植物生态学报 ›› 2008, Vol. 32 ›› Issue (3): 681-689.DOI: 10.3773/j.issn.1005-264x.2008.03.018
张亚黎1, 罗宏海1, 张旺锋1,*(), 樊大勇2, 何在菊1, 白慧东1
收稿日期:
2007-06-05
接受日期:
2007-08-23
出版日期:
2008-06-05
发布日期:
2008-05-30
通讯作者:
张旺锋
作者简介:
*E-mail:Zhwf-agr@shzu.edu.cn基金资助:
ZHANG Ya-Li1, LUO Hong-Hai1, ZHANG Wang-Feng1,*(), FAN Da-Yong2, HE Za-Ju1, BAI Hui-Dong1
Received:
2007-06-05
Accepted:
2007-08-23
Online:
2008-06-05
Published:
2008-05-30
Contact:
ZHANG Wang-Feng
摘要:
为了探讨水分亏缺对叶片光合机构光化学量子效率和非辐射热耗散的影响,在新疆气候生态条件下,采用膜下滴灌技术精确地控制滴水量,实现不同程度的土壤水分亏缺,系统测定了不同水分条件下陆地棉(Gossypium hirsutum)叶片叶绿素荧光参数、叶片接受光量子通量密度(Photon flux density, PFD)、叶片温度(Leaf temperature, Tleaf)以及叶片水势和叶绿素含量的变化。研究表明:轻度水分亏缺(田间持水量的55%~60%)叶片接受的PFD与对照(田间持水量的70%~75%)无差异,Tleaf略高于对照;中度水分亏缺(田间持水量的40%~45%)在12∶00(北京时间,下同)以前叶片接受的PFD和对照无差异,随后显著低于对照,Tleaf在整个日变化中均高于对照。不同水分处理对黎明前叶片PSⅡ最大光化学效率(The maximum photochemical efficiency of PSⅡ,Fv/Fm)没有影响。轻度水分亏缺叶片的实际光化学效率(PSⅡ photochemical efficiency,ΦPSⅡ)、表观电子传递速率(Electron transport rate, ETR)和光化学猝灭系数(Photochemical quenching, qp)的日变化与对照基本一致,非光化学猝灭系数(Non-photochemical quenching, NPQ)在12∶00以前和14∶00以后显著低于对照,在12∶00~14∶00和对照无差异。中度水分亏缺叶片的ΦPSⅡ、ETR和qp在12∶00才显著降低,此后由于叶片出现暂时萎焉、下垂,所接受的PFD减弱,叶绿素荧光参数缓慢恢复,且高于对照;NPQ在12∶00以前显著高于对照, 14∶00略高于对照,此后低于对照。水分亏缺导致中午叶片水势和叶绿素a、叶绿素b含量降低,但叶绿素a/b比值升高。因此,在田间条件下,陆地棉可通过叶片萎焉下垂运动和叶绿素含量的变化调节叶片对光能的捕获,以及通过光合电子传递、热耗散水平的变化来适应水分亏缺的逆境。在中度水分亏缺条件下,陆地棉叶片萎焉下垂运动的被动调节减少了过量激发能对光合机构的伤害,保证了光合机构的正常运转。
张亚黎, 罗宏海, 张旺锋, 樊大勇, 何在菊, 白慧东. 土壤水分亏缺对陆地棉花铃期叶片光化学活性和激发能耗散的影响. 植物生态学报, 2008, 32(3): 681-689. DOI: 10.3773/j.issn.1005-264x.2008.03.018
ZHANG Ya-Li, LUO Hong-Hai, ZHANG Wang-Feng, FAN Da-Yong, HE Za-Ju, BAI Hui-Dong. EFFECTS OF WATER DEFICIT ON PHOTOCHEMICAL ACTIVITY AND EXCITATION ENERGY DISSIPATION OF PHOTOSYNTHETIC APPARATUS IN COTTON LEAVES DURING FLOWERING AND BOLL-SETTING STAGES. Chinese Journal of Plant Ecology, 2008, 32(3): 681-689. DOI: 10.3773/j.issn.1005-264x.2008.03.018
图2 水分亏缺对陆地棉叶片接受PFD (a)和Tleaf (b)的日变化的影响(平均值±标准误差) PFD:光量子通量密度 Photon flux density Tleaf:叶片温度Leaf temperature
Fig.2 Effects of water deficit on the diurnal variations of PFD (a) and Tleaf (b) in leaves of cotton (Mean ± SE)
图3 水分亏缺对陆地棉叶片黎明前Fv/Fm的影响(平均值±标准误差) Fv/Fm:PSⅡ最大光化学效率 The maximum photochemical efficiency of PSⅡ
Fig.3 Effects of water deficit on the pre-dawn Fv/Fm in leaves of cotton (Mean ± SE)
图4 水分亏缺对陆地棉叶片ΦPSⅡ (a)和ETR (b)日变化的影响(平均值±标准误差) ΦPSⅡ:PSⅡ光化学效率 PSⅡ photochemical efficiency ETR:表观电子传递速率Electron transport rate
Fig.4 Effects of water deficit on the diurnal variations of ΦPSⅡ (a) and ETR (b) in leaves of cotton (Mean ± SE)
图5 水分亏缺对陆地棉叶片qp (a)和NPQ (b)日变化的影响(平均值 ± 标准误差) qp:光化学猝灭系数Photochemical quenching NPQ:非光化学猝灭系数Non-photochemical quenching
Fig.5 Effects of water deficit on the diurnal variations of qp (a) and NPQ (b) in leaves of cotton (Mean ± SE)
图6 水分亏缺对陆地棉中午叶片水势(Ψmidday)的影响(平均值±标准误差) 不同字母表示差异达到显著水平(p<0.05) Different letters indicate significant differences at p<0.05
Fig.6 Effects of water deficit on the water potential at midday (Ψmidday) in leaves of cotton (Mean ± SE)
图7 水分亏缺对陆地棉叶片叶绿素含量和Chl a/b比值的影响(平均值±标准误差) 不同字母表示差异达到显著水平(p<0.05)
Fig.7 Effects of water deficit on the chlorophyll content and Chl a/b ratio in leaves of cotton (Mean ± SE) Different letters indicate significant differences at p<0.05
[1] | Anderson JM, Park YI, Chow WS (1997). Photoinactivation and photoprotection of photosystem Ⅱ in nature. Physiologia Plantarum, 100,214-223. |
[2] | Badger MR (1985). Photosynthetic oxygen exchange. Annual Review of Plant Physiology, 36,27-53. |
[3] | Badger MR, Caemmerer S, Ruuska S, Nakano H (2000). Electron flow to oxygen in higher plants and algae: rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Biological Sciences, 355,1433-1446. |
[4] |
Biehler K, Fock H (1996). Evidence for the contribution of the Mehler-peroxidase reaction in dissipating excess electrons in drought-stressed wheat. Plant Physiology, 112,265-272.
URL PMID |
[5] |
Bilger W, Bjørkman O (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25,173-185.
DOI URL PMID |
[6] |
Bjørkman O, Demmig B (1987). 77 K among vascular plants of diverse origins. Planta, 170,489-504.
URL PMID |
[7] | Chaves MM (1991). Effects of water deficits on carbon assimilation. Journal of Experimental Botany, 42,1-16. |
[8] |
Cornic G, Fresneau C (2002). Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem Ⅱ activity during a mild drought. Annals of Botany, 89,887-894.
DOI URL PMID |
[9] | Demmig-Adams B, Adams WW Ⅲ, Baker DH, Logan BA, Bowling DR, Verhoeven AS (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum, 98,253-264. |
[10] |
Farage PK, Long SP (1991). The occurrence of photoinhibition in an over-wintering crop of oil-seed rape ( Brassica napus L.) and its correlation with changes in crop growth . Planta, 185,279-286.
DOI URL PMID |
[11] | Flexas J, Bota J, Escalona MJ, Sampol B, Medrano H (2002). Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Functional Plant Biology, 29,461-471. |
[12] |
Genty B, Briantais JM, Silva JBVD (1987). Effects of drought on primary photosynthetic processes of cotton leaves. Plant Physiology, 83,360-364.
DOI URL PMID |
[13] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990,87-92. |
[14] | Guo LW (郭连旺), Xu DQ (许大全), Shen YG (沈允钢) (1994). The causes of midday decline of photosynthesis efficiency in cotton leaves under field conditions. Journal of Plant Physiology and Molecular Biology (植物生理与分子生物学学报), 20,360-366. (in Chinese with English abstract) |
[15] | Guo LW (郭连旺), Xu DQ (许大全), Shen YG(沈允钢) (1995). The relationship between photoinhibition and photorespiration of leaves in cotton. Chinese Science Bulletin (科学通报), 40,1885-1888. (in Chinese) |
[16] | Haupt-Herting S, Fock HP (2002). Oxygen exchange in relation to carbon assimilation in water-stressed leaves during photosynthesis. Annals of Botany, 89,851-859. |
[17] |
Heber U, Walker D (1992). Concerning a dual functions of coupled cyclic electron transport in leaves. Plant Physiology, 100,1621-1626.
DOI URL PMID |
[18] | Hsiao TC (1973). Plant responses to water stress. Annual Review of Plant Physiology, 24,519-570. |
[19] | Inamullah, Isoda A (2005). Adaptive responses of soybean and cotton to water stress. Ⅱ. Changes in CO 2 assimilation rate, chlorophyll fluorescence and photochemical reflectance index in relation to leaf temperature . Plant Production Science, 8,131-138. |
[20] | Jones RJ, Kildea T, Hoegh-Guldberg O (1999). PAM chlorophyll fluorometry: a new in situ technique for examine the effects of cyanide from cyanide fishing . Marine Pollution Bulletin, 20,864-874. |
[21] | Kitao M, Lei TT, Koike T, Tobita H, Maruyama Y (2003). Higher electron transport rate observed at low intercellular CO 2 concentration in long-term drought-acclimated leaves of Japanese mountain birch (Betula ermanii). Physiologia Plantarum, 18,406-413. |
[22] |
Kitao M, Lei TT (2007). Circumvention of over-excitation of PSⅡ by maintaining electron transport rate in leaves of four cotton genotypes developed under long-term drought. Plant Biology, 9,69-76.
DOI URL PMID |
[23] | Krause GH, Weis E (1991). Chlorophyll fluorescence and photosynthesis: the basics. Annual Review of Plant Physiology and Plant Molecular Biology, 42,301-313. |
[24] | Kuang TY (匡廷云), Lu CM (卢从明), Li LB (李良璧) (2004). Photosynthetic Efficiency of Crops and Its Regulations (作物光能利用效率与调控). Shandong Science and Technology Press, Ji'nan, 29-57. (in Chinese) |
[25] | Long SP, Humphries S, Falkowski PG (1994). Photoinhibition of photosynthesis in nature. Annual Review of Plant Physiology and Plant Molecular Biology, 45,633-662. |
[26] | Lu CM, Zhang JH (1999). Effects of water stress on photosystem Ⅱ photochemistry and its thermostability in wheat plants. Journal of Experimental Botany, 50,1199-1206. |
[27] | Mcminn A, Ryan K, Gademann R (2003). Diurnal changes in photosynthesis of Antarctic fast ice algal communities determined by pulse amplitude modulation fluorometry. Marine Biology, 143,359-367. |
[28] |
Miller CS (1975). Short interval leaf movements of cotton. Plant Physiology, 55,562-566.
URL PMID |
[29] |
gren E, Rosenqvist E (1992). On the significance of photoinhibition of photosynthesis in the field and its generality among species. Photosynthesis Research, 33,63-71.
DOI URL PMID |
[30] |
Park YI, Chow WS, Osmond CB, Anderson JM (1996). Electron transport to oxygen mitigates against the photoinactivation of photosystem Ⅱ in vivo. Photosynthesis Research, 50,23-32.
URL PMID |
[31] |
Perry SW, Krieg DR, Hutmacher RB (1983). Photosynthetic rate control in cotton. Plant Physiology, 73,662-665.
DOI URL PMID |
[32] |
Scheuermann R, Biehler K, Stuhlfauth T, Fock HP (1991). Simultaneous gas exchange and fluorescence measurements indicate differences in response of sunflower, bean and maize to water stress. Photosynthesis Research, 27,189-197.
DOI URL PMID |
[33] | Schreiber U, Bilger W, Neubauer C (1994). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis . In: Schulze ED, Caldwell MM eds. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin. |
[34] | Thanisawanyangkura S, Sinoquet H, Rivet P, Cretenet M, Jallas E (1997). Leaf orientation and sunlit leaf area distribution in cotton. Agricultural and Forest Meteorology, 86,1-15. |
[35] | Turner NC, Hearn AB, Begg JE, Constable GA (1986). Cotton ( Gossypium hirsutum L.): physiological and morphological response to water deficits and their relationship to yield . Field Crops Research, 14,153-170. |
[36] | Wang CY, Isoda A, Li ZY, Wang PW (2004). Transpiration and leaf movement of cotton cultivars grown in the field under arid conditions. Plant Production Science, 7,266-270. |
[37] | Williams WE, Gorton HL, Witiak SM (2003). Chloroplast movements in the field. Plant, Cell and Environment, 26,2005-2014. |
[38] | Xu DQ (许大全), Zhang YZ (张玉忠), Zhang RX (张荣铣) (1992). Photoinhibition of photosynthesis in plants. Plant Physiology Communications (植物生理学通讯), 28,237-243. (in Chinese) |
[39] | Yang L (杨玲), Wang ST (王韶唐) (1999). Adaxial and abaxial characters in relation to physiological significance of advanced paraheliotropic orientation of soybean leaflets. Acta Agronomica Sinica (作物学报), 25,86-91. (in Chinese with English abstract) |
[40] | Yu XG (俞希根), Sun JS (孙景生), Xiao JF (肖俊夫), Liu ZG (刘祖贵), Zhang JY (张寄阳) (1999). A study on drought indices and lower limit of suitable soil moisture of cotton. Acta Gossypii Sinica (棉花学报), 11,35-38. (in Chinese with English abstract) |
[41] | Zhao GD (赵广东), Liu SR (刘世荣), Ma QL(马全林) (2003). Ecophysiological responses of two xerophytes Atraphaxis frutescens and Elaeagnus angustifolia to the change of groundwater depth in arid area. Ⅰ. Changes in leaf nutrient, chlorophyll, soluble sugar and starch contents . Acta Phytoecologica Sinica (植物生态学报), 27,228-234. (in Chinese with English abstract) |
[42] | Zhang SR (张守仁), Gao RF (高荣孚) (2001). Light induces leaf orientation and chloroplast movements of hybrid poplar clones. Acta Ecologica Sinica (生态学报), 21,68-74. (in Chinese with English abstract) |
[43] | Zhang QD (张其德) (1985). Several methods for the determination of chlorophyll. Chinese Bulletin of Botany (植物学通报), 3,60-64. (in Chinese) |
[1] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[2] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[3] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[4] | 冯旭飞, 雷长英, 张玉洁, 向导, 杨明凤, 张旺锋, 张亚黎. 棉花花铃期叶片氮分配对光合氮利用效率的影响[J]. 植物生态学报, 2023, 47(11): 1600-1610. |
[5] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[6] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[7] | 薛峰, 江源, 董满宇, 王明昌, 丁新原, 杨显基, 崔明皓, 康慕谊. 不同去趋势方法对基于Dendrometer数据的茎干水分动态分析的影响——以白扦为例[J]. 植物生态学报, 2021, 45(8): 880-890. |
[8] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[9] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[10] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
[11] | 李旭, 吴婷, 程严, 谭钠丹, 蒋芬, 刘世忠, 褚国伟, 孟泽, 刘菊秀. 南亚热带常绿阔叶林4个树种对增温的生理生态适应能力比较[J]. 植物生态学报, 2020, 44(12): 1203-1214. |
[12] | 刘校铭, 杨晓芳, 王璇, 张守仁. 暖温带落叶阔叶林辽东栎和五角枫生长和光合生理生态特征对模拟氮沉降的响应[J]. 植物生态学报, 2019, 43(3): 197-207. |
[13] | 李鑫豪, 闫慧娟, 卫腾宙, 周文君, 贾昕, 查天山. 油蒿资源利用效率在生长季的相对变化及对环境因子的响应[J]. 植物生态学报, 2019, 43(10): 889-898. |
[14] | 张娜, 朱阳春, 李志强, 卢信, 范如芹, 刘丽珠, 童非, 陈静, 穆春生, 张振华. 淹水和干旱生境下铅对芦苇生长、生物量分配和光合作用的影响[J]. 植物生态学报, 2018, 42(2): 229-239. |
[15] | 李群, 赵成章, 赵连春, 王建良, 张伟涛, 姚文秀. 秦王川盐沼湿地芦苇比叶面积与叶片热耗散的关联性分析[J]. 植物生态学报, 2017, 41(9): 985-994. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19