植物生态学报 ›› 2013, Vol. 37 ›› Issue (1): 18-25.DOI: 10.3724/SP.J.1258.2013.00002
收稿日期:
2012-08-27
接受日期:
2012-11-13
出版日期:
2013-08-27
发布日期:
2013-01-15
通讯作者:
吴见
作者简介:
*E-mail:xiangfeidewujian@126.com基金资助:
WU Jian*(), LIU Min-Shi, LI Wei-Tao
Received:
2012-08-27
Accepted:
2012-11-13
Online:
2013-08-27
Published:
2013-01-15
Contact:
WU Jian
摘要:
为系统地研究特定区域的植被盖度信息提取技术, 在不同的地形条件下, 比较了目前流行的多种高光谱遥感植被盖度提取方法。结果表明: 最优高光谱归一化植被指数(NDVI1)的建模和验证精度均高于其他两种归一化植被指数(NDVI), 直接采用NDVI建立的回归模型对研究区植被盖度的估测能力低于像元二分模型; 阴坡的最佳模型为基于一阶微分的偏最小二乘回归模型(PLSR模型), 其建模决定系数(R2)为0.810, 均方根误差(RMSE)为6.29, 验证R2为0.773, RMSE为8.85; 阳坡的最佳模型为基于二阶微分的PLSR模型, 其建模R2为0.823, RMSE为6.04, 验证R2为0.801, RMSE为7.35; 平原的最佳模型为全受限的线性光谱混合分解模型(FCLS), 其验证R2为0.852, RMSE为5.86。
吴见, 刘民士, 李伟涛. 不同地形条件下植被盖度信息提取技术研究. 植物生态学报, 2013, 37(1): 18-25. DOI: 10.3724/SP.J.1258.2013.00002
WU Jian, LIU Min-Shi, LI Wei-Tao. Research on vegetation cover information extraction technologies under different terrain conditions. Chinese Journal of Plant Ecology, 2013, 37(1): 18-25. DOI: 10.3724/SP.J.1258.2013.00002
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.656 | 10.73 | 0.638 | 11.74 | |
NDVI2 | 803.3 | 671.02 | 0.508 | 14.65 | 0.497 | 14.40 | |
NDVI3 | TM4 | TM3 | 0.483 | 15.01 | 0.476 | 15.29 |
表1 不同归一化植被指数(NDVI)估测阴坡植被盖度的建模和验证结果
Table 1 Modeling and verification results of shady slope vegetation coverage estimation of different normalized differential vegetation index (NDVI)
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.656 | 10.73 | 0.638 | 11.74 | |
NDVI2 | 803.3 | 671.02 | 0.508 | 14.65 | 0.497 | 14.40 | |
NDVI3 | TM4 | TM3 | 0.483 | 15.01 | 0.476 | 15.29 |
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.731 | 8.85 | 0.711 | 9.94 | |
NDVI2 | 803.3 | 671.02 | 0.712 | 9.87 | 0.682 | 10.73 | |
NDVI3 | TM4 | TM3 | 0.713 | 9.96 | 0.708 | 10.69 |
表2 不同归一化植被指数(NDVI)估测阳坡植被盖度的建模和验证结果
Table 2 Modeling and verification results of sunny slope vegetation coverage estimation of different normalized differential vegetation index (NDVI)
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.731 | 8.85 | 0.711 | 9.94 | |
NDVI2 | 803.3 | 671.02 | 0.712 | 9.87 | 0.682 | 10.73 | |
NDVI3 | TM4 | TM3 | 0.713 | 9.96 | 0.708 | 10.69 |
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.746 | 7.09 | 0.732 | 8.95 | |
NDVI2 | 803.3 | 671.02 | 0.723 | 7.84 | 0.706 | 10.47 | |
NDVI3 | TM4 | TM3 | 0.705 | 9.12 | 0.691 | 10.70 |
表3 不同归一化植被指数(NDVI)估测平原植被盖度的建模和验证结果
Table 3 Modeling and verification results of plain vegetation coverage estimation of each normalized differential vegetation index (NDVI)
NIR (nm) | Red (nm) | 建模 Modeling | 验证 Verification | ||||
---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||||
NDVI1 | 823.65 | 701.55 | 0.746 | 7.09 | 0.732 | 8.95 | |
NDVI2 | 803.3 | 671.02 | 0.723 | 7.84 | 0.706 | 10.47 | |
NDVI3 | TM4 | TM3 | 0.705 | 9.12 | 0.691 | 10.70 |
图1 最优高光谱归一化植被指数(NDVI1)的阴坡植被盖度预测值验证结果。RMSE, 均方根误差。
Fig. 1 Verification results of the prediction value of shady slope vegetation coverage by the optimal hyper spectral normalized differential vegetation index (NDVI1). RMSE, root mean square error.
NDVIsoil | NDVIveg | 阴坡 Shady slope | 阳坡 Sunny slope | 平原 Plain | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||||
NDVI1 | -0.10 | 0.64 | 0.656 | 10.38 | 0.730 | 9.15 | 0.758 | 8.06 | ||
NDVI2 | -0.06 | 0.62 | 0.537 | 12.69 | 0.717 | 10.06 | 0.725 | 9.90 | ||
NDVI3 | -0.02 | 0.55 | 0.504 | 14.17 | 0.684 | 11.23 | 0.712 | 10.34 |
表4 不同地形条件下不同归一化植被指数(NDVI)的像元二分模型验证结果
Table 4 Verification results of pixel binary model of different normalized differential vegetation index (NDVI) under different terrain conditions
NDVIsoil | NDVIveg | 阴坡 Shady slope | 阳坡 Sunny slope | 平原 Plain | ||||||
---|---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||||
NDVI1 | -0.10 | 0.64 | 0.656 | 10.38 | 0.730 | 9.15 | 0.758 | 8.06 | ||
NDVI2 | -0.06 | 0.62 | 0.537 | 12.69 | 0.717 | 10.06 | 0.725 | 9.90 | ||
NDVI3 | -0.02 | 0.55 | 0.504 | 14.17 | 0.684 | 11.23 | 0.712 | 10.34 |
图2 基于最优高光谱NDVI(NDVI1)的像元二分模型阴坡植被盖度预测值验证结果。RMSE, 均方根误差。
Fig. 2 Verification results of the prediction value of shady slope vegetation coverage of pixel binary model based on the optimal high spectral NDVI (NDVI1). RMSE, root mean square error.
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 8 | 0.693 | 11.28 | 0.667 | 11.95 | |
一阶微分 FD | 7 | 0.748 | 9.55 | 0.714 | 11.03 | |
二阶微分 SD | 9 | 0.732 | 10.17 | 0.708 | 11.15 | |
包络线去除 CR | 9 | 0.794 | 8.49 | 0.753 | 9.06 |
表5 不同光谱处理方法主成分回归(PCR)模型阴坡植被盖度建模和验证结果
Table 5 Modeling and verification results of shady slope vegetation coverage by principal component regression (PCR) models based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 8 | 0.693 | 11.28 | 0.667 | 11.95 | |
一阶微分 FD | 7 | 0.748 | 9.55 | 0.714 | 11.03 | |
二阶微分 SD | 9 | 0.732 | 10.17 | 0.708 | 11.15 | |
包络线去除 CR | 9 | 0.794 | 8.49 | 0.753 | 9.06 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 10 | 0.739 | 10.26 | 0.641 | 12.76 | |
一阶微分 FD | 12 | 0.766 | 9.14 | 0.685 | 11.57 | |
二阶微分 SD | 8 | 0.775 | 8.90 | 0.639 | 12.88 | |
包络线去除 CR | 10 | 0.753 | 9.67 | 0.650 | 12.34 |
表6 不同光谱处理方法主成分回归(PCR)模型阳坡植被盖度建模和验证结果
Table 6 Modeling and verification results of sunny slope vegetation coverage by principal component regression (PCR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 10 | 0.739 | 10.26 | 0.641 | 12.76 | |
一阶微分 FD | 12 | 0.766 | 9.14 | 0.685 | 11.57 | |
二阶微分 SD | 8 | 0.775 | 8.90 | 0.639 | 12.88 | |
包络线去除 CR | 10 | 0.753 | 9.67 | 0.650 | 12.34 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 7 | 0.745 | 10.06 | 0.703 | 11.68 | |
一阶微分 FD | 10 | 0.759 | 9.71 | 0.726 | 10.04 | |
二阶微分 SD | 11 | 0.681 | 11.93 | 0.659 | 12.48 | |
包络线去除 CR | 9 | 0.730 | 10.51 | 0.717 | 11.45 |
表7 不同光谱处理方法主成分回归(PCR)模型平原植被盖度建模和验证结果
Table 7 Modeling and verification results of plain vegetation coverage by principal component regression (PCR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 7 | 0.745 | 10.06 | 0.703 | 11.68 | |
一阶微分 FD | 10 | 0.759 | 9.71 | 0.726 | 10.04 | |
二阶微分 SD | 11 | 0.681 | 11.93 | 0.659 | 12.48 | |
包络线去除 CR | 9 | 0.730 | 10.51 | 0.717 | 11.45 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 9 | 0.742 | 10.64 | 0.718 | 11.34 | |
一阶微分 FD | 13 | 0.810 | 6.29 | 0.773 | 8.85 | |
二阶微分 SD | 10 | 0.794 | 7.78 | 0.761 | 9.16 | |
包络线去除 CR | 8 | 0.726 | 10.15 | 0.692 | 11.54 |
表8 不同光谱处理方法偏最小二乘回归(PLSR)模型阴坡植被盖度建模和验证结果
Table 8 Modeling and verification results of shady slope vegetation coverage by partial least squares regression (PLSR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 9 | 0.742 | 10.64 | 0.718 | 11.34 | |
一阶微分 FD | 13 | 0.810 | 6.29 | 0.773 | 8.85 | |
二阶微分 SD | 10 | 0.794 | 7.78 | 0.761 | 9.16 | |
包络线去除 CR | 8 | 0.726 | 10.15 | 0.692 | 11.54 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 11 | 0.783 | 8.18 | 0.756 | 9.84 | |
一阶微分 FD | 7 | 0.790 | 7.96 | 0.758 | 9.23 | |
二阶微分 SD | 9 | 0.823 | 6.04 | 0.801 | 7.35 | |
包络线去除 CR | 8 | 0.731 | 10.27 | 0.692 | 11.49 |
表9 不同光谱处理方法偏最小二乘回归(PLSR)模型阳坡植被盖度建模和验证结果
Table 9 Modeling and verification results of sunny slope vegetation coverage by partial least squares regression (PLSR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 11 | 0.783 | 8.18 | 0.756 | 9.84 | |
一阶微分 FD | 7 | 0.790 | 7.96 | 0.758 | 9.23 | |
二阶微分 SD | 9 | 0.823 | 6.04 | 0.801 | 7.35 | |
包络线去除 CR | 8 | 0.731 | 10.27 | 0.692 | 11.49 |
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 10 | 0.765 | 8.90 | 0.743 | 10.21 | |
一阶微分 FD | 8 | 0.804 | 7.22 | 0.809 | 6.95 | |
二阶微分 SD | 7 | 0.836 | 6.13 | 0.760 | 8.57 | |
包络线去除 CR | 11 | 0.773 | 9.15 | 0.739 | 10.38 |
表10 不同光谱处理方法偏最小二乘回归(PLSR)模型平原植被盖度建模和验证结果
Table 10 Modeling and verification results of plain vegetation coverage by partial least squares regression (PLSR) model based on different spectral processing methods
光谱处理方法 Spectrum processing method | 变量个数 Variable number | 建模 Modeling | 验证 Verification | |||
---|---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | |||
无变换数据 NO | 10 | 0.765 | 8.90 | 0.743 | 10.21 | |
一阶微分 FD | 8 | 0.804 | 7.22 | 0.809 | 6.95 | |
二阶微分 SD | 7 | 0.836 | 6.13 | 0.760 | 8.57 | |
包络线去除 CR | 11 | 0.773 | 9.15 | 0.739 | 10.38 |
分解模型 Decomposition model | 验证 Verification | |||||||
---|---|---|---|---|---|---|---|---|
阴坡 Shady slope | 阳坡 Sunny slope | 平原 Plain | ||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
LS | 0.618 | 14.59 | 0.709 | 11.92 | 0.746 | 10.37 | ||
FCLS | 0.653 | 12.87 | 0.761 | 8.45 | 0.852 | 5.86 |
表11 不同地形条件下全受限的LSMM (FCLS)和非受限的LSMM (LS)模型分解的植被分量精度验证结果
Table 11 Accuracy verification results of vegetation component unmixed by full confining linear spectral mixture model (FCLS) and linear spectral mixture model (LS) under different terrain conditions
分解模型 Decomposition model | 验证 Verification | |||||||
---|---|---|---|---|---|---|---|---|
阴坡 Shady slope | 阳坡 Sunny slope | 平原 Plain | ||||||
R2 | RMSE | R2 | RMSE | R2 | RMSE | |||
LS | 0.618 | 14.59 | 0.709 | 11.92 | 0.746 | 10.37 | ||
FCLS | 0.653 | 12.87 | 0.761 | 8.45 | 0.852 | 5.86 |
[1] | Asner GP, Lobell DB (2000). A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing of Environment, 74, 99-112. |
[2] | Blackburn GA (1998). Quantifying chlorophylls and caroteniods at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66, 273-285. |
[3] | Cheng HF, Zhang WB, Chen F (2008). Advances in researches on application of remote sensing method to estimating vegetation coverage. Remote Sensing for Land & Resources, 20(1), 13-18. (in Chinese with English abstract) |
[ 程红芳, 章文波, 陈锋 (2008). 植被覆盖度遥感估算方法研究进展. 国土资源遥感, 20(1), 13-18.] | |
[4] | Drake NA, Mackin S, Settle JJ (1999). Mapping vegetation, soils, and geology in semi-arid shrublands using spectral matching and mixture modeling of SWIR AVIRIS imagery. Remote Sensing of Environment, 68, 12-25. |
[5] | Du MY, Wu WB, Guo ZD (2002). Research on multi-source geographic information based classification of desertification. Journal of Image and Graphics, 7, 740-743. (in Chinese with English abstract) |
[ 杜明义, 武文波, 郭达志 (2002). 多源地学信息在土地荒漠化遥感分类中的应用研究. 中国图形图像学报, 7, 740-743.] | |
[6] | Elvidge CD, Chen ZK (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment, 54, 38-48. |
[7] | Hansen MC, Defries RS, Townshend JRG, Sohlberg R, Dimiceli C, Carroll M (2002). Towards an operational MODIS continuous field of percent tree cover agorithm: examples using AVHRR and MODIS data. Remote Sensing of Environment, 83, 303-319. (in Chinese with English abstract) |
[8] | Kremer RG, Running SW (1993). Community type differentiation using NOAA/AVHRR data within a sagebrush-steppe ecosystem. Remote Sensing of Environment, 46, 311-318. |
[9] | Li XS, Gao ZH, Li ZY, Bai LN, Wang BY (2010). Estimation of sparse vegetation coverage in arid region based on hy- perspectral mixed pixel decomposition. Chinese Journal of Applied Ecology, 21, 152-158. (in Chinese with English abstract) |
[ 李晓松, 高志海, 李增元, 白黎娜, 王琫瑜 (2010). 基于高光谱混合像元分解的干旱地区稀疏植被覆盖度优测. 应用生态学报, 21, 152-158.] | |
[10] | Li XS, Li ZY, Gao ZH, Bai LN, Wang BY (2011). Estimation of vegetation cover in desertified regions from hyperion imageries using NDVI and partial least squares regression. Journal of Desert Research, 31, 162-167. (in Chinese with English abstract) |
[ 李晓松, 李增元, 高志海, 白黎娜, 王琫瑜 (2011). 基于NDVI与偏最小二乘回归的荒漠化地区植被覆盖度高光谱遥感优测. 中国沙漠, 31, 162-167.] | |
[11] | Thenkabail PS, Smith RB, de Pauw E (2000). Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing Environment, 71, 158-182. |
[12] | Townshend JRG, Justice CO (1986). Analysis of dynamics of African vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 12, 1224-1242. |
[13] | Yang JH, Ci LJ (2006). Progress on remote sensing-based desertification assessment. World Forestry Research, 19(6), 11-17. (in Chinese with English abstract) |
[ 杨晓晖, 慈龙骏 (2006). 基于遥感技术的荒漠化评价研究进展. 世界林业研究, 19(6), 11-17.] |
[1] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 张智洋 赵颖慧 甄贞. 1986-2022年松花江流域陆地生态系统碳储量动态监测[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[4] | 盘远方, 潘良浩, 邱思婷, 邱广龙, 苏治南, 史小芳, 范航清. 中国沿海红树林树高变异与环境适应机制[J]. 植物生态学报, 2024, 48(4): 483-495. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[7] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[8] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[9] | 李安艳, 黄先飞, 田源斌, 董继兴, 郑菲菲, 夏品华. 贵州草海草-藻型稳态转换过程中叶绿素a的变化及其影响因子[J]. 植物生态学报, 2023, 47(8): 1171-1181. |
[10] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[11] | 钟姣, 姜超, 刘世荣, 龙文兴, 孙建新. 海南长臂猿食源植物的潜在物种丰富度分布格局[J]. 植物生态学报, 2023, 47(4): 491-505. |
[12] | 贺洁, 何亮, 吕渡, 程卓, 薛帆, 刘宝元, 张晓萍. 2001-2020年黄土高原光合植被时空变化及其驱动机制[J]. 植物生态学报, 2023, 47(3): 306-318. |
[13] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[14] | 陈奕竹, 郎伟光, 陈效逑. 中国北方树木秋季物候的过程模拟及其区域分异归因[J]. 植物生态学报, 2022, 46(7): 753-765. |
[15] | 熊博文, 李桐, 黄樱, 鄢春华, 邱国玉. 不同参考温度取值对三温模型反演植被蒸腾精度的影响[J]. 植物生态学报, 2022, 46(4): 383-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19