植物生态学报 ›› 2016, Vol. 40 ›› Issue (6): 543-553.DOI: 10.17521/cjpe.2015.0420
所属专题: 全球变化与生态系统
唐波1,2, 杨欢1,2, 尹春英1,,A;*(), 孙誉育1,2, 郑东辉1,2, 刘庆1
收稿日期:
2015-11-22
接受日期:
2016-03-26
出版日期:
2016-06-10
发布日期:
2016-06-15
通讯作者:
尹春英
基金资助:
Bo TANG1,2, Huan YANG1,2, Chun-Ying YIN1,*(), Yu-Yu SUN1,2, Dong-Hui ZHENG1,2, Qing LIU1
Received:
2015-11-22
Accepted:
2016-03-26
Online:
2016-06-10
Published:
2016-06-15
Contact:
Chun-Ying YIN
摘要:
吸收营养物质是植物根系的主要生理功能。氮素吸收是植物体内氮代谢的第一步, 也是最关键的一步。为了全面地认识亚高山针叶林在全球气候变化背景下对两种主要无机氮(NH4+和NO3-)吸收特点的变化, 该研究以川西亚高山针叶林优势树种——云杉(Picea asperata)和岷江冷杉(Abies fargesii var. faxoniana)为材料, 通过红外辐射加热器模拟增温, 利用非损伤微测技术(non-invasive micromeasurement technology)研究了这两个树种吸收NH4+和NO3-特点的变化, 同时还探究了NH4+和NO3- 之间的相互作用对植物吸收这两种离子的影响。研究结果显示: 在云杉根系中, NH4+和NO3-的最大吸收速率分别发生在距离根尖最顶端17-18 mm区域和17 mm处, 而岷江冷杉对这两种离子的最大吸收速率分别发生在距离根尖顶端11 mm和11.5 mm处。增温对云杉和岷江冷杉根系吸收NH4+和NO3-有促进作用。在增温条件下, NO3-能够促进云杉根系对NH4+的吸收, 而NH4+则抑制了其对NO3-的吸收。无论是否增温, 岷江冷杉对NH4+的吸收都不受NO3-的影响, 而在增温条件下, NH4+会抑制岷江冷杉对NO3-的吸收。
唐波, 杨欢, 尹春英, 孙誉育, 郑东辉, 刘庆. 夜间增温对亚高山针叶林主要树种无机氮吸收的影响. 植物生态学报, 2016, 40(6): 543-553. DOI: 10.17521/cjpe.2015.0420
Bo TANG, Huan YANG, Chun-Ying YIN, Yu-Yu SUN, Dong-Hui ZHENG, Qing LIU. Effects of night warming on the uptake of inorganic nitrogen by two dominant species in subalpine coniferous forests. Chinese Journal of Plant Ecology, 2016, 40(6): 543-553. DOI: 10.17521/cjpe.2015.0420
图1 夜间增温对土壤pH值(A), 土壤NO3--N (B)和土壤NH4+-N (C)的影响(平均值±标准误差, n = 4)。不同小写字母表示对照组两物种之间差异显著(p < 0.05); 不同大写字母表示夜间增温下两物种间差异显著(p < 0.05); 星号表示夜间增温效应显著(*, p < 0.05; **, p < 0.01)。PA, 云杉; AF, 岷江冷杉。
Fig. 1 Effects of night warming on soil pH value (A), soil NO3--N (B) and NH4+-N concentration (C) (mean ± SE, n = 4). Different lowercase letters indicate significant differences between Picea asperata and Abies fargesii var. faxoniana under control (p < 0.05); Different capital letters indicate significant differences between P. asperata and A. fargesii var. faxoniana under night warming (p < 0.05); Asterisks indicate significant differences between night warming and control (*, p < 0.05; **, p < 0.01). PA, Picea asperata; AF, Abies fargesii var. faxoniana.
图2 云杉根尖不同位置NH4+ (A)和NO3- (B)的流速(平均值±标准误差, n = 4), 正值和负值分别表示离子净吸收和净流出。NH4+和NO3-的测试液分别为: 0.1 mmol·L-1 NH4Cl/0.1 mmol·L-1 KNO3, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5。
Fig. 2 Net NH4+ (A) and NO3- (B) fluxes along the root tip of Picea asperata (mean ± SE, n = 4). Positive and negative values indicate net influxes and effluxes, respectively. The measuring solution contained 1 mmol·L-1 KCl and 0.1 mmol·L-1 CaCl2 with pH equal to 5.5, and either 0.1 mmol·L-1 NH4Cl for NH4+ flux measurements or 0.1 mmol·L-1 KNO3 for NO3- flux measurements.
图3 岷江冷杉根尖不同位置NH4+ (A)和NO3- (B)的流速(平均值±标准误差, n = 4), 正值和负值分别表示离子净吸收和净流出。NH4+和NO3-的测试液分别为: 0.1 mmol·L-1 NH4Cl/0.1 mmol·L-1 KNO3, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5。
Fig. 3 Net NH4+ (A) and NO3- (B) fluxes along the root tip of Abies fargesii var. faxoniana (mean ± SE, n = 4). Positive and negative values indicate net influxes and effluxes, respectively. The measuring solution contained 1 mmol·L-1 KCl and 0.1 mmol·L-1 CaCl2 with pH equal to 5.5, and either 0.1 mmol·L-1 NH4Cl for NH4+ flux measurements or 0.1 mmol·L-1 KNO3 for NO3- flux measurements.
图4 分别在NH4NO3测试液(0.1 mmol·L-1 NH4NO3, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5)和NH4Cl测试液(0.1 mmol·L-1 NH4Cl, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5)中测定距离云杉根尖17-18 mm区域(A)和岷江冷杉根尖11 mm处(B)的NH4+净吸收(平均值±标准误差, n = 4)。不同的小写和大写字母分别表示在NH4NO3和NH4Cl测试液中测定的NH4+净吸收受夜间增温效应显著影响(p < 0.05); 星号表示在不同的测试液中测定的离子净吸收的差异显著性(***, p < 0.005)。
Fig. 4 Net root NH4+ influxes at the distance of 17-18 mm from the root tip of Picea asperata (A) and at the distance of 11 mm from the root tip of Abies fargesii var. faxoniana (B) in NH4NO3 measuring solution (0.1 mmol·L-1 NH4NO3, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5) and NH4Cl measuring solution (0.1 mmol·L-1 NH4Cl, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5) (mean ± SE, n = 4). Different lowercase and capital letters indicate significant effect (p < 0.05) of night warming on net NH4+ influxes measured in NH4NO3 and NH4Cl measuring solution, respectively. Asterisks indicate significant differences between the net NH4+ influxes measured in NH4NO3 and in NH4Cl solution (***, p < 0.005).
图5 分别在NH4NO3测试液(0.1 mmol·L-1 NH4NO3, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5)和KNO3测试液(0.1 mmol·L-1 KNO3, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5)中测定距离云杉根尖17 mm (A)和岷江冷杉根尖11.5 mm处(B)的NO3-净吸收(平均值±标准误差, n = 4)。不同的小写和大写字母分别表示在NH4NO3和KNO3测试液中测定的NO3-净吸收受夜间增温效应显著影响(p < 0.05); 星号表示在不同测试液中测定的离子净吸收的差异显著性(***, p < 0.005)。
Fig. 5 Net NO3- influxes at a distance of 17 mm from the root tip of Picea asperata (A) and at a distance of 11.5 mm from the root tip of Abies fargesii var. faxoniana (B) in NH4NO3 measuring solution (0.1 mmol·L-1 NH4NO3, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5) and KNO3 measuring solution (0.1 mmol·L-1 KNO3, 1 mmol·L-1 KCl, 0.1 mmol·L-1 CaCl2, pH 5.5) (mean ± SE, n = 4). Different lowercase and capital letters indicate significant effect (p < 0.05) of night warming on net NO3- influxes measured in NH4NO3 and KNO3 measuring solution, respectively. Asterisks indicate significant differences between the net NO3- influxes measured in NH4NO3 and in KNO3 solution (***, p < 0.005).
[1] | Alber A, Ehlting B, Ehlting J, Hawkins BJ, Rennenberg H (2012). Net NH4+ and NO3- flux, and expression of NH4+ and NO3- transporters in roots of Picea glauc.Trees, 26, 1403-1411. |
[2] | Babourina O, Voltchanskii K, Mcgann B, Newman I, Rengel Z (2007). Nitrate supply affects ammonium transport in canola roots.Journal of Experimental Botany, 58, 651-658. |
[3] | Bai WM, Wan SQ, Niu SL, Liu WX, Chen QS, Wang QB, Zhang WH, Han XG, Li LH (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling.Global Change Biology, 16, 1306-1316. |
[4] | Berges JA, Varela DE, Harrison PJ (2002). Effects of temper- ature on growth rate, cell composition and nitrogen metabolism in the marine diatom Thalassiosira pseudo- nana (Bacillariophyceae).Marine Ecology Progress Series, 225, 139-146. |
[5] | Bloom AJ, Meyerhoff PA, Taylor AR, Rost TL (2002). Root development and absorption of ammonium and nitrate from the rhizosphere.Journal of Plant Growth Regulation, 21, 416-431. |
[6] | Britto DT, Kronzucker HJ (2006). Futile cycling at the plasma membrane: A hallmark of low-affinity nutrient transport.Trends in Plant Science, 11, 529-534. |
[7] | Calatayud A, Gorbe E, Roca D, Martinez PF (2008). Effect of two nutrient solution temperatures on nitrate uptake, nitrate reductase activity, NH4+ concentration and chlorophyll a fluorescence in rose plants.Environmental and Experimental Botany, 64, 65-74. |
[8] | Colmer TD, Bloom AJ (1998). A comparison of NH4+ and NO3- net fluxes along roots of rice and maize.Plant, Cell & Environment, 21, 240-246. |
[9] | Cruz C, Lips SH, Martinsloucao MA (1995). Uptake regions of inorganic nitrogen in roots of carob seedlings.Physiologia Plantarum, 95, 167-175. |
[10] | Easterling DR, Horton B, Jones PD, Peterson TC, Karl TR, Parker DE, Salinger MJ, Razuvayev V, Plummer N, Jamason P, Folland CK (1997). Maximum and minimum temperature trends for the globe.Science, 277, 364-367. |
[11] | Elmendorf SC, Henry GHR, Hollister RD, Bjork RG, Bjorkman AD, Callaghan TV, Collier LS, Cooper EJ, Cornelissen JHC, Day TA, Fosaa AM, Gould WA, Gretarsdottir J, Harte J, Hermanutz L, Hik DS, Hofgaard A, Jarrad F, Jonsdottir IS, Keuper F, Klanderud K, Klein JA, Koh S, Kudo G, Lang SI, Loewen V, May JL, Mercado J, Michelsen A, Molau U, Myers-Smith IH, Oberbauer SF, Pieper S, Post E, Rixen C, Robinson CH, Schmidt NM, Shaver GR, Stenstrom A, Tolvanen A, Totland O, Troxler T, Wahren CH, Webber PJ, Welker JM, Wookey PA (2012). Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time.Ecology Letters, 15, 164-175. |
[12] | Enstone DE, Peterson CA, Hallgren SW (2001). Anatomy of seedling tap roots of loblolly pine (Pinus taeda L.).Trees, 15, 98-111. |
[13] | Fang YY, Babourina O, Rengel Z, Yang XE, Pu PM (2007). Spatial distribution of ammonium and nitrate fluxes along roots of wetland plants.Plant Science, 173, 240-246. |
[14] | Forde BG, Walch-Liu P (2009). Nitrate and glutamate as environmental cues for behavioural responses in plant roots.Plant, Cell & Environment, 32, 682-693. |
[15] | Gao Y, Smith GJ, Alberte RS (2000). Temperature dependence of nitrate reductase activity in marine phytoplankton: Biochemical analysis and ecological implications. Journal of Phycology, 36, 304-313. |
[16] | Garnett TP, Shabala SN, Smethurst PJ, Newman IA (2001). Simultaneous measurement of ammonium, nitrate and proton fluxes along the length of eucalypt roots.Plant and Soil, 236, 55-62. |
[17] | Garnett TP, Shabala SN, Smethurst PJ, Newman IA (2003). Kinetics of ammonium and nitrate uptake by eucalypt roots and associated proton fluxes measured using ion selective microelectrodes.Functional Plant Biology, 30, 1165-1176. |
[18] | Gobert A, Plassard C (2007). Kinetics of NO3- net fluxes in Pinus pinaster, Rhizopogon roseolus and their ectomy- corrhizal association, as affected by the presence of NH4+ and NO3-.Plant, Cell & Environment, 30, 1309-1319. |
[19] | Hawkins BJ, Boukcim H, Plassard C (2008). A comparison of ammonium, nitrate and proton net fluxes along seedling roots of Douglas-fir and lodgepole pine grown and measured with different inorganic nitrogen sources.Plant, Cell & Environment, 31, 278-287. |
[20] | Hawkins BJ, Robbins S (2010). pH affects ammonium, nitrate and proton fluxes in the apical region of conifer and soybean roots.Physiologia Plantarum, 138, 238-247. |
[21] | He JL, Qin JJ, Long LY, Ma YL, Li H, Li K, Jiang XN, Liu TX, Polle A, Liang ZS, Luo ZB (2011). Net cadmium flux and accumulation reveal tissue specific oxidative stress and detoxification in Populus ×canescens. Physiologia Plantarum, 143, 50-63. |
[22] | Henriksen GH, Raman DR, Walker LP, Spanswick RM (1992). Measurement of net fluxes of ammonium and nitrate at the surface of barley roots using ion-selective microelec- trodes. 2. Patterns of uptake along the root axis and evaluation of the microelectrode flux estimation technique.Plant Physiology, 99, 734-747. |
[23] | Ikeda M, Beitz E, Kozono D, Guggino WB, Agre P, Yasui M (2002). Characterization of aquaporin-6 as a nitrate channel in mammalian cells—Requirement of pore-lining residue threonine 63.Journal of Biological Chemistry, 277, 39873-39879. |
[24] | IPCC (2014). Climate change 2014: Synthesis report. In: Pachauri RK, Meyer LA eds. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. 151. |
[25] | Jackson LE, Burger M, Cavagnaro TR (2008). Roots nitrogen transformations, and ecosystem services.Annual Review of Plant Biology, 59, 341-363. |
[26] | Johnson DW (2006). Progressive N limitation in forests: Review and implications for long-term responses to elevated CO2.Ecology, 87, 64-75. |
[27] | Kronzucker HJ, Siddiqi MY, Glass ADM, Kirk GJD (1999). Nitrate-ammonium synergism in rice. A subcellular flux analysis.Plant Physiology, 119, 1041-1045. |
[28] | Li Q, Li BH, Kronzucker HJ, Shi WM (2010). Root growth inhibition by NH4+ in Arabidopsis is mediated by the root tip and is linked to NH4+ efflux and GMPase activity.Plant, Cell & Environment, 33, 1529-1542. |
[29] | Liu Q, Wu Y, He H (2001). Ecological problems of subalpine coniferous forest in the southwest of China.World Sci-Tech Research and Development, 23(2), 63-69. (in Chinese with English abstract)[刘庆, 吴彦, 何海 (2001). 中国西南亚高山针叶林的生态学问题. 世界科技研究与发展, 23(2), 63-69.] |
[30] | Luo Y, Wan S, Hui D, Wallace LL (2001). Acclimatization of soil respiration to warming in a tall grass prairie.Nature, 413, 622-625. |
[31] | Luo J, Qin J, He FF, Li H, Liu T, Polle A, Perg L, Luo ZB (2013). Net fluxes of ammonium and nitrate in association with H+ fluxes in fine roots of Populus popularis.Planta, 237, 919-931. |
[32] | Majdi H, Ohrvik J (2004). Interactive effects of soil warming and fertilization on root production, mortality, and longevity in a Norway spruce stand in Northern Sweden.Global Change Biology, 10, 182-188. |
[33] | Melillo JM, Butler S, Johnson J, Mohan J, Steudler P, Lux H, Tang J (2011). Soil warming, carbon-nitrogen interactions, and forest carbon budgets.Proceedings of the National Academy of Sciences of the United States of America, 108, 9508-9512. |
[34] | Patterson K, Cakmak T, Cooper A, Lager I, Rasmusson AG, Escobar MA (2010). Distinct signalling pathways and tra- nscriptome response signatures differentiate ammonium- and nitrate-supplied plants.Plant, Cell & Environment, 33, 1486-1501. |
[35] | Peng SB, Huang JL, Sheehy JE, Laza RC, Visperas RM, Zhong XH, Centeno GS, Khush GS, Cassman KG (2004). Rice yields decline with higher night temperature from global warming.Proceedings of the National Academy of Sciences of the United States of America, 101, 9971-9975. |
[36] | Penuelas J, Sardans J, Estiarte M, Ogaya R, Carnicer J, Coll M, Barbeta A, Rivas-Ubach A, Llusia J, Garbulsky M, Filella I, Jump AS (2013). Evidence of current impact of climate change on life: A walk from genes to the biosphere.Global Change Biology, 19, 2303-2338. |
[37] | Plassard C, Guerin-Laguette A, Very AA, Casarin V, Thibaud JB (2002). Local measurements of nitrate and potassium fluxes along roots of maritime pine. Effects of ectomycorrhizal symbiosis.Plant, Cell & Environment, 25, 75-84. |
[38] | Pregitzer KS, Deforest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002). Fine root architecture of nine North American trees.Ecological Monographs, 72, 293-309. |
[39] | Sardans J, Peñuelas J, Prieto P, Estiarte M (2008). Drought and warming induced changes in P and K concentration and accumulation in plant biomass and soil in a Mediterranean shrubland.Plant and Soil, 306, 261-271. |
[40] | Sorgona A, Lupini A, Mercati F, Di Dio L, Sunseri F, Abenavoli MR (2011). Nitrate uptake along the maize primary root: An integrated physiological and molecular approach.Plant, Cell & Environment, 34, 1127-1140. |
[41] | Tang B, Yin CY, Wang YJ, Sun YY, Liu Q (2016). Positive effects of night warming on physiology of coniferous trees in late growing season: Leaf and root.Acta Oecologica, 73, 21-30. |
[42] | Taylor AR, Bloom AJ (1998). Ammonium, nitrate, and proton fluxes along the maize root.Plant, Cell & Environment, 21, 1255-1263. |
[43] | Vidmar JJ, Zhuo D, Siddiqi MY, Schjoerring JK, Touraine B, Glass ADM (2000). Regulation of high-affinity nitrate transporter genes and high-affinity nitrate influx by nitrogen pools in roots of barley. Plant Physiology, 123, 307-318. |
[44] | Walch-Liu P, Forde BG (2008). Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate- induced changes in root architecture.Plant Journal, 54, 820-828. |
[45] | Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV, Carroll AB, Epstein HE, Jonsdottir IS, Klein JA, Mag- nusson B, Molau U, Oberbauer SF, Rewa SP, Robinson CH, Shaver GR, Suding KN, Thompson CC, Tolvanen A, Totland O, Turner PL, Tweedie CE, Webber PJ, Wookey PA (2006). Plant community responses to experimental warming across the tundra biome.Proceedings of the National Academy of Sciences of the United States of America, 103, 1342-1346. |
[46] | Wall GW, Kimball BA, White JW, Ottman MJ (2011). Gas exchange and water relations of spring wheat under full-season infrared warming.Global Change Biology, 17, 2113-2133. |
[47] | Wan S, Luo Y, Wallace L (2002). Changes in microclimate induced by experimental warming and clipping in tallgrass prairie.Global Change Biology, 8, 754-768. |
[48] | Wang AF, Roitto M, Lehto T, Zwiazek JJ, Calvo-Polanco M, Repo T (2013). Waterlogging under simulated late-winter conditions had little impact on the physiology and growth of Norway spruce seedlings.Annals of Forest Science, 70, 781-790. |
[49] | Wang KY (2004). Processes of Subalpine Forest Ecosystem in Western Sichuan. Sichuan Science and Technology Press, Chengdu. (in Chinese)[王开运 (2004). 川西亚高山森林群落生态系统过程. 四川科学技术出版社, 成都.] |
[50] | Xia J, Han Y, Zhang Z, Zhang Z, Wan S (2009). Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe.Biogeosciences, 6, 1361-1370. |
[51] | Xu Y, Sun T, Yin LP (2006). Application of non-invasive microsensing system to simultaneously measure both H+ and O2 fluxes around the pollen tube.Journal of Integrative Plant Biology, 48, 823-831. |
[52] | Xu GH, Fan XR, Miller AJ (2012). Plant nitrogen assimilation and use efficiency.Annual Review of Plant Biology, 63, 153-182. |
[53] | Yin CY, Pu XZ, Xiao QY, Zhao CZ, Liu Q (2014). Effects of night warming on spruce root around non-growing season vary with branch order and month.Plant and Soil, 380, 249-263. |
[54] | Young EB, Dring MJ, Savidge G, Birkett DA, Berges JA (2007). Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations. Plant, Cell & Environment, 30, 764-774. |
[55] | Yu XZ, Zhang FZ (2012). Activities of nitrate reductase and glutamine synthetase in rice seedlings during cyanide metabolism.Journal of Hazardous Materials, 225, 190-194. |
[56] | Zhao CZ, Liang J, He J, Liu Q (2012). Effects of elevated temperature and nitrogen fertilization on nitrogen metabolism and nutrient status of two coniferous species.Soil Science and Plant Nutrition, 58, 772-782. |
[57] | Zhuo DG, Okamoto M, Vidmar JJ, Glass ADM (1999). Regulation of a putative high-affinity nitrate transporter (Nrt2;1At) in roots of Arabidopsis thaliana.Plant Journal, 17, 563-568. |
[1] | 赖硕钿, 吴福忠, 吴秋霞, 朱晶晶, 倪祥银. 雪被去除减缓岷江冷杉凋落叶易分解碳释放[J]. 植物生态学报, 2023, 47(5): 672-686. |
[2] | 刘谣, 焦泽彬, 谭波, 李晗, 王丽霞, 刘思凝, 游成铭, 徐振锋, 张丽. 川西亚高山森林凋落物去除对土壤腐殖质动态的影响[J]. 植物生态学报, 2022, 46(3): 330-339. |
[3] | 韩聪, 刘鹏, 母艳梅, 原媛, 郝少荣, 田赟, 查天山, 贾昕. 黑沙蒿灌丛生态系统碳平衡对昼夜非对称增温的响应[J]. 植物生态学报, 2022, 46(12): 1473-1485. |
[4] | 王兆鹏, 张同文, 袁玉江, 张瑞波, 喻树龙, 刘蕊, 石仁娜•加汗, 郭冬, 王勇辉. 罗霄山南部4个针叶树种生长特征及其气候响应对比分析[J]. 植物生态学报, 2021, 45(12): 1303-1313. |
[5] | 郭彩虹, 杨万勤, 吴福忠, 徐振锋, 岳楷, 倪祥银, 袁吉, 杨帆, 谭波. 川西亚高山森林林窗对凋落枝早期分解的影响[J]. 植物生态学报, 2018, 42(1): 28-37. |
[6] | 杨开军, 杨万勤, 谭羽, 贺若阳, 庄丽燕, 李志杰, 谭波, 徐振锋. 川西亚高山云杉林冬季土壤呼吸对雪被去除的短期响应[J]. 植物生态学报, 2017, 41(9): 964-971. |
[7] | 李晗, 吴福忠, 杨万勤, 徐李亚, 倪祥银, 何洁, 胡义. 亚高山森林林窗对凋落物分解过程中半纤维素动态的影响[J]. 植物生态学报, 2015, 39(3): 229-238. |
[8] | 何洁,杨万勤,倪祥银,李晗,徐李亚,吴福忠. 雪被斑块对川西亚高山森林凋落物冬季分解过程中钾和钠动态的影响[J]. 植物生态学报, 2014, 38(6): 550-561. |
[9] | 邓建明, 姚步青, 周华坤, 赵新全, 魏晴, 陈哲, 王文颖. 水氮添加条件下高寒草甸主要植物种氮素吸收分配的同位素示踪研究[J]. 植物生态学报, 2014, 38(2): 116-124. |
[10] | 何伟, 吴福忠, 杨万勤, 武启骞, 何敏, 赵野逸. 雪被斑块对高山森林两种灌木凋落叶质量损失的影响[J]. 植物生态学报, 2013, 37(4): 306-316. |
[11] | 武启骞, 吴福忠, 杨万勤, 徐振锋, 何伟, 何敏, 赵野逸, 朱剑霄. 季节性雪被对高山森林凋落物分解的影响[J]. 植物生态学报, 2013, 37(4): 296-305. |
[12] | 刘瑞龙, 杨万勤, 谭波, 王文君, 倪祥银, 吴福忠. 土壤动物对川西亚高山和高山森林凋落叶第一年不同分解时期N和P元素动态的影响[J]. 植物生态学报, 2013, 37(12): 1080-1090. |
[13] | 刘洋, 张健, 闫帮国, 黄旭, 徐振锋, 吴福忠. 青藏高原东缘高山森林-苔原交错带土壤微生物生物量碳、氮和可培养微生物数量的季节动态[J]. 植物生态学报, 2012, 36(5): 382-392. |
[14] | 夏磊, 吴福忠, 杨万勤. 季节性冻融期间土壤动物对岷江冷杉凋落叶质量损失的贡献[J]. 植物生态学报, 2011, 35(11): 1127-1135. |
[15] | 布仁仓, 常禹, 胡远满, 李秀珍, 贺红士. 小兴安岭针叶树种在不同尺度上对环境因子的敏感性分析[J]. 植物生态学报, 2008, 32(1): 80-87. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19