植物生态学报 ›› 2011, Vol. 35 ›› Issue (7): 769-778.DOI: 10.3724/SP.J.1258.2011.00769
发布日期:
2011-08-18
通讯作者:
龚月桦
作者简介:
*E-mail: gongyh01@163.com
SHI Hui-Qing, GONG Yue-Hua*(), ZHANG Dong-Wu
Published:
2011-08-18
Contact:
GONG Yue-Hua
摘要:
试验选用持绿型冬小麦(Triticum aestivum) ‘豫麦66’ (‘Ym66’)和‘潍麦8号’ (‘Wm8’)为研究材料, 以当地生产上起主导作用的冬小麦品种‘小偃22’ (‘XY22’)和‘小偃6号’ (‘XY6’)为对照。花后用塑料薄膜搭建成增温棚进行高温处理, 测定各品种绿叶数目、叶绿素和丙二醛(MDA)含量及叶片细胞膜透性, 并研究籽粒灌浆成熟期高温对持绿型小麦籽粒淀粉合成相关酶及粒重的影响。结果表明, 高温处理后, 各品种的绿叶数目和叶绿素含量都减少, MDA含量和膜透性都增加, 说明高温加速了小麦叶片衰老。同时, 各品种籽粒中与淀粉合成相关的酶(蔗糖合成酶(SS)和腺苷二磷酸葡萄糖焦磷酸化酶(AGPP)、可溶性淀粉合酶(SSS))活性都低于正常生长下的籽粒中的酶活性, 其中高温对籽粒SS和AGPP活性的影响不显著,而对籽粒SSS活性的影响显著(p = 0.015)。品种间比较, 持绿型小麦在两种处理下, 都表现出较多的绿叶数目和较高的叶绿素含量; 且3种与淀粉合成相关的酶活性也都高于非持绿型小麦, 说明持绿型小麦酶活性受高温抑制程度较小。相关性分析表明, 所有品种籽粒SS、AGPP、SSS活性都与籽粒灌浆速率成极显著的正相关(相关系数r分别为0.905、0.419和0.801)。因而, 持绿型小麦不仅具有较好的持绿特性, 而且籽粒中与淀粉合成相关的3种酶活性都较高, 这有利于其籽粒淀粉的合成, 从而增加籽粒产量。
石慧清, 龚月桦, 张东武. 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响. 植物生态学报, 2011, 35(7): 769-778. DOI: 10.3724/SP.J.1258.2011.00769
SHI Hui-Qing, GONG Yue-Hua, ZHANG Dong-Wu. Effect of high temperature on leaf senescence and related enzymes of grain starch synthesis in stay-green wheat after anthesis. Chinese Journal of Plant Ecology, 2011, 35(7): 769-778. DOI: 10.3724/SP.J.1258.2011.00769
图2 花后不同处理对各小麦品种绿叶数目(A, B)和叶绿素含量(C, D)的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 2 Effect of different treatments after anthesis on green leaf number (A, B) and chlorophyll content (C, D) in different types of wheat. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
图3 不同处理对各小麦品种叶片丙二醛(MDA)含量(A, B)和相对电导率(C, D)的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 3 Influence of different treatments to malonaldehyde (MDA) (A, B) content and relative electric conductivity (C, D) of leaves in different types of wheat. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
图4 花后不同处理对不同小麦品种籽粒蔗糖合成酶活性的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 4 Effect of different treatments after anthesis on sucrose synthase (SS) activity in different types of wheat grain. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
图5 花后不同处理对不同小麦品种籽粒腺苷二磷酸葡萄糖焦磷酸化酶(AGPP)活性的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 5 Effect of different treatments after anthesis on adenosine diphosphate glucose pyrophosphorylase (AGPP) activity in different types of wheat grain. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
图6 花后不同处理对不同小麦品种籽粒可溶性淀粉合成酶活性的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 6 Effect of different treatments after anthesis on the activity of soluble starch synthase (SSS) in different types of wheat grain. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
图7 花后不同处理对不同小麦品种千粒重的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 7 Effect of different treatments after anthesis on the 1000-grain weight of different types of wheat. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
图8 不同处理对不同小麦品种灌浆速率的影响。‘Wm8’, ‘潍麦8号’; ‘XY6’, ‘小偃6号’; ‘XY22’, ‘小偃22’; ‘Ym66’, ‘豫麦66’。
Fig. 8 Effect of different treatments on the rate of filling in different types of wheat. ‘Wm8’, ‘Weimai 8 hao’; ‘XY6’, ‘Xiaoyan 6 hao’; ‘XY22’, ‘Xiaoyan22’; ‘Ym66’, ‘Yumai 66’.
品种 Variety | 处理 Treatment | 株 高 Spike high (cm) | 穗 长 Ear length (cm) | 分糵数Tillering number (个) | 穗粒重 Grain weight/ Spike (g) | 千粒重 1 000-grain weight (g) | 生物学产量 Biological yield (kg·m-2) | 经济学产量Economic yield (kg·m-2) | 收获指数 Harvest index (%) |
---|---|---|---|---|---|---|---|---|---|
‘Ym66’ | CK | 74.23a | 15.95a | 1.78a | 3.11A | 46.49A | 2.44a | 0.64a | 34.59A |
HT | 74.11a | 15.64a | 1.80a | 2.81B | 41.83B | 2.09a | 0.55a | 32.48B | |
‘Wm8’ | CK | 76.13a | 14.73a | 2.25a | 3.08A | 48.98A | 2.56a | 0.73a | 35.03A |
HT | 75.86a | 14.53a | 2.31a | 2.73B | 44.28B | 2.25a | 0.69a | 32.25B | |
‘XY6’ | CK | 82.13A | 10.81a | 3.38a | 2.09A | 39.90A | 2.08a | 0.74a | 40.89a |
HT | 78.87B | 10.47a | 3.50a | 1.66B | 32.14B | 1.56b | 0.53b | 40.17b | |
‘XY22’ | CK | 78.83A | 9.95a | 2.84a | 2.17A | 39.95A | 1.92a | 0.79A | 32.94a |
HT | 75.48B | 9.60b | 2.90a | 1.74B | 32.79B | 1.43b | 0.56B | 34.20a |
表1 高温对不同小麦品种产量和产量相关因素的影响
Table 1 Effect of high temperature on yield and yield components of different types of winter wheat
品种 Variety | 处理 Treatment | 株 高 Spike high (cm) | 穗 长 Ear length (cm) | 分糵数Tillering number (个) | 穗粒重 Grain weight/ Spike (g) | 千粒重 1 000-grain weight (g) | 生物学产量 Biological yield (kg·m-2) | 经济学产量Economic yield (kg·m-2) | 收获指数 Harvest index (%) |
---|---|---|---|---|---|---|---|---|---|
‘Ym66’ | CK | 74.23a | 15.95a | 1.78a | 3.11A | 46.49A | 2.44a | 0.64a | 34.59A |
HT | 74.11a | 15.64a | 1.80a | 2.81B | 41.83B | 2.09a | 0.55a | 32.48B | |
‘Wm8’ | CK | 76.13a | 14.73a | 2.25a | 3.08A | 48.98A | 2.56a | 0.73a | 35.03A |
HT | 75.86a | 14.53a | 2.31a | 2.73B | 44.28B | 2.25a | 0.69a | 32.25B | |
‘XY6’ | CK | 82.13A | 10.81a | 3.38a | 2.09A | 39.90A | 2.08a | 0.74a | 40.89a |
HT | 78.87B | 10.47a | 3.50a | 1.66B | 32.14B | 1.56b | 0.53b | 40.17b | |
‘XY22’ | CK | 78.83A | 9.95a | 2.84a | 2.17A | 39.95A | 1.92a | 0.79A | 32.94a |
HT | 75.48B | 9.60b | 2.90a | 1.74B | 32.79B | 1.43b | 0.56B | 34.20a |
[1] | Chen XY (陈希勇), Sun QX (孙其信), Sun CZ (孙长征) (2000). Performance and evaluation of spring wheat heat tolerance. Journal of China Agricultural University (中国农业大学学报), 5(1), 43-49. (in Chinese with English abstract) |
[2] | Cheng FM (程方民), Jiang DA (蒋德安), Wu P (吴平), Shi CH (石春海) (2001). The dynamic change of starch synthesis enzymes during the grain filling stage and effects of temperature upon it. Acta Agronomica Sinica (作物学报), 27, 201-206. (in Chinese with English abstract) |
[3] | Dai ZM, Yin YP, Wang ZL (2009). Comparison of starch accumlation and enzyme activity in grains of wheat cultivars differing in kernel type. Journal of Plant Growth Regulation, 57, 153-162. |
[4] | Doehlert DC, Kuo TM, Felker FC (1988). Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize. Plant Physiology, 86, 1013-1019. |
[5] | Gao JF (高俊凤), Gong YH (龚月桦) (2006). Experimental Introduction of Plant Physiology (植物生理学试验指导). Higher Education Press, Beijing. (in Chinese) |
[6] | Gao JF (高俊凤), Sun Q (孙群), Liang ZS (梁宗锁) (2000). Experimental Techniques in Plant Physiology (植物生理学试验技术). World Book Publishing Company, Xi’an. (in Chinese) |
[7] | Jenner CF, Siwek K, Hawker JS (1993). The synthesis of 14C starch from 14C sucrose in isolated wheat grain is dependent upon the activity of soluble starch synthase. Australian Journal of Plant Physiology, 20, 329-335. |
[8] | Jiang CM (姜春明), Yin YP (尹燕枰), Liu X (刘霞), Wang ZL (王振林) (2007). Response of flag leaf peroxidation and protective enzyme activity of wheat cultivars with different heat tolerance to high temperature stress after anthesis. Acta Agronomica Sinica (作物学报), 33, 143-148. (in Chinese with English abstract) |
[9] | Keeling PL, Bacon PJ, Holt DC (1993). Elevation temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta, 191, 342-348. |
[10] | Li YG (李永庚), Jiang GM (蒋高明), Yang JC (杨景成) (2003). Effects of temperature on carbon and nitrogen metabolism, yield and quality of wheat. Acta Phytoecologica Sinica (植物生态学报), 27, 164-169. (in Chinese with English abstract) |
[11] | Li YG (李永庚), Yu ZW (于振文), Jiang D (姜东), Yu SL (余松烈) (2001). Studies on the dynamic changes of the synthesis of sucrose in the flag leaf and starch in the grain and related enzymes of high-yielding wheat. Acta Agronomica Sinica (作物学报), 27, 658-664. (in Chinese with English abstract) |
[12] | Li YG (李永庚), Yu ZW (于振文), Zhang XJ (张秀杰), Gao LM (高雷明) (2005). Response of yield and quality of wheat to heat stress at different grain filling stages. Acta Phytoecologica Sinica (植物生态学报), 29, 461-466. (in Chinese with English abstract) |
[13] | Ma XD (马晓娣), Wang L (王丽), Wang M (汪矛), Peng HR (彭惠茹) (2003). Difference in relative conductivity and ultrastructure of leaf between two wheat cultivars with different thermotolerance under heat acclimation and heat stress. Journal of China Agricultural University (中国农业大学学报), 8(5), 4-8. (in Chinese with English abstract) |
[14] | Nakamura Y, Yuki K, Park SY, Ohya T (1989). Carbohydrate metabolism in the developing endosperm of rice grains. Plant & Cell Physiology, 30, 833-839. |
[15] | Pan QM (潘庆民), Han XG (韩兴国), Bai YF (白永飞), Yang JC (杨景成) (2002). Advances in physiology and ecology studies on stored non-structure carbohydrates in plants. Chinese Bulletin of Botany (植物学通报), 19(1), 30-38. (in Chinese with English abstract) |
[16] | Rehman H, Malik SA, Saleem M (2004). Heat tolerance of upland cotton during the fruiting stage evaluated during cellular membrane thermostability. Field Crops Research, 85, 149-158. |
[17] |
Schaffer AA, Petreikov M (1997). Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant Physiology, 113, 739-746.
DOI URL PMID |
[18] |
Smith AM, Denyer K, Martin CR (1995). What controls the amount and structure of starch in storage organs? Plant Physiology, 107, 673-677.
URL PMID |
[19] | Sun Q (孙群), Hu JJ (胡景江) (2006). Research Technology of Plant Physiology (植物生理学研究技术). Northwest A & F Sci-Tech University Press, Xianyang, Shaanxi. (in Chinese) |
[20] | Tian LC (田良才), Zhang MY (张明仪), Li JC (李晋川) (1995). High temperature stress―main barrier of high productivity on wheat. Journal of Shanxi Agricultural Sciences (山西农业科学), 23(2), 14-18. (in Chinese with English abstract) |
[21] | Wang WJ (王文静) (2004). The relationship between source- sink intensity and starch accumulation during grain filling period in two winter wheat cultivars with different spike types. Acta Agronomica Sinica (作物学报), 30, 678-691. (in Chinese with English abstract) |
[22] | Wardlaw IF (1980). Factors limiting the rate of dry matter accumulation in the grain of wheat grown at high temperature. Australian Journal of Plant Physiology, 7, 387-400. |
[23] | Wiegand CL, Cuellar JA (1981). Duration of grain filling and kernel weight of wheat as affected by temperature. Crop Science, 21, 95-101. |
[24] | Wu YS (武永胜), Xue H (薛晖), Liu Y (刘洋), Gong YH (龚月桦) (2010). Study on senescence and chlorophyll fluorescence traits of stay-green leaf in wheat. Agricultural Research in the Arid Areas (干旱地区农业研究), 28, 117-122. (in Chinese with English abstract) |
[25] | Xu RQ (徐如强), Sun QX (孙其信), Zhang SZ (张树榛) (1998). Current status and prospective on the investigation of heat tolerance in wheat. Journal of China Agricultural University (中国农业大学学报), 3(3), 33-40. (in Chinese with English abstract) |
[26] | Xu XL (徐晓玲), Wang ZM (王志敏), Zhang JP (张俊平) (2001). Effects of heat stress on photosynthetic characteristics of different green organs of winter wheat during grain filling stage. Acta Botanica Sinica (植物学报), 43, 571-577. (in Chinese with English abstract) |
[27] | Xue H (薛晖), Jia L (贾丽), Gong YH (龚月桦), Liu YZ (刘赢洲), Wu YH (吴养会) (2010). Study on the stay-green capacity and leaf senescence of winter wheat. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 30, 336-343. (in Chinese with English abstract) |
[28] | Yan CS (闫长生), Xiao SH (肖世和), Zhang XY (张秀英), Hai L (海林) (2003). Evaluation of heat tolerance during maturity in winter wheat. Acta Agriculturae Boreali-Sinica (华北农学报), 18(3), 15-17. (in Chinese with English abstract) |
[29] | Yan SH (闫素辉), Yin YP (尹燕枰), Li WY (李文阳), Li Y (李勇), Liang TB (梁太波), Wu YH (邬云海), Wang P (王平), Geng QH (耿庆辉), Dai ZM (戴忠民), Wang ZL (王振林) (2008). Effect of high temperature during grain filling on starch accumulation, starch granule distribution, and activities of related enzymes in wheat grains. Acta Agronomica Sinica (作物学报), 34, 1092-1096. (in Chinese with English abstract) |
[30] | Yu XJ (於新建) (1999). Introduction to Modern Plant Physiological Experiments (现代植物生理学实验指南). Science Press, Beijing. (in Chinese) |
[31] | Zhang XZ (张宪政) (1986). Determination of chlorophyll content in plant―acetone and ethanol mixture method. Liaoning Agricultural Sciences (辽宁农业科学), (3), 26-28. (in Chinese) |
[32] | Zhang YH (张英华), Wang ZM (王志敏) (2006). The effect of heat stress on grain growth in the growing period of wheat. Chinese Journal of Eco-Agriculture (中国生态农业学报), 14(3), 8-11. (in Chinese with English abstract) |
[1] | 刘瑶 钟全林 徐朝斌 程栋梁 郑跃芳 邹宇星 张雪 郑新杰 周云若. 不同大小刨花楠细根功能性状与根际微环境关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 吴君梅, 曾泉鑫, 梅孔灿, 林惠瑛, 谢欢, 刘苑苑, 徐建国, 陈岳民. 土壤磷有效性调控亚热带森林土壤酶活性和酶化学计量对凋落叶输入的响应[J]. 植物生态学报, 2024, 48(2): 242-253. |
[3] | 罗娜娜, 盛茂银, 王霖娇, 石庆龙, 何宇. 长期植被恢复对中国西南喀斯特石漠化土壤活性有机碳组分含量和酶活性的影响[J]. 植物生态学报, 2023, 47(6): 867-881. |
[4] | 郭敏, 罗林, 梁进, 王彦杰, 赵春章. 冻融变化对西南亚高山森林优势种云杉和华西箭竹根区土壤理化性质与酶活性的影响[J]. 植物生态学报, 2023, 47(6): 882-894. |
[5] | 叶洁泓, 于成龙, 卓少菲, 陈新兰, 杨科明, 文印, 刘慧. 木兰科植物叶片光合系统耐热性与叶片形态及温度生态位的关系[J]. 植物生态学报, 2023, 47(10): 1432-1440. |
[6] | 甘子莹, 王浩, 丁驰, 雷梅, 杨晓刚, 蔡敬琰, 丘清燕, 胡亚林. 亚热带森林不同植物及器官来源的可溶性有机质输入对土壤激发效应的影响及其作用机理[J]. 植物生态学报, 2022, 46(7): 797-810. |
[7] | 熊淑萍, 曹文博, 曹锐, 张志勇, 付新露, 徐赛俊, 潘虎强, 王小纯, 马新明. 水平结构配置对冬小麦冠层垂直结构、微环境及产量的影响[J]. 植物生态学报, 2022, 46(2): 188-196. |
[8] | 李东, 田秋香, 赵小祥, 林巧玲, 岳朋芸, 姜庆虎, 刘峰. 贡嘎山树线过渡带土壤胞外酶活性及其化学计量比特征[J]. 植物生态学报, 2022, 46(2): 232-242. |
[9] | 汪子微, 万松泽, 蒋洪毛, 胡扬, 马书琴, 陈有超, 鲁旭阳. 青藏高原不同高寒草地类型土壤酶活性及其影响因子[J]. 植物生态学报, 2021, 45(5): 528-538. |
[10] | 马书琴, 汪子微, 陈有超, 鲁旭阳. 藏北高寒草地土壤有机质化学组成对土壤蛋白酶和脲酶活性的影响[J]. 植物生态学报, 2021, 45(5): 516-527. |
[11] | 胡宗达, 刘世荣, 罗明霞, 胡璟, 刘兴良, 李亚非, 余昊, 欧定华. 川西亚高山不同演替阶段天然次生林土壤碳氮含量及酶活性特征[J]. 植物生态学报, 2020, 44(9): 973-985. |
[12] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[13] | 陈思路, 蔡劲松, 林成芳, 宋豪威, 杨玉盛. 亚热带不同树种凋落叶分解对氮添加的响应[J]. 植物生态学报, 2020, 44(3): 214-227. |
[14] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[15] | 邹瓒, 陈劲松, 李洋, 宋会兴. 光合产物传输方向对蓉城竹根际微生物过程的影响[J]. 植物生态学报, 2018, 42(8): 863-872. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19