植物生态学报 ›› 2005, Vol. 29 ›› Issue (5): 819-828.DOI: 10.17521/cjpe.2005.0109
王维1,2, 蔡一霞1, 蔡昆争1, 张建华3, 杨建昌2, 朱庆森2,*()
收稿日期:
2004-09-24
接受日期:
2005-05-12
出版日期:
2005-09-24
发布日期:
2005-08-30
通讯作者:
朱庆森
基金资助:
WANG Wei1,2, CAI Yi-Xia1, CAI Kun-Zheng1, ZHANG Jian-Hua3, YANG Jian-Chang2, ZHU Qing-Sen2,*()
Received:
2004-09-24
Accepted:
2005-05-12
Online:
2005-09-24
Published:
2005-08-30
Contact:
ZHU Qing-Sen
About author:
* E-mail: ccplab@yzu.edu.cn摘要:
以两个茎秆贮藏物质利用效率不同的水稻(Oryza sativa)杂交组合(‘汕优63’和‘Pc311/早献党’)为材料,进行土壤水分亏缺处理(Water-deficit),以水层灌溉为对照(Well-watered),研究水分亏缺对水稻茎贮藏性碳水化合物运转及其关键酶活性的调节作用。结果表明,水分亏缺促进了水稻茎秆贮藏物质的运转和对籽粒产量的贡献,开花前茎秆贮藏的碳水化合物对产量贡献率分别提高了1.9~3.0倍(与水层灌溉相比)。土壤水分亏缺诱导了水稻茎节间α-淀粉酶、β-淀粉酶、α-葡萄糖苷酶、D-酶活性上升,但淀粉磷酸化酶受到了抑制,说明土壤水分亏缺加强水稻茎秆贮藏淀粉水解途径,而不是磷酸解途径。就蔗糖代谢而言,土壤水分亏缺提高了蔗糖磷酸合成酶的活性和活化状态,抑制蔗糖转化酶活性,促进蔗糖合成,加速贮藏物质快速降解和转移,从而调节稻株贮藏碳水化合物向籽粒的分配。
王维, 蔡一霞, 蔡昆争, 张建华, 杨建昌, 朱庆森. 土壤水分亏缺对水稻茎秆贮藏碳水化合物向籽粒运转的调节. 植物生态学报, 2005, 29(5): 819-828. DOI: 10.17521/cjpe.2005.0109
WANG Wei, CAI Yi-Xia, CAI Kun-Zheng, ZHANG Jian-Hua, YANG Jian-Chang, ZHU Qing-Sen. REGULATION OF SOIL WATER DEFICITS ON STEM-STORED CARBOHYDRATE REMOBILIZATION TO GRAINS OF RICE. Chinese Journal of Plant Ecology, 2005, 29(5): 819-828. DOI: 10.17521/cjpe.2005.0109
图1 水分亏缺对水稻植株顶叶水势变化的影响(池栽试验) 结果为5次重复的平均值±SD
Fig.1 Changes in leaf water potential of rice cultivars cvs 'Shanyou63' (A) and 'Pc/zao' (B), which were subjected to water deficit from 9 d after anthesis Values are means ± SD of five replications
图2 水分亏缺对水稻茎非结构性糖含量变化的影响(池栽试验)
Fig.2 Concentration and composition of NSC in the stems of two rice cultivars cvs ‘Shanyou63’ (A, C, E, G, I) and ‘Pc/Zao’ (B, D, F, H, J), which were subjected to water deficit from 9 d after anthesis
图3 水分亏缺对水稻茎中淀粉和可溶性糖分配入的14C的影响(盆栽试验) 图例同图1 Legends see Fig.1 图注同图2 Notes see Fig.2
Fig.3 14C NSC in the stems of two rice cultivars cvs ‘Shanyou63’ (A, C) and ‘Pc/Zao’ (B, D), which were subjected to water deficit from 9 d after anthesis
图4 水分亏缺对水稻茎贮藏淀粉水解酶活性的影响(池栽试验) 图例同图1 Legends see Fig.1 图注同图2 Notes see Fig.2
Fig.4 Changes in activities of starch degradation enzymes and in the stems of two rice cultivars ‘Shanyou63’ (A, C, E, G) and ‘Pc/Zao’ (B, D, F, H), which were subjected to water deficit from 9 d after anthesis
图5 水分亏缺对水稻茎淀粉磷酸化酶活性的影响(池栽试验) 图例同图1
Fig.5 Changes in activities of starch phosphorylase in the stems of two rice cultivars 'Shanyou63' (A) and 'Pc/Zao' (B), Which were subjected to water deficit from 9 d after anthesis Legends see Fig.1
图6 水分亏缺对水稻茎蔗糖代谢酶活性的影响(池栽试验) 图例同图1
Fig.6 Changes in activities of sucrose-metabolizing enzymes in the stems of two rice cultivars ‘Shanyou63’ (A, C, E) and ‘Pc/Zao’ (B, D, F), which were subjected to water deficit from 9 d after anthesis Legends see Fig.1
品种 Cultivars | 处理 Treatments | 从花后9天到成熟期转运的14C量 Remobiled 14C from 9 d anthesis to harvest | 成熟期籽粒中14C含量 Recovered 14C in grain at harvest stage (kBq) | 呼吸损失14C Loss of respiration (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
叶Leaves (kBq) | 茎秆Stem and sheath (kBq) | 颖壳 Glumes (kBq) | ||||||||||||
‘汕优63’‘Shanyou63’ | 水层灌溉Well-watered | 17.7b | 136.4b | 7.9b | 120.7b | 25.5b | ||||||||
水分亏缺Water-deficit | 22.4a | 234.9a | 9.7a | 207.4a | 22.3a | |||||||||
‘Pc/早’‘Pc/Zao’ | 水层灌溉Well-watered | 15.5b | 122.3b | 9.7b | 102.54b | 30.5b | ||||||||
水分亏缺Water-deficit | 24.9a | 236.3a | 13.0a | 203.6a | 25.7a |
表1 水分亏缺对水稻植株各器官中14C再分配的影响(盆栽试验)
Table 1 Effect of post-anthesis water deficit on the distribution of prefixed 14C in plants of two rice cultivars (cvs 'Shanyou63' and 'Pc/Zao')
品种 Cultivars | 处理 Treatments | 从花后9天到成熟期转运的14C量 Remobiled 14C from 9 d anthesis to harvest | 成熟期籽粒中14C含量 Recovered 14C in grain at harvest stage (kBq) | 呼吸损失14C Loss of respiration (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
叶Leaves (kBq) | 茎秆Stem and sheath (kBq) | 颖壳 Glumes (kBq) | ||||||||||||
‘汕优63’‘Shanyou63’ | 水层灌溉Well-watered | 17.7b | 136.4b | 7.9b | 120.7b | 25.5b | ||||||||
水分亏缺Water-deficit | 22.4a | 234.9a | 9.7a | 207.4a | 22.3a | |||||||||
‘Pc/早’‘Pc/Zao’ | 水层灌溉Well-watered | 15.5b | 122.3b | 9.7b | 102.54b | 30.5b | ||||||||
水分亏缺Water-deficit | 24.9a | 236.3a | 13.0a | 203.6a | 25.7a |
品种 Cultivars | 处理 Treatments | 茎中滞留糖 Residue NSC (mg·g-1 DW) | 运转率 Remobilized NSC (%) | 贡献率 Contribution to grians (%) | 收获指数 Harvest index | 结实率 (%) | 粒重 Kernel weight (mg) | 产量 Yield (g·m-2) |
---|---|---|---|---|---|---|---|---|
‘汕优63’ ‘Shanyou63’ | 水层灌溉 Well-watered | 186.1a | 43.4b | 12.8b | 0.50b | 84.5a | 26.43a | 851.9a |
水分亏缺 Water-deficit | 92.7b | 71.8a | 24.6a | 0.56a | 79.8b | 25.87b | 771.3b | |
‘Pc/早’ ‘Pc/Zao’ | 水层灌溉 Well-watered | 265.1a | 16.3b | 6.7b | 0.40b | 77.3a | 24.57a | 945.6a |
水分亏缺 Water-deficit | 130.4b | 59.4a | 19.8a | 0.49a | 72.6b | 23.64b | 859.8b |
表2 水分亏缺对水稻茎秆碳贮藏物质的输出及籽粒产量的影响(池栽试验)
Table 2 Effect of post-anthesis water deficit on remobilization of stored reserves and grain yield of two rice cultivars (cvs ‘Shanyou63’ and ‘Pc/Zao’)
品种 Cultivars | 处理 Treatments | 茎中滞留糖 Residue NSC (mg·g-1 DW) | 运转率 Remobilized NSC (%) | 贡献率 Contribution to grians (%) | 收获指数 Harvest index | 结实率 (%) | 粒重 Kernel weight (mg) | 产量 Yield (g·m-2) |
---|---|---|---|---|---|---|---|---|
‘汕优63’ ‘Shanyou63’ | 水层灌溉 Well-watered | 186.1a | 43.4b | 12.8b | 0.50b | 84.5a | 26.43a | 851.9a |
水分亏缺 Water-deficit | 92.7b | 71.8a | 24.6a | 0.56a | 79.8b | 25.87b | 771.3b | |
‘Pc/早’ ‘Pc/Zao’ | 水层灌溉 Well-watered | 265.1a | 16.3b | 6.7b | 0.40b | 77.3a | 24.57a | 945.6a |
水分亏缺 Water-deficit | 130.4b | 59.4a | 19.8a | 0.49a | 72.6b | 23.64b | 859.8b |
[1] | Aggarwal PK, Sinha SK (1984). Effect of water stress on grain growth and assimilate portioning in two cultivars of wheat contrasting in their yield in a drought environment. Annals of Botany, 53,329-340. |
[2] | Austin RBC, Morgan L, Ford MA, Blackwell RD (1980). Contributions to grain yield from pre-anthesis assimilation in tall and dwarf barley phenotypes in two contrasting seasons. Annals of Botany, 45,309-319. |
[3] | Beck E, Ziegler P (1989). Biosynthesis and degradation of starch in high plants. Annual Review of Plant Physiology and Plant Molecular Biology, 40,95-117. |
[4] | Bhatia S, Singh R (2002). Phytohormone-mediated transformation of sugars to starch in relation to the activities of amylases, sucrose-metabolizing enzymes in sorghum grain. Plant Growth Regulation, 36,97-104. |
[5] | Blennow A, Engelsen SB, Nielson TH, Baunsgaard L, Mikkelsen R (2002). Starch phosphorylation: a new front line in starch research. Trends in Plant Science, 7,445-450. |
[6] |
Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72,248-254.
DOI URL PMID |
[7] | da Silva PMFR, Eastmond PJ, Hill LM, Smith AM, Rawsthorne S (1997). Starch metabolism in developing embryos of oilseed rape. Planta, 203,480-487. |
[8] | Egger B, Einig W, Schlereth A, Wallenda T, Magel E, Loewe A, Hampp R (1996). Carbohydrate metabolism in one- and two-year-old spruce needles, and stem carbohydrates from three months before until three months after bud break. Physiologia Plantarum, 96,91-100. |
[9] | Gallagher JA, Volence JJ, Turner LB, Pollock CJ (1997). Starch hydrolytic enzyme activities following defoliation of white clover. Crop Science, 37,1812-1818. |
[10] | Geigenberger P, Reimholz R, Geiger M, Canale V, Stitt M (1997). Regulation of sucrose and starch metabolism in potato tubers in response to short-term water deficit. Planta, 207,502-518. |
[11] |
Guglielminett L, Yamaguchi J, Perata P, Alpi A (1995). Amylolytic activities in cereal seeds under aerobic and anaerobic conditions. Plant Physiology, 109,1069-1076.
DOI URL PMID |
[12] | Hendrix DL (1993). Rapid extraction and analysis of nonstructural carbohydrates in plant tissues. Crop Science, 33,1306-1311. |
[13] | Li MY (李木英), Shi QH (石庆华), Pan XH (潘晓华) (1999). Studies on the physiological factors affecting the carbohydrate transfer in stem and sheath during filling stage in two-line hybrid rice. Acta Agriculturae Universitatis Jiangxiensis (江西农业大学学报), 21,229-332. (in Chinese with English abstract) |
[14] | Lu JF (陆建飞), Huang PS (黄丕生), Ding YF (丁艳峰), Zhang WJ (张卫建) (1998). Accumulation and translocation of dry matter in two rice cultivars in relation to sustained soil water stress. Jiangsu Journal of Agricultural Science (江苏农业科学), 14,135-140. (in Chinese with English abstract) |
[15] | Palta JA, Kobata T, Turner NC, Fillery IR (1994). Remobilization of carbon and nitrogen in wheat as influenced by post-anthesis water deficits. Crop Science, 34,118-124. |
[16] | Schnyder H (1993). The role of carbohydrate storage and redistribution in the source-sink relations of wheat and barley during grain filling—a review. New Phytologist, 123,233-245. |
[17] |
Smith AM, Zeeman SC, Thorneycroft D, Smith SM (2003). Starch mobilization in leaves. Journal of Experimental Botany, 54,577-583.
URL PMID |
[18] |
Stitt M, Wirtz W, Gerhardt R, Heldt HW, Spencer C, Walker D, Foyer C (1985). A comparative study of metabolite levels in plant leaf material in the dark. Planta, 166,354-364.
URL PMID |
[19] |
Todaka D, Matsushima H, Morohashi Y (2000). Water stress enhances β-amylase activity in cucumber cotyledons. Journal of Experimental Botany, 51,739-745.
URL PMID |
[20] | Wang H, Lee P, Chen W, Huang D, Su J (2000). Osmotic stress-induced changes of sucrose metabolism in cultured sweet potato cells. Journal of Experiment Botany, 51,1991-1999. |
[21] | Wang W (王维), Zhang JH (张建华), Yang JC (杨建昌), Zhu QS (朱庆森) (2004). Effect of water stress on metabolism of stored carbohydrate of stem and yield in rice grown under unfavorable-delayed senescence. Acta Agronomica Sinica (作物学报), 30,196-204. (in Chinese with English abstract) |
[22] | Wang W (王维), Cai YX (蔡一霞), Zhang JH (张建华), Yang JC (杨建昌), Zhu QS (朱庆森) (2005). Regulation of controlled soil drying on remobilization of stem-stored carbohydrate to grain in wheat grown under unfavorably-delayed senescence. Acta Agronomica Sinica (作物学报), 31,289-296. (in Chinese with English abstract) |
[23] | Wardlaw IF, Willenbrink J (1994). Carbohydrate storage and mobilization by the culm of wheat between heading and grain maturity: the relation to sucrose synthase and sucrose-phosphate synthase. Australian Journal of Plant Physiology, 21,255-271. |
[24] | Weber H, Borisjuk L, Wobus U (1997). Sugar import and metabolism during seed development. Trends in Plant Science, 2,169-174. |
[25] |
Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ (2001). Activities of starch hydrolytic enzymes and sucrose-phosphate synthase in the stems of rice subjected to water stress during grain filling. Journal of Experimental Botany, 52,2169-2179.
URL PMID |
[1] | 薛峰, 江源, 董满宇, 王明昌, 丁新原, 杨显基, 崔明皓, 康慕谊. 不同去趋势方法对基于Dendrometer数据的茎干水分动态分析的影响——以白扦为例[J]. 植物生态学报, 2021, 45(8): 880-890. |
[2] | 沙依然·外力,李秉柏,张佳华,杨沈斌. 水稻模拟模型在高温敏感性研究中的应用[J]. 植物生态学报, 2014, 38(5): 515-528. |
[3] | 邹媛媛, 刘琳, 刘洋, 赵亮, 邓启云, 吴俊, 庄文, 宋未. 不同水稻品种种子固有细菌群落的多样性[J]. 植物生态学报, 2012, 36(8): 880-890. |
[4] | 隗溟,廖学群,李冬霞,段海龙. 水稻分蘖节位生产力比较[J]. 植物生态学报, 2012, 36(4): 324-332. |
[5] | 顾东祥, 汤亮, 徐其军, 雷晓俊, 曹卫星, 朱艳. 水氮处理下不同品种水稻根系生长分布特征[J]. 植物生态学报, 2011, 35(5): 558-566. |
[6] | 陈洁, 汤亮, 刘小军, 曹卫星, 朱艳. 基于植株碳流的水稻籽粒淀粉积累模拟模型[J]. 植物生态学报, 2011, 35(4): 431-440. |
[7] | 王维, 蔡一霞, 杨建昌, 朱庆森. 结实期土壤水分亏缺影响水稻籽粒灌浆的生理原因[J]. 植物生态学报, 2011, 35(2): 195-202. |
[8] | 刘长成, 刘玉国, 郭柯. 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性[J]. 植物生态学报, 2011, 35(10): 1070-1082. |
[9] | 杨杰, 田永超, 姚霞, 曹卫星, 朱艳. 利用高光谱参数反演水稻叶片类胡萝卜素含量[J]. 植物生态学报, 2010, 34(7): 845-854. |
[10] | 张玉森, 姚霞, 田永超, 曹卫星, 朱艳. 应用近红外光谱预测水稻叶片氮含量[J]. 植物生态学报, 2010, 34(6): 704-712. |
[11] | 赵紫平, 邓西平, 王征宏, 刘彬彬. 灌浆期水分亏缺条件下二、四、六倍体小麦收获指数和水分利用效率的演化[J]. 植物生态学报, 2010, 34(4): 444-451. |
[12] | 田永超, 杨杰, 姚霞, 朱艳, 曹卫星. 利用红边面积形状参数估测水稻叶层氮浓度[J]. 植物生态学报, 2009, 33(4): 791-801. |
[13] | 张巍巍, 郑飞翔, 王效科, 冯兆忠, 欧阳志云. 臭氧对水稻根系活力、可溶性蛋白含量与抗氧化系统的影响[J]. 植物生态学报, 2009, 33(3): 425-432. |
[14] | 龚吉蕊, 黄永梅, 葛之葳, 段庆伟, 尤鑫, 安然, 张新时. 4种杂交杨对土壤水分变化的生态学响应[J]. 植物生态学报, 2009, 33(2): 387-396. |
[15] | 张亚黎, 罗宏海, 张旺锋, 樊大勇, 何在菊, 白慧东. 土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响[J]. 植物生态学报, 2008, 32(3): 681-689. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19