植物生态学报 ›› 2016, Vol. 40 ›› Issue (6): 585-593.DOI: 10.17521/cjpe.2015.0292
张艳婷1, 张建军1,,A;*(), 王建修2, 吴晓洪3, 陈宝强1, 李鹏飞1, 王志臻1
收稿日期:
2015-08-11
接受日期:
2016-03-26
出版日期:
2016-06-10
发布日期:
2016-06-15
通讯作者:
张建军
基金资助:
Yan-Ting ZHANG1, Jian-Jun ZHANG1,*(), Jian-Xiu WANG2, Xiao-Hong WU3, Bao-Qiang CHEN1, Peng-Fei LI1, Zhi-Zhen WANG1
Received:
2015-08-11
Accepted:
2016-03-26
Online:
2016-06-10
Published:
2016-06-15
Contact:
Jian-Jun ZHANG
摘要:
中山杉(Taxodium ‘Zhongshansha’)具有极强的耐淹性, 但其耐淹机理仍没有明确。该研究以‘中山杉118’ (Taxodium ‘Zhongshansha 118’)幼苗为对象, 在经过93天不同水淹处理(对照、水浸、浅淹、深淹)后测定中山杉叶片和根系的无氧呼吸酶活性、淀粉及可溶性糖含量、生物量以及根系活力, 从能量消耗的角度初步探索了中山杉的耐淹性。结果表明: 长期水淹使中山杉叶片与根系中3种无氧呼吸酶(乙醇脱氢酶、丙酮酸脱羧酶、乳酸脱氢酶)活性显著增加, 且叶片与根系的乙醇脱氢酶活性均高于乳酸脱氢酶活性, 中山杉的根系和叶片是通过加强以酒精发酵为主的无氧呼吸适应长期缺氧环境; 不同水淹处理的叶片中3种无氧呼吸酶活性均高于根系, 叶片对缺氧环境更加敏感; 中山杉叶片和根系淀粉、可溶性糖含量均随水淹深度的增加显著增加, 根系淀粉含量显著高于叶片, 可溶性糖含量低于叶片; 中山杉根系淀粉含量高是其能够长期忍受水淹的重要原因, 且中山杉适应长期水淹的策略为忍耐型; 经受长期水淹后中山杉根茎结合部长出气生根及茎基部膨大, 同时根系外壁的木质化能将根系与外部水淹环境隔离, 具有很强的耐淹性, 可作为湿地生态修复、消落带生物治理的优良植物材料。
张艳婷, 张建军, 王建修, 吴晓洪, 陈宝强, 李鹏飞, 王志臻. 长期水淹对‘中山杉118’幼苗呼吸代谢的影响. 植物生态学报, 2016, 40(6): 585-593. DOI: 10.17521/cjpe.2015.0292
Yan-Ting ZHANG, Jian-Jun ZHANG, Jian-Xiu WANG, Xiao-Hong WU, Bao-Qiang CHEN, Peng-Fei LI, Zhi-Zhen WANG. Effects of long-term flooding on respiratory metabolism of Taxodium ‘Zhongshansha 118’ seedlings. Chinese Journal of Plant Ecology, 2016, 40(6): 585-593. DOI: 10.17521/cjpe.2015.0292
处理 Treatment | 根质量 Root mass (g) | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | 根系分形维数 Root fractal dimension |
---|---|---|---|---|
对照 Control | 10.23 ± 3.03a | 873 ± 101a | 256 ± 87a | 1.67 ± 0.05a |
水浸 Waterlogging | 7.59 ± 1.21a | 666 ± 105b | 227 ± 94a | 1.60 ± 0.09a |
浅淹 Partial submergence | 7.89 ± 0.94a | 655 ± 114b | 236 ± 59a | 1.63 ± 0.04a |
深淹 Deep submergence | 5.26 ± 0.54a | 508 ± 99c | 164 ± 87a | 1.61 ± 0.07a |
表1 水淹93天后中山杉地下部分生物量(平均值±标准偏差)
Table 1 The underground part biomass of Taxodium ‘Zhongshansha 118’ after 93 d flooding (mean ± SD)
处理 Treatment | 根质量 Root mass (g) | 根长 Root length (cm) | 根表面积 Root surface area (cm2) | 根系分形维数 Root fractal dimension |
---|---|---|---|---|
对照 Control | 10.23 ± 3.03a | 873 ± 101a | 256 ± 87a | 1.67 ± 0.05a |
水浸 Waterlogging | 7.59 ± 1.21a | 666 ± 105b | 227 ± 94a | 1.60 ± 0.09a |
浅淹 Partial submergence | 7.89 ± 0.94a | 655 ± 114b | 236 ± 59a | 1.63 ± 0.04a |
深淹 Deep submergence | 5.26 ± 0.54a | 508 ± 99c | 164 ± 87a | 1.61 ± 0.07a |
处理 Treatment | 株高 Stem height (cm) | 地径 Ground diameter (cm) | 地上部分鲜质量 Fresh mass of overground part (g) | 根质量/地上部分鲜质量 Root mass/fresh mass of overground part | |||
---|---|---|---|---|---|---|---|
水淹前 Before flooding | 水淹后 After flooding | 水淹前 Before flooding | 水淹后 After flooding | 水淹后 After flooding | |||
对照 Control | 47 ± 3.6a | 48 ± 4.2a | 0.65 ± 0.02a | 0.61 ± 0.06a | 35.78 ± 9.71a | 0.29a | |
水浸 Waterlogging | 39 ± 4.1a | 34 ± 5.5b | 0.58 ± 0.02a | 0.55 ± 0.02b | 29.56 ± 6.45b | 0.26a | |
浅淹 Partial submergence | 47 ± 3.9a | 38 ± 2.1b | 0.62 ± 0.03a | 0.57 ± 0.04b | 18.21 ± 2.49c | 0.43b | |
深淹 Deep submergence | 38 ± 6.8a | 31 ± 3.3b | 0.62 ± 0.04a | 0.53 ± 0.09b | 12.99 ± 3.66d | 0.33c |
表2 水淹93天后中山杉地上部分生物量(平均值±标准偏差)
Table 2 Overground part biomass of Taxodium ‘Zhongshansha 118’ after 93 d flooding (mean ± SD)
处理 Treatment | 株高 Stem height (cm) | 地径 Ground diameter (cm) | 地上部分鲜质量 Fresh mass of overground part (g) | 根质量/地上部分鲜质量 Root mass/fresh mass of overground part | |||
---|---|---|---|---|---|---|---|
水淹前 Before flooding | 水淹后 After flooding | 水淹前 Before flooding | 水淹后 After flooding | 水淹后 After flooding | |||
对照 Control | 47 ± 3.6a | 48 ± 4.2a | 0.65 ± 0.02a | 0.61 ± 0.06a | 35.78 ± 9.71a | 0.29a | |
水浸 Waterlogging | 39 ± 4.1a | 34 ± 5.5b | 0.58 ± 0.02a | 0.55 ± 0.02b | 29.56 ± 6.45b | 0.26a | |
浅淹 Partial submergence | 47 ± 3.9a | 38 ± 2.1b | 0.62 ± 0.03a | 0.57 ± 0.04b | 18.21 ± 2.49c | 0.43b | |
深淹 Deep submergence | 38 ± 6.8a | 31 ± 3.3b | 0.62 ± 0.04a | 0.53 ± 0.09b | 12.99 ± 3.66d | 0.33c |
图2 长期水淹胁迫对中山杉幼苗根系活力的影响(平均值±标准偏差)。不同小写字母表示差异显著 (p < 0.05)。
Fig. 2 Effect on root activity of Taxodium ‘Zhongshansha 118’ during long-term flooding (mean ± SD). Different lowercase letters indicate significant difference (p < 0.05).
图3 长期水淹胁迫对中山杉幼苗无氧呼吸酶活性的影响(平均值±标准偏差)。不同大写字母表示组间差异显著(p < 0.05), 不同小写字母表示组内差异显著(p < 0.05)。
Fig. 3 Effect on anaerobic respiration enzymes of Taxodium ‘Zhongshansha 118’ during long-term flooding (mean ± SD). Capital letters indicate significant difference among groups (p < 0.05) and lowercase letters indicate significant difference in intra-group (p < 0.05).
图4 长期水淹胁迫对中山杉幼苗可溶性糖与淀粉含量的影响(平均值±标准偏差)。不同大写字母表示组间差异显著(p < 0.05), 不同小写字母表示组内差异显著(p < 0.05)。
Fig. 4 Effect on soluble sugar and starch of Taxodium ‘Zhongshansha 118’ during long-term flooding (mean ± SD). Capital letters indicate significant difference among groups (p < 0.05) and lowercase letters indicate significant difference in intra-group (p < 0.05).
处理 Treatment | 淀粉+可溶性糖 Starch + soluble sugar | 根/(根+叶) Root/(root + leaf) (%) | |||
---|---|---|---|---|---|
根系 Root | 叶片 Leaf | 淀粉 Starch | 可溶性糖 Soluble sugar | ||
对照 Control | 65.38 ± 3.01a | 41.07 ± 2.83a | 62.42 ± 2.40a | 39.88 ± 3.80a | |
水浸 Waterlogging | 78.85 ± 4.57b | 47.41 ± 3.10b | 62.78 ± 2.30a | 47.56 ± 3.10b | |
浅淹 Partial submergence | 87.83 ± 2.34c | 55.86 ± 3.75c | 61.82 ± 2.40a | 47.29 ± 2.30b | |
深淹 Deep submergence | 95.71 ± 4.58d | 68.71 ± 4.21d | 58.76 ± 0.10a | 46.73 ± 3.20b |
表3 长期水淹对中山杉可溶性糖与淀粉转化的影响(平均值±标准偏差)
Table 3 Effect on soluble sugar and starch conversion of Taxodium ‘Zhongshansha 118’ during long-term flooding (mean ± SD)
处理 Treatment | 淀粉+可溶性糖 Starch + soluble sugar | 根/(根+叶) Root/(root + leaf) (%) | |||
---|---|---|---|---|---|
根系 Root | 叶片 Leaf | 淀粉 Starch | 可溶性糖 Soluble sugar | ||
对照 Control | 65.38 ± 3.01a | 41.07 ± 2.83a | 62.42 ± 2.40a | 39.88 ± 3.80a | |
水浸 Waterlogging | 78.85 ± 4.57b | 47.41 ± 3.10b | 62.78 ± 2.30a | 47.56 ± 3.10b | |
浅淹 Partial submergence | 87.83 ± 2.34c | 55.86 ± 3.75c | 61.82 ± 2.40a | 47.29 ± 2.30b | |
深淹 Deep submergence | 95.71 ± 4.58d | 68.71 ± 4.21d | 58.76 ± 0.10a | 46.73 ± 3.20b |
[1] | Akman M, Bhikharie AV, McLean EH, Boonman A, Visser EJ, Schranz ME (2012). Wait or escape? Contrasting submergence tolerance strategies of Rorippa amphibia, Rorippa sylvestris and their hybrid.Annals of botany, 109, 1263-1276. |
[2] | Angelov MN, Sung S-JS, Doong RL, Harms WR, Kormanik PP, Clanton C, Black J (1996). Long- and short-term flooding effects on survival and sink—Source relationships of swamp-adapted tree species.Tree Physiology, 16, 477-484. |
[3] | Botondi R, Russo V, Mencarelli F (2012). Anaerobic metabolism during short and long term storage of kiwifruit.Postharvest Biology and Technology, 64, 83-90. |
[4] | Candan N, Tarhan L (2012). Tolerance or sensitivity responses of Mentha pulegium to osmotic and waterlogging stress in terms of antioxidant defense systems and membrane lipid peroxidation.Environmental and Experimental Botany, 75, 83-88. |
[5] | Castonguay Y, Nadeau P, Simard RR (1993). Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa.Plant, Cell & Environment, 16, 695-702. |
[6] | Crawford RM (2003). Seasonal differences in plant responses to flooding and anoxia.Canadian Journal of Botany, 81, 1224-1246. |
[7] | Cuiying L, Tuanhui B, Fengwang M, Mingyu H (2010). Hypoxia tolerance and adaptation of anaerobic respiration to hypoxia stress in two Malus species.Scientia Horticulturae, 124, 274-279. |
[8] | de Oliveira VC, Joly CA (2009). Flooding tolerance of Calophyllum brasiliense Camb. (Clusiaceae): Morphological, physiological and growth responses.Trees, 24, 185-193. |
[9] | Fan DY, Xiong GM, Zhang AY, Liu X, Xie ZQ, Li ZJ (2015). Effect of water-lever regulation on species selection for ecological restoration practice in the water-level fluctuation zone of Three Gorges Reservoir.Chinese Journal of Plant Ecology, 39, 416-432. (in Chinese with English abstract)[樊大勇, 熊高明, 张爱英, 刘曦, 谢宗强, 李兆佳 (2015). 三峡库区水位调度对消落带生态修复中物种筛选实践的影响. 植物生态学报, 39, 416-432.] |
[10] | Ferner E, Rennenberg H, Kreuzwieser J (2012). Effect of flooding on C metabolism of flood-tolerant (Quercus robur) and non-tolerant (Fagus sylvatica) tree species.Tree Physiology, 32, 135-145. |
[11] | Gravatt DA, Kirby CJ (1998). Patterns of photosynthesis and starch allocation in seedlings of four bottomland hardwood tree species subjected to flooding.Tree Physiology, 18, 411-417. |
[12] | Hua JF, Hu LJ, Du LJ, Xu JH, Yin YL (2011a). Effects of soil water conditions on photosynthetic characteristics of Taxodium ‘Zhongshanshan 406’.Ecology and Environmental Sciences, 20(8-9), 1221-1225. (in Chinese with English abstract)[华建峰, 胡李娟, 杜丽娟, 徐建华, 殷云龙 (2011). 水分条件对中山杉406光合特性的影响. 生态环境学报, 20(8-9), 1221-1225.] |
[13] | Hua JF, Yin YL, Zhou DQ, Yu CG, Xu JH (2011b). Effects of soil water conditions on growth and physiology of Taxodium ‘Zhongshanshan 406’.Journal of Ecology and Rural Environment, 27, 50-54. (in Chinese with English abstract)[华建峰, 殷云龙, 周冬琴, 於朝广, 徐建华 (2011). 不同水分条件对中山杉406生长与生理的影响. 生态与农村环境学报, 27, 50-54.] |
[14] | Jackson MB, Ram PC (2003). Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence.Annals of botany, 91, 227-241. |
[15] | Johnson JR, Cobb BC, Drew MC (1994). Hypoxic induction of anoxia tolerance in roots of Adh1 null Zea mays L.Plant Physiology, 105, 61-67. |
[16] | King AR, Arnold MA (2012). Developmental stage and growth regulator concentration differentially affect vegetative propagation of select clones of Taxodium Rich.Hortscience, 47, 238-248. |
[17] | Liu Y (2013). Cultivation and management of Ascendens mucronatum in middle and lower Yangtze River.Modern Horticulture, (10), 22-24. (in Chinese with English abstract)[刘艳 (2013). 论长江中下游中山杉的栽培与管理. 现代园艺, (10), 22-24.] |
[18] | Liu Y, Willison JH (2013). Prospects for cultivating white mulberry (Morus alba) in the drawdown zone of the Three Gorges Reservoir, China.Environmental Science and Pollution Research International, 20, 7142-7151. |
[19] | Liu Z, Cheng R, Xiao W, Guo Q, Wang Y, Wang N, Wang Y (2015). Leaf gas exchange, chlorophyll fluorescence, non-structural carbohydrate content and growth responses of Distylium chinense during complete submergence and subaerial re-emergence.Aquatic Botany, 124, 70-77. |
[20] | Molina-Montenegro MA, Gallardo-Cerda J, Flores TSM, Atala C (2012). The trade-off between cold resistance and growth determines the Nothofagus pumilio treeline.Plant Ecology, 213, 133-142. |
[21] | Oren R, Sperry JS, Ewers BE, Pataki DE, Phillips N, Megonigal JP (2001). Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a flooded Taxodium distichum L. forest: Hydraulic and non-hydraulic effects.Oecologia, 126, 21-29. |
[22] | Parvin D, Karmoker JL (2013). Effects of waterlogging on ion accumulation and sugar, protein and proline contents in Corchorus capsularis.Bangladesh Journal of Botany, 42, 55-63. |
[23] | Rivoal J, Hanson AD (1994). Metabolic control of anaerobic glycolysis—Overexpression of lactate dehydrogenase in transgenic tomato root supports the Davies-Roberts hypothesis and points to a critical role for lactate secretion.Plant Physiology, 106, 1179-1185. |
[24] | Sairam, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC (2008). Physiology and biochemistry of waterlogging tolerance in plants.Biologla Plantarum, 52, 401-412. |
[25] | Sauter M (2013). Root responses to flooding.Current Opinion in Plant Biology, 16, 282-286. |
[26] | Shi MF, Zeng B, Shen JH, Lei ST, Zhu Z, Liu JH (2010). A review of the correlation of flooding adaptability and carbohydrates in plants. Chinese Journal of Plant Ecology, 34, 855-866. (in Chinese with English abstract)[施美芬, 曾波, 申建红, 类淑桐, 朱智, 刘建辉 (2010). 植物水淹适应与碳水化合物的相关性. 植物生态学报, 34, 855-866.] |
[27] | Tang LZ, Huang BL, Haibara K, Toda H (2008) Ecologicaladaptation mechanisms of roots to flooded soil and respiration characteristics of knee roots of Taxodium ascendens. Journal of Plant Ecology (Chinese Version), 32, 1258-1267. (in Chinese with English abstract)[唐罗忠, 黄宝龙, 生原喜久雄, 户田浩人 (2008). 高水位条件下池杉根系的生态适应机制和膝根的呼吸特性. 植物生态学报, 32, 1258-1267.] |
[28] | Visser E, Bogemann GM, Steeg H, Pierik R, Blom C (2000). Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation.New Phytologist, 148, 93-103. |
[29] | Voesenek LA, Bailey-Serres J (2013). Flooding tolerance: O2 sensing and survival strategies.Current Opinion in Plant Biology, 16, 647-653. |
[30] | Wang B, Jiang Y, Wang MC, Dong MY, Zhang YP (2015). Variations of non-structural carbohydrate concentration of Picea meyeri at different elevations of Luya Mountain, China.Chinese Journal of Plant Ecology, 39, 746-752. (in Chinese with English abstract)[王彪, 江源, 王明昌, 董满宇, 章异平 (2015). 芦芽山不同海拔白杄非结构性碳水化合物含量动态. 植物生态学报, 39, 746-752.] |
[31] | Yemm BEW, Willis AJ (1954). The estimation of carbohydrates in plant extracts by anthrone.Biochemical Journal, 57, 508-514. |
[32] | Yin YL, Yu CG, Hua JF, Huan JJ, Han LW, Qi BY, Ren P, Wu XH, Qi XC (2014). A trial on the silviculture of Taxodium hybrid ‘Zhonshanshan118’ planted in the hydro-fluctuation belt of the Three Gorges Reservoir within the Wanzhou district area of Chongqing City.China Forestry Science and Technology, 28(2), 110-114. (in Chinese with English abstract)[殷云龙, 於朝广, 华建峰, 环姣姣, 韩路弯, 亓白岩, 任凭, 吴晓洪, 祁小川 (2014). 重庆万州三峡库区消落带中山杉造林实验. 林业科技开发, 28(2), 110-114.] |
[33] | Zhang YT, Zhang JJ, Wu XH, Wang JX, Duan FP (2015). Flooding tolerance of Taxodium hybrid ‘Zhongshanshan’ along the hydro-fluctuation belt of the Three Gorges Reservoir.Science of Soil and Water Conservation,13(2), 56-62. (in Chinese with English abstract)[张艳婷, 张建军, 吴晓洪, 王建修, 段丰沛 (2015). 长江三峡库区消落带中山杉耐淹试验. 中国水土保持科学, 13(2), 56-62.] |
[34] | Zhou J, Tian X, Qiao L, Qin P (2012). Respiratory enzyme activity and regulation of respiration pathway in seashore mallow (Kosteletzkya virginica) seedlings under waterlogging conditions.Australian Journal of Crop Science, 6, 756-762. |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 董涵君, 王兴昌, 苑丹阳, 柳荻, 刘玉龙, 桑英, 王晓春. 温带不同材性树种树干非结构性碳水化合物的径向分配差异[J]. 植物生态学报, 2022, 46(6): 722-734. |
[3] | 李思源, 张照鑫, 饶良懿. 桑苗非结构性碳水化合物和生长激素对水淹胁迫的响应[J]. 植物生态学报, 2022, 46(3): 311-320. |
[4] | 吴秋霞, 吴福忠, 胡仪, 康自佳, 张耀艺, 杨静, 岳楷, 倪祥银, 杨玉盛. 亚热带同质园11个树种新老叶非结构性碳水化合物含量比较[J]. 植物生态学报, 2021, 45(7): 771-779. |
[5] | 韩璐, 杨菲, 吴应明, 牛云明, 曾祎明, 陈立欣. 晋西黄土区典型乔灌木短期水分利用效率对环境因子的响应[J]. 植物生态学报, 2021, 45(12): 1350-1364. |
[6] | 王彪, 江源, 王明昌, 董满宇, 章异平. 芦芽山不同海拔白杄非结构性碳水化合物含量动态[J]. 植物生态学报, 2015, 39(7): 746-752. |
[7] | 杨春, 谭太龙, 余佳玲, 廖琼, 张晓龙, 张振华, 宋海星, 官春云. 大气CO2浓度倍增对油菜韧皮部汁液成分及根部氮素积累的影响[J]. 植物生态学报, 2014, 38(7): 776-784. |
[8] | 石慧清, 龚月桦, 张东武. 花后高温对持绿型小麦叶片衰老及籽粒淀粉合成相关酶的影响[J]. 植物生态学报, 2011, 35(7): 769-778. |
[9] | 陈洁, 汤亮, 刘小军, 曹卫星, 朱艳. 基于植株碳流的水稻籽粒淀粉积累模拟模型[J]. 植物生态学报, 2011, 35(4): 431-440. |
[10] | 王维, 蔡一霞, 杨建昌, 朱庆森. 结实期土壤水分亏缺影响水稻籽粒灌浆的生理原因[J]. 植物生态学报, 2011, 35(2): 195-202. |
[11] | 于丽敏, 王传宽, 王兴昌. 三种温带树种非结构性碳水化合物的分配[J]. 植物生态学报, 2011, 35(12): 1245-1255. |
[12] | 朱云集, 马冬云, 李向阳, 郭天财, 王晨阳. 两种冠温型冬小麦籽粒蛋白质和淀粉组分积累动态[J]. 植物生态学报, 2006, 30(2): 352-360. |
[13] | 王维, 蔡一霞, 蔡昆争, 张建华, 杨建昌, 朱庆森. 土壤水分亏缺对水稻茎秆贮藏碳水化合物向籽粒运转的调节[J]. 植物生态学报, 2005, 29(5): 819-828. |
[14] | 李永庚, 于振文, 梁晓芳, 赵俊晔, 邱希宾. 小麦产量和品质对灌浆期不同阶段低光照强度的响应[J]. 植物生态学报, 2005, 29(5): 807-813. |
[15] | 张智猛, 戴良香, 胡昌浩, 董树亭, 王空军, 宁堂原. 玉米灌浆期水分差异供应对籽粒淀粉积累及其酶活性的影响[J]. 植物生态学报, 2005, 29(4): 636-643. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19