植物生态学报 ›› 2010, Vol. 34 ›› Issue (7): 845-854.DOI: 10.3773/j.issn.1005-264x.2010.07.010
收稿日期:
2009-11-26
接受日期:
2010-03-01
出版日期:
2010-11-26
发布日期:
2010-07-01
通讯作者:
朱艳
作者简介:
* E-mail: yanzhu@njau.edu.cnYANG Jie, TIAN Yong-Chao, YAO Xia, CAO Wei-Xing, ZHU Yan*()
Received:
2009-11-26
Accepted:
2010-03-01
Online:
2010-11-26
Published:
2010-07-01
Contact:
ZHU Yan
摘要:
为了探讨快速、准确预测水稻(Oryza sativa)叶片类胡萝卜素(Car)含量的敏感光谱波段和光谱指数, 通过实施涉及不同年份、不同生态点、不同施氮水平和不同品种类型的4个田间试验, 于主要生育期同步测定了水稻顶部4张叶片的光谱反射率及Car含量, 系统分析了350-2 500 nm范围内任意两波段组合而成的比值(SR (λ1, λ2))、归一化(ND (λ1, λ2))及已报道的对Car敏感的光谱指数与水稻叶片Car含量间的定量关系。结果表明, 不同Car含量水平下水稻叶片光谱反射率存在着明显变化, 以绿光及红边波段对水稻叶片Car含量变化最为敏感。723 nm附近的波段与近红外波段的比值组合以及713 nm附近的波段与近红外波段的归一化组合可以较好地预测水稻叶片Car含量, 以SR (723, 770)和ND (770, 713)表现最好, 线性拟合R2分别达到0.897和0.898。基于独立的试验资料的检验表明, 预测值和实测值的拟合R2分别为0.856和0.858, 均方根差RMSE均为0.072, 平均相对误差RE分别为11.9%和12.0%, 表明SR (723,770)和ND (770, 713)可有效地估算水稻上部叶片的Car含量。
杨杰, 田永超, 姚霞, 曹卫星, 朱艳. 利用高光谱参数反演水稻叶片类胡萝卜素含量. 植物生态学报, 2010, 34(7): 845-854. DOI: 10.3773/j.issn.1005-264x.2010.07.010
YANG Jie, TIAN Yong-Chao, YAO Xia, CAO Wei-Xing, ZHU Yan. Estimating leaf carotenoid content with hyperspectral parameters in rice. Chinese Journal of Plant Ecology, 2010, 34(7): 845-854. DOI: 10.3773/j.issn.1005-264x.2010.07.010
光谱指数 Hyperspectral index | 计算公式或定义 Algorithm formula or definition | 参考文献 Reference |
---|---|---|
比值光谱指数 Simple ratio spectral indices | ||
SR ( λ1, λ2) | Rλ1 / Rλ2 | This work |
PSSRc | R800 / R470 | |
R760/R550 | R760 / R550 | |
VI2 | R1200 / R553 | |
归一化差值光谱指数 Normalized difference spectral indices | ||
ND (λ1, λ2) | (Rλ1 - Rλ2 ) / (Rλ1 + Rλ2 ) | This work |
PSNDc | (R800 - R470 ) / (R800 + R470 ) | |
其他类型光谱指数 Other spectral indices | ||
CRI550 | 1/R510 - 1/R550 | |
CRI700 | 1/R510 - 1/R700 | |
R672/(R550 × R708) | R672 / (R550 × R708) |
表1 本文采用的高光谱指数列表
Table 1 Different hyperspectral indices used in this study
光谱指数 Hyperspectral index | 计算公式或定义 Algorithm formula or definition | 参考文献 Reference |
---|---|---|
比值光谱指数 Simple ratio spectral indices | ||
SR ( λ1, λ2) | Rλ1 / Rλ2 | This work |
PSSRc | R800 / R470 | |
R760/R550 | R760 / R550 | |
VI2 | R1200 / R553 | |
归一化差值光谱指数 Normalized difference spectral indices | ||
ND (λ1, λ2) | (Rλ1 - Rλ2 ) / (Rλ1 + Rλ2 ) | This work |
PSNDc | (R800 - R470 ) / (R800 + R470 ) | |
其他类型光谱指数 Other spectral indices | ||
CRI550 | 1/R510 - 1/R550 | |
CRI700 | 1/R510 - 1/R700 | |
R672/(R550 × R708) | R672 / (R550 × R708) |
样本集 Sample | 试验 Experiment | 样本数 No. of sample | 最小值 Min. value | 最大值 Max. value | 平均值 Mean value | 标准偏差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|---|---|
建模样本 Modeling | EXP. 1, EXP. 2 | 400 | 0.136 | 0.854 | 0.544 | 0.157 | 28.8 |
测试样本 Testing | EXP. 3, EXP. 4 | 223 | 0.217 | 0.866 | 0.576 | 0.130 | 22.7 |
表2 水稻叶片类胡萝卜素含量的变化
Table 2 Changes in carotenoid content of rice leaves (mg·g-1 FW)
样本集 Sample | 试验 Experiment | 样本数 No. of sample | 最小值 Min. value | 最大值 Max. value | 平均值 Mean value | 标准偏差 SD | 变异系数 CV (%) |
---|---|---|---|---|---|---|---|
建模样本 Modeling | EXP. 1, EXP. 2 | 400 | 0.136 | 0.854 | 0.544 | 0.157 | 28.8 |
测试样本 Testing | EXP. 3, EXP. 4 | 223 | 0.217 | 0.866 | 0.576 | 0.130 | 22.7 |
图1 水稻顶部叶片类胡萝卜素含量随生育期的变化(试验2, ‘武香粳14’)。 N0、N1、N2、N3, 分别表示0、90、240和360 kg N·hm-2处理。L1、L2、L3、L4, 分别表示顶1、顶2、顶3、顶4叶。
Fig. 1 Changes in carotenoid content of top leaves with growth process in rice (EXP. 2, ‘Wuxiangjing14’). N0, N1, N2, N3, treatments of 0, 90, 240 and 360 kg N·hm-2, respectively. L1, L2, L3, L4, the 1st, 2nd, 3rd, 4th leaf from top, respectively.
图3 水稻叶片类胡萝卜素含量与叶片光谱反射率及一阶导数光谱数据的相关性(n = 400)。
Fig. 3 The correlation patterns of leaf carotenoid content to leaf spectral reflectance and its first derivative spectra (n = 400).
图4 两波段组合的比值(A)及归一化(B)光谱指数估算类胡萝卜素含量的决定系数(R2)等势图。
Fig. 4 A contour map of coefficients of determination (R2) between total carotenoid content and simple ratio spectral indices (A), normalized difference spectral indices (B) based on two separate wavelengths on x and y axes.
光谱指数 (x) Spectral index | 回归方程 Regression equation | 拟合精度 S-R2 | 预测精度 P-R2 | 均方根差 RMSE | 平均相对误差 RE (%) |
---|---|---|---|---|---|
SR (723, 770) | y = -2.0382x + 2.1014 | 0.897 | 0.856 | 0.072 | 11.9 |
ND (770, 713) | y = 1.9306x + 0.0514 | 0.898 | 0.858 | 0.072 | 12.0 |
SR (554, 773) | y = -1.6552x + 1.0831 | 0.854 | 0.782 | 0.074 | 12.8 |
ND (773, 562) | y = 1.494x - 0.2512 | 0.867 | 0.794 | 0.075 | 12.7 |
PSSRc | y = 0.0734x - 0.2458 | 0.718 | 0.516 | 0.157 | 25.2 |
PSNDc | y = 4.0897x - 2.8301 | 0.712 | 0.549 | 0.141 | 23.1 |
CRI550 | y = 0.0697x - 0.0242 | 0.741 | 0.549 | 0.137 | 22.1 |
CRI700 | y = 0.0716x - 0.0632 | 0.680 | 0.418 | 0.140 | 23.0 |
R760 /R500 | y = 0.0742x - 0.1306 | 0.798 | 0.617 | 0.131 | 21.2 |
VI2 | y = 0.2033x - 0.0782 | 0.815 | 0.781 | 0.089 | 14.5 |
R672/(R550×R708) | y = 0.3762x - 0.0132 | 0.584 | 0.632 | 0.079 | 18.5 |
表3 水稻叶片类胡萝卜素含量(y)与不同光谱指数(x)的定量关系(n = 400)及检验效果(n = 223)
Table 3 Quantitative relationships of leaf carotenoid content in rice (y) to different spectral indices (x) (n = 400) and their predicting performance (n = 223)
光谱指数 (x) Spectral index | 回归方程 Regression equation | 拟合精度 S-R2 | 预测精度 P-R2 | 均方根差 RMSE | 平均相对误差 RE (%) |
---|---|---|---|---|---|
SR (723, 770) | y = -2.0382x + 2.1014 | 0.897 | 0.856 | 0.072 | 11.9 |
ND (770, 713) | y = 1.9306x + 0.0514 | 0.898 | 0.858 | 0.072 | 12.0 |
SR (554, 773) | y = -1.6552x + 1.0831 | 0.854 | 0.782 | 0.074 | 12.8 |
ND (773, 562) | y = 1.494x - 0.2512 | 0.867 | 0.794 | 0.075 | 12.7 |
PSSRc | y = 0.0734x - 0.2458 | 0.718 | 0.516 | 0.157 | 25.2 |
PSNDc | y = 4.0897x - 2.8301 | 0.712 | 0.549 | 0.141 | 23.1 |
CRI550 | y = 0.0697x - 0.0242 | 0.741 | 0.549 | 0.137 | 22.1 |
CRI700 | y = 0.0716x - 0.0632 | 0.680 | 0.418 | 0.140 | 23.0 |
R760 /R500 | y = 0.0742x - 0.1306 | 0.798 | 0.617 | 0.131 | 21.2 |
VI2 | y = 0.2033x - 0.0782 | 0.815 | 0.781 | 0.089 | 14.5 |
R672/(R550×R708) | y = 0.3762x - 0.0132 | 0.584 | 0.632 | 0.079 | 18.5 |
图5 水稻叶片类胡萝卜素含量与比值指数(SR) (723, 770)及归一化指数(ND) (770, 713)的关系(n = 400)。 L1、L2、L3、L4同图1。
Fig. 5 Relationships of leaf corotenoid content in rice to the simple ratio spectral index SR (723, 770) and normalized difference spectral index ND (770, 713) in rice (n = 400). ①, elongation; ②, bloting; ③, heading; ④, early filling; ⑤, middle filling; ⑥, late filling. L1, L2, L3, L4 see Fig. 1.
图6 基于比值指数SR (723, 770)和归一化指数ND (770, 713)的水稻叶片类胡萝卜素含量实测值与预测值间的比较(n = 223)。 RE、RMSE, 同表3。
Fig. 6 Comparison between the predicted and observed leaf carotenoid content in rice based on simple ratio spectral index SR (723, 770) and normalized difference spectral index ND (770, 713) (n = 223). RE、RMSE, see Table 3.
[1] | Biswall B (1995). Carotenoid catabolism during leaf senescence and its control by light. Journal of Photochemistry and Photobiology, 30, 3-13. |
[2] | Blackburn GA (1998). Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66, 273-285. |
[3] | Carter GA (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15, 697-704. |
[4] | Chappelle EW, Kim MS, McMurtrey JE (1992). Ratio analysis of reflectance spectra RARS: an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sensing of Environment, 39, 239-247. |
[5] | Chen WJ (陈维君), Zhou QF (周启发), Huang JF (黄敬峰) (2006). Estimation pigment contents in leaves and panicles of rice after milky ripening by hyperspectral vegetation indices. Chinese Journal of Rice Science (中国水稻科学), 20, 434-439. (in Chinese with English abstract) |
[6] | Datt B (1998). Remote sensing of chlorophyll a, chlorophyll b, chlorophyll a+b, and total carotenoid content in Eucalyptus leaves. Remote Sensing of Environment, 66, 111-121. |
[7] | Demmig-Adams B, Adams WW (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1, 21-26. |
[8] | Gamon JA, Peñuelas J, Field CB (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41, 35-44. |
[9] | Gitelson AA, Merzlyak MN (1994). Quantitative estimation of chlorophyll a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobioliology B: Biology, 22, 247-252. |
[10] | Gitelson AA, Merzlyak MN (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18, 2691-2697. |
[11] |
Gitelson AA, Zur Y, Chivkunova OB, Merzlyak MN (2002). Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, 75, 272-281.
URL PMID |
[12] | Lichtenthaler HK (1987). Chlorophylls and carotenoids: the pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 331-382. |
[13] | Lichtenthaler HK (1996). Vegetation stress: an introduction to the stress concept in plants. Journal of Plant Physiology, 148, 3-14. |
[14] | Merzlyak LN, Gitelson AA (1995). Why and what for the leaves are yellow in autumn? On the interpretation of optical spectra of senescing leaves (Acer platanoides L.). Journal of Plant Physiology, 145, 315-320. |
[15] | Merzlyak MN, Gitelson AA, Chivkunova OB, Rakitin VY (1999). Nondestructive optical detection of leaf senescence and fruit ripening. Physiologia Plantarum, 106, 135-141. |
[16] | Peñuelas J, Baret F, Filella I (1995). Semi-empirical indices to assess carotenoid/chlorophyll a ratio from leaf spectral. Photosynthetica, 31, 221-230. |
[17] | Peñuelas J, Filella I (1998). Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends in Plant Science, 3, 151-156. |
[18] | Sims DA, Gamon JA (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337-354. |
[19] | Sun XM (孙雪梅) (2005). The Study on Hyperspectral Variables in Predicting Nitrogen Status, Pigments Content and Grain Protein Content in Rice (利用高光谱参数预测水稻氮素状况、色素含量和籽粒蛋白含量的研究) Master’s Degree Dissertation, Zhejiang University, Hangzhou. 46-47. (in Chinese with English abstract) |
[20] | Tang YL (唐延林), Huang JF (黄敬峰), Wang RC (王人潮) (2004). Change law of hyperspectral data with chlorophyll and caroteniod for rice at different developmental stages. Chinese Journal of Rice Science (中国水稻科学), 18, 59-66. (in Chinese with English abstract) |
[21] | Tang YL (唐延林), Wang JH (王纪华), Huang JF (黄敬峰), Wang RC (王人潮), He QX (何秋霞) (2003). Variation law of hypersprctral data and chlorophyll and carotenoid for rice in mature process. Transactions of the Chinese Society of Agricultural Engineering (农业工程学报), 19(6), 167-173. (in Chinese with English abstract) |
[22] | Wang FM (王福民), Huang JF (黄敬峰), Wang XZ (王秀珍) (2009). Normalized difference ratio pigment index for estimating chlorophyll and carteniod contents of in leaves of rice. Spectroscopy and Spectral Analysis (光谱学与光谱分析), 29, 1064-1068. (in Chinese with English abstract) |
[23] | Zarco-Tejada PJ, Miller JR, Mohammed GH, Noland TL, Sampson PH (2001). Scaling-up and model inversion methods with narrow-band optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39, 1491-1507. |
[1] | 田佳玉, 王彬, 张志明, 林露湘. 光谱多样性在植物多样性监测与评估中的应用[J]. 植物生态学报, 2022, 46(10): 1129-1150. |
[2] | 严正兵, 刘树文, 吴锦. 高光谱遥感技术在植物功能性状监测中的应用与展望[J]. 植物生态学报, 2022, 46(10): 1151-1166. |
[3] | 衣海燕, 曾源, 赵玉金, 郑朝菊, 熊杰, 赵旦. 利用聚类算法监测森林乔木物种多样性[J]. 植物生态学报, 2020, 44(6): 598-615. |
[4] | 郭庆华, 胡天宇, 马勤, 徐可心, 杨秋丽, 孙千惠, 李玉美, 苏艳军. 新一代遥感技术助力生态系统生态学研究[J]. 植物生态学报, 2020, 44(4): 418-435. |
[5] | 张峰,周广胜. 植被含水量高光谱遥感监测研究进展[J]. 植物生态学报, 2018, 42(5): 517-525. |
[6] | 刘畅, 孙鹏森, 刘世荣. 水分敏感的反射光谱指数比较研究——以锐齿槲栎为例[J]. 植物生态学报, 2017, 41(8): 850-861. |
[7] | 高林, 王晓菲, 顾行发, 田庆久, 焦俊男, 王培燕, 李丹. 植冠下土壤类型差异对遥感估算冬小麦叶面积指数的影响[J]. 植物生态学报, 2017, 41(12): 1273-1288. |
[8] | 申鑫, 曹林, 徐婷, 佘光辉. 基于高分辨率与高光谱遥感影像的北亚热带马尾松及次生落叶树种的分类[J]. 植物生态学报, 2015, 39(12): 1125-1135. |
[9] | 沙依然·外力,李秉柏,张佳华,杨沈斌. 水稻模拟模型在高温敏感性研究中的应用[J]. 植物生态学报, 2014, 38(5): 515-528. |
[10] | 吴见, 刘民士, 李伟涛. 不同地形条件下植被盖度信息提取技术研究[J]. 植物生态学报, 2013, 37(1): 18-25. |
[11] | 邹媛媛, 刘琳, 刘洋, 赵亮, 邓启云, 吴俊, 庄文, 宋未. 不同水稻品种种子固有细菌群落的多样性[J]. 植物生态学报, 2012, 36(8): 880-890. |
[12] | 隗溟,廖学群,李冬霞,段海龙. 水稻分蘖节位生产力比较[J]. 植物生态学报, 2012, 36(4): 324-332. |
[13] | 顾东祥, 汤亮, 徐其军, 雷晓俊, 曹卫星, 朱艳. 水氮处理下不同品种水稻根系生长分布特征[J]. 植物生态学报, 2011, 35(5): 558-566. |
[14] | 陈洁, 汤亮, 刘小军, 曹卫星, 朱艳. 基于植株碳流的水稻籽粒淀粉积累模拟模型[J]. 植物生态学报, 2011, 35(4): 431-440. |
[15] | 王维, 蔡一霞, 杨建昌, 朱庆森. 结实期土壤水分亏缺影响水稻籽粒灌浆的生理原因[J]. 植物生态学报, 2011, 35(2): 195-202. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19