huang YH ( 2007). The advancement of research on litchi and longan germplasm resources in China. Scientia Horticulturae, 144(3), 143-150.
[44] Yang XX, Leng PS, Zheng J, Hu ZH, Liu XY, Yang XH, Dou DQ ( 2016). Variation of phenotypic traits of seed and seedling of Syringa reticulata subsp. amurensis from different provenances and their correlations with geographic-‌climatic factors. Journal of Plant Resources and Environment, 25(3), 80-89.
[ 杨晓霞, 冷平生, 郑健, 胡增辉, 刘学娅, 杨晓红, 窦德泉 ( 2016). 暴马丁香不同种源种子和幼苗的表型性状变异及其与地理-气候因子的相关性. 植物资源与环境学报, 25(3), 80-89.]
[45] Yin J, Dong SJ, Wu Z, Liu MG, Wu YL, Yu QF, Zhong WP ( 2015). Quantitative classification of germplasm resources of Armeniaca sibiria at Zhalantun region of Inner Mongolia. Nonwood Forest Research, 33(3), 75-80.
[ 尹健, 董胜君, 吴智, 刘明国, 吴月亮, 于庆福, 仲维平 ( 2015). 内蒙古扎兰屯地区西伯利亚杏种质资源的数量分类. 经济林研究, 33(3), 75-80.]
[46] Zeng J, Zheng HS, Gan SM, Bai JY ( 2005). Phenotypic variation in natural populations of Betula alnoides in Guangxi, China. Scientia Silvae Sinicae, 41(2), 59-65.
[ 曾杰, 郑海水, 甘四明, 白嘉雨 ( 2005). 广西西南桦天然居群的表型变异. 林业科学, 41(2), 59-65.]
[47] Zhai LJ, Shi QQ, Li X, Luo XN, Niu LX, Zhang YL ( 2019). Analysis of genetic diversity of tree peony in Wanhua Mountain in Yan’an City based on phenotypic traits and conserved DNA-derived polymorphism markers. Jiangsu Agricultural Sciences, 47(2), 95-101.
[ 翟立娟, 史倩倩, 李想, 罗小宁, 牛立新, 张延龙 ( 2019). 基于表型性状和CDDP分子标记延安万花山牡丹遗传多样性分析. 江苏农业科学, 47(2), 95-101.]
[48] Zhang JY, Zhang Z ( 2003). Chinese Fruit Tree, Apricot. China Forestry Publishing House, Beijing.
[ 张加延, 张钊 ( 2003). 中国果树志, 杏卷. 中国林业出版社, 北京.]
[49] Zhao HJ, Liu WS, Li N, Zhang YP, Zhang QP, Liu S ( 2013). Variation and probability grading of main quantitative traits of apricot ( Armeniaca vulgaris) germplasm. Journal of Fruit Science, 30, 37-42.
[ 赵海娟, 刘威生, 刘宁, 张玉萍, 章秋平, 刘硕 ( 2013). 普通杏(Armeniaca vulgaris)种质资源果实主要数量性状变异及概率分级. 果树学报, 30, 37-42.]
[50] Zheng Z, Li YR, Zhang SB, Duan WP, Zhang YP ( 2007). Influence of the altitudinal increase on water and humidity conditions Xishuangbanna. Journal of Mountain Science, 25, 33-38.
[ 郑征, 李佑荣, 张树斌, 段文平, 张一平 ( 2007). 西双版纳海拔变化对水湿状况的影响. 山地学报, 25, 33-38.]
[51] Zhong WP, Dong SJ, Liu MG, Wu YL, Yu QF, Yin J ( 2015). Study on the population traits of Armeniaca sibirica in Zhalantun County of Inner Mongolia. Northern Horticulture, ( 11), 34-36.
[ 仲维平, 董胜君, 刘明国, 吴月亮, 于庆福, 尹健 ( 2015). 内蒙古扎兰屯地区山杏群体性状研究. 北方园艺, ( 11), 34-36.]
[52] Zhu H, Zhu SX, Li YF, Yi XG, Duan YF, Wang XR ( 2018). Leaf phenotypic variation in natural populations of Cerasus dielsiana. Chinese Journal of Plant Ecology, 42, 1168-1178.
doi: 10.17521/cjpe.2018.0196
[ 朱弘, 朱淑霞, 李涌福, 伊贤贵, 段一凡, 王贤荣 ( 2018). 尾叶樱桃天然种群叶表型性状变异研究. 植物生态学报, 42, 1168-1178.]
doi: 10.17521/cjpe.2018.0196
[1] Dan Liu Zhongling Guo Xiaoyang Cui Chunnan Fan. Analysis on classification and species diversity of Taxus chinensis community [J]. Biodiv Sci, 2020, 28(3): 0-0.
[2] Yisheng Ma,Qingqing Ma,Nianjun He,Dapeng Zhu,Kaihui Zhao,Hongcai Liu,Shuai Li,Liang Sun,Liubin Tang. Camera-trapping survey of mammals and birds in the Foping National Nature Reserve, China [J]. Biodiv Sci, 2020, 28(2): 226-230.
[3] Zhenyuan Liu,Xingliang Meng,Zhengfei Li,Junqian Zhang,Jing Xu,Senlu Yin,Zhicai Xie. Diversity assessment and protection strategies for the mollusk community in the southern Dongting Lake [J]. Biodiv Sci, 2020, 28(2): 155-165.
[4] Kai Wang,Jinlong Ren,Hongman Chen,Zhitong Lyu,Xianguang Guo,Ke Jiang,Jinmin Chen,Jiatang Li,Peng Guo,Yingyong Wang,Jing Che. The updated checklists of amphibians and reptiles of China [J]. Biodiv Sci, 2020, 28(2): 189-218.
[5] Xiongwei Yang,Ankang Wu,Qixian Zou,Guangrong Li,Mingming Zhang,Canshi Hu,Haijun Su. Field monitoring of mammals and birds using infrared cameras in Mayanghe National Nature Reserve, Guizhou, China [J]. Biodiv Sci, 2020, 28(2): 219-225.
[6] Haiou Liu,Fengchun Zhang,Fuwei Zhao,Leshan Du,Dayuan Xue. Biodiversity sensitive issues from changes in the strategic objectives of the financial mechanism for the Convention on Biological Diversity [J]. Biodiv Sci, 2020, 28(2): 244-252.
[7] Gongguo Li,Ping Li,Hangying Xu,Haiyan Yu,Jian Yu. Path analysis of zooplankton diversity and environmental factors in the water sources rivers, Zhejiang Province [J]. Biodiv Sci, 2020, 28(2): 166-175.
[8] Minxia Liu,Quandi Li,Xiaoxuan Jiang,Sujuan Xia,Xiaoning Nan,Yaya Zhang,Bowen Li. Contribution of rare species to species diversity and species abundance distribution pattern in the Gannan subalpine meadow [J]. Biodiv Sci, 2020, 28(2): 107-116.
[9] Yijia Geng,Yu Tian,Junsheng Li,Jing Xu. Progress and prospects of the Post-2020 Global Biodiversity Framework [J]. Biodiv Sci, 2020, 28(2): 238-243.
[10] Xia Li,Wanze Zhu,Shouqin Sun,Shumiao Shu,Zheliang Sheng,Jun Zhang,Ting Liu,Zhicai Zhang. Influence of habitat on the distribution pattern and diversity of plant community in dry and warm valleys of the middle reaches of the Dadu River, China [J]. Biodiv Sci, 2020, 28(2): 117-127.
[11] Yi Li,Zhiyao Tang,Yujing Yan,Ke Wang,Lei Cai,Jinsheng He,Song Gu,Yijian Yao. Incorporating species distribution model into the red list assessment and conservation of macrofungi: A case study with Ophiocordyceps sinensis [J]. Biodiv Sci, 2020, 28(1): 99-106.
[12] Wenying Zhuang,Yi Li,Huandi Zheng,Zhaoqing Zeng,Xincun Wang. Threat status of non-lichenized macro-ascomycetes in China and its threatening factors [J]. Biodiv Sci, 2020, 28(1): 26-40.
[13] Shun Li, Liang Zou, Yinan Gong, Haitao Yang, Tianming Wang, Limin Feng, Jianping Ge. Advances in LiDAR technology in the field of animal ecology [J]. Biodiv Sci, 2019, 27(9): 1021-1031.
[14] Rui Yang, Qinyi Peng, Yue Cao, Le Zhong, Shuyu Hou, Zhicong Zhao, Cheng Huang. Transformative changes and paths toward biodiversity conservation in China [J]. Biodiv Sci, 2019, 27(9): 1032-1040.
[15] XU Jin-Shi,CHAI Yong-Fu,LIU Xiao,YUE Ming,GUO Yao-Xin,KANG Mu-Yi,LIU Quan-Ru,ZHENG Cheng-Yang,JI Cheng-Jun,YAN Ming,ZHANG Feng,GAO Xian-Ming,WANG Ren-Qing,SHI Fu-Chen,ZHANG Qin-Di,WANG Mao. Community assembly, diversity patterns and distributions of broad-leaved forests in North China [J]. Chin J Plant Ecol, 2019, 43(9): 732-741.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Yu-Tang TU Jin-Xing FU Ting-Dong CHEN Bao-Yuan. Molecular Biology and Evolutionary Models of Self-incompatible Genes in Brassica Genus[J]. Chin Bull Bot, 2003, 20(05): 513 -521 .
[2] YANG Wen;HE Ru-Zhou;CHENG Jian-Ping;GUO Rong-Fa and KUANG Xue-Mei. Analyses of Peroxidase Isozyme in Sugarcane Varieties[J]. Chin Bull Bot, 1998, 15(06): 65 -69 .
[3] Wang Tian-chi and Lin Kan. A Review on The Application of Electrofusion in Plant Cell Engineering[J]. Chin Bull Bot, 1994, 11(03): 19 -24 .
[4] Decheng Xu, Xiaojing Wang. Axillary Bud Propagation and Regeneration from Stem Segment Explants in Calophyllum inophyllum[J]. Chin Bull Bot, 2014, 49(2): 167 -172 .
[5] WANG Wei, LI Qing-Kang, MA Ke-Ping. Establishment and Spatial Distribution of Quercus liaotungensis Koidz. Seedlings in Dongling Mountain[J]. Chin J Plan Ecolo, 2000, 24(5): 595 -600 .
[6] LIU Gui-Hua, ZHOU Jin, LI Wei, GUO You-Hao. Population Restoration of Oryza rufipogon II. Population Dynamics[J]. Chin J Plan Ecolo, 2002, 26(3): 372 -376 .
[7] WANG Xu-Dong, YU Zhen-Wen, WANG Dong. Effect o Potassium on Sucrose Content of Flag Leaves and Starch Accumulation of Kernels in Wheat[J]. Chin J Plan Ecolo, 2003, 27(2): 196 -201 .
[8] YU Shun-Li, JIANG Gao-Ming. The Research Development of Soil Seed Bank and Several Hot Topics[J]. Chin J Plan Ecolo, 2003, 27(4): 552 -560 .
[9] Gao Qiong. The Applicability of GM (1, N) Model to Biological Systems[J]. Chin J Plan Ecolo, 1991, 15(2): 121 -128 .
[10] WANG Hua-Tian, YANG Yang, WANG Yan-Ping, JIANG Yue-Zhong, WANG Zong-Qin. Effects of exogenous phenolic acids on nitrate absorption and utilization of hydroponic cuttings of Populus × euramericana ‘Neva’[J]. Chin J Plan Ecolo, 2011, 35(2): 214 -222 .