植物生态学报 ›› 2018, Vol. 42 ›› Issue (1): 20-27.DOI: 10.17521/cjpe.2017.0133
所属专题: 全球变化与生态系统
张莉1,2,王根绪1,冉飞1,彭阿辉1,2,肖瑶1,2,杨阳1,杨燕1,*()
出版日期:
2018-01-20
发布日期:
2018-01-18
通讯作者:
杨燕
基金资助:
ZHANG Li1,2,WANG Gen-Xu1,RAN Fei1,PENG A-Hui1,2,XIAO Yao1,2,YANG Yang1,YANG Yan1,*()
Online:
2018-01-20
Published:
2018-01-18
Contact:
Yan YANG
Supported by:
摘要:
以西南横断山区高山草甸优势植物种珠芽拳参(Polygonum viviparum)和银叶委陵菜(Potentilla leuconota)为研究对象, 将其物候分为花芽期、开花期、凋谢期和种子成熟期4个阶段, 每个阶段又分为开始、峰值和结束3个状态。采用开顶式增温箱进行模拟增温, 连续增温4年后, 于增温第5年的2016年生长季跟踪调查了模拟增温对珠芽拳参和银叶委陵菜的繁殖物候序列的影响, 以探讨高山植物群落对气候变化的响应过程。结果显示, 模拟增温后: 1)珠芽拳参各物候阶段的持续时间缩短; 除凋谢阶段起始、结束期延迟外, 其他状态均有不同程度的提前; 各阶段的过渡期有不同程度的缩短, 繁殖周期缩短; 2)银叶委陵菜各物候阶段的持续时间延长; 凋谢期结束前各状态(除开花峰值外)表现为不同程度的提前; 各阶段过渡期对增温的响应不一致, 繁殖周期延长。结果表明: 完整的繁殖物候序列能更准确地反映植物物候对气候变暖的响应; 植物对环境变化的响应和应对策略存在种间差异, 这种差异可能会进一步改变植物群落组成和结构。
张莉, 王根绪, 冉飞, 彭阿辉, 肖瑶, 杨阳, 杨燕. 模拟增温改变川西高山草甸优势植物繁殖物候序列特征. 植物生态学报, 2018, 42(1): 20-27. DOI: 10.17521/cjpe.2017.0133
ZHANG Li, WANG Gen-Xu, RAN Fei, PENG A-Hui, XIAO Yao, YANG Yang, YANG Yan. Experimental warming changed plants’ phenological sequences of two dominant species in an alpine meadow, western of Sichuan. Chinese Journal of Plant Ecology, 2018, 42(1): 20-27. DOI: 10.17521/cjpe.2017.0133
图1 生长季开顶式增温箱内外空气和土壤的月平均温度、月平均含水量。A, 月平均气温。B, 土壤5 cm深月平均温度。C, 土壤20 cm深月平均温度。D, 土壤5 cm深月平均含水量。E, 土壤20 cm深月平均含水量。
Fig. 1 Monthly mean air temperature, soil temperature, and soil water content inside and outside the open-top chambers during the growing season. A, Monthly mean air temperature. B, Monthly mean soil temperature at 5 cm soil depth. C, Monthly mean soil temperature at 20 cm soil depth. D, Monthly mean soil water content at 5 cm soil depth. E, Monthly mean soil water content at 20 cm soil depth.
图2 珠芽拳参(A)和银叶委陵菜(B)物候序列变化。■、▲和●分别表示各个阶段的起始、峰值和结束状态。负值表示处理与对照相比提前的天数, 正值表示与对照相比延迟的天数。
Fig. 2 Phenological shifts at the sequence of Polygonum viviparum (A) and Potentilla leuconota (B). ■, ▲ and ● symbol represent a phenological shift of first, peak, and last of the four stages, respectively. Negative value represents earlier stations than control in days, and the positive value represents delayed stations than control in days. OTCs, open-top chambers.
阶段 Stage | 状态 Station | 银叶委陵菜 Potentilla leuconota | 珠芽拳参 Polygonum viviparum | ||||
---|---|---|---|---|---|---|---|
N | 截距 Intercept | OTCs | N | 截距 Intercept | OTCs | ||
花芽期 Budding | 开始 First | 6 | 5.11*** | -0.03 | 13 | 5.19*** | 0.01 |
峰值 Peak | 6 | 5.17 *** | -0.05 | 13 | 5.19*** | 0.01 | |
结束 Last | 6 | 5.23*** | -0.01 | 13 | 5.28*** | 0.02 | |
开花期 Flowering | 开始 First | 8 | 5.17*** | -0.06 | 10 | 5.28*** | -0.02 |
峰值 Peak | 8 | 5.18*** | 0.02 | 10 | 5.30*** | -0.01 | |
结束 Last | 8 | 5.27*** | -0.02 | 10 | 5.33*** | -0.02 | |
凋谢期 Withering | 开始 First | 8 | 5.18*** | -0.05 | 13 | 5.25*** | 0.02 |
峰值 Peak | 8 | 5.27 *** | -0.03 | 13 | 5.30*** | 0.01 | |
结束 Last | 8 | 5.36 *** | 0.04 | 13 | 5.33*** | 0.01 | |
种子成熟期 Ripe seeds | 开始 First | 8 | 5.23*** | 0.02 | 12 | 5.36*** | -0.02 |
峰值 Peak | 8 | 5.37 *** | 0.02 | 12 | 5.38*** | -0.02 | |
结束 Last | 8 | 5.47*** | 0.01 | 12 | 5.41*** | -0.03 |
表1 各物候指标对模拟增温响应的参数统计
Table 1 Parameter estimates of GLME models investigating phenological sequences responses to experimental warming
阶段 Stage | 状态 Station | 银叶委陵菜 Potentilla leuconota | 珠芽拳参 Polygonum viviparum | ||||
---|---|---|---|---|---|---|---|
N | 截距 Intercept | OTCs | N | 截距 Intercept | OTCs | ||
花芽期 Budding | 开始 First | 6 | 5.11*** | -0.03 | 13 | 5.19*** | 0.01 |
峰值 Peak | 6 | 5.17 *** | -0.05 | 13 | 5.19*** | 0.01 | |
结束 Last | 6 | 5.23*** | -0.01 | 13 | 5.28*** | 0.02 | |
开花期 Flowering | 开始 First | 8 | 5.17*** | -0.06 | 10 | 5.28*** | -0.02 |
峰值 Peak | 8 | 5.18*** | 0.02 | 10 | 5.30*** | -0.01 | |
结束 Last | 8 | 5.27*** | -0.02 | 10 | 5.33*** | -0.02 | |
凋谢期 Withering | 开始 First | 8 | 5.18*** | -0.05 | 13 | 5.25*** | 0.02 |
峰值 Peak | 8 | 5.27 *** | -0.03 | 13 | 5.30*** | 0.01 | |
结束 Last | 8 | 5.36 *** | 0.04 | 13 | 5.33*** | 0.01 | |
种子成熟期 Ripe seeds | 开始 First | 8 | 5.23*** | 0.02 | 12 | 5.36*** | -0.02 |
峰值 Peak | 8 | 5.37 *** | 0.02 | 12 | 5.38*** | -0.02 | |
结束 Last | 8 | 5.47*** | 0.01 | 12 | 5.41*** | -0.03 |
图3 开顶式增温箱模拟增温对珠芽拳参(A)和银叶委陵菜(B)各阶段持续时间长度的影响(平均值±标准误差)。
Fig. 3 Effects of open-top chambers (OTCs) warming on the duration of each stage of Polygonum viviparum (A) and Potentilla leuconota (B)(mean ± SE).
图4 开顶式增温箱模拟增温对珠芽拳参(A)和银叶委陵菜(B)相邻物候阶段峰值期相差天数的影响(平均值±标准误差)。
Fig. 4 Effects of open-top chambers (OTCs) warming on the period between the peak time of the neighboring stages of Polygonum viviparum (A) and Potentilla leuconota (B) (mean ± SE).
[1] |
Amano T, Smithers RJ, Sparks TH, Sutherland WJ ( 2010). A 250-year index of first flowering dates and its response to temperature changes. Proceedings of the Royal Society of London B: Biological Sciences, 277, 2451-2457.
DOI URL PMID |
[2] |
Arft A, Walker M, Gurevitch J, Alatalo J, Bret-Harte M, Dale M, Diemer M, Gugerli F, Henry G, Jones M ( 1999). Responses of tundra plants to experimental warming: Meta-analysis of the international tundra experiment. Ecological Monographs, 69, 491-511.
DOI URL |
[3] |
Badeck FW, Bondeau A, B?ttcher K, Doktor D, Lucht W, Schaber J, Sitch S ( 2004). Responses of spring phenology to climate change. New Phytologist, 162, 295-309.
DOI URL |
[4] |
Beaubien E, Freeland H ( 2000). Spring phenology trends in Alberta, Canada: Links to ocean temperature. International Journal of Biometeorology, 44, 53-59.
DOI URL PMID |
[5] |
CaraDonna PJ, Iler AM, Inouye DW ( 2014). Shifts in flowering phenology reshape a subalpine plant community. Proceedings of the National Academy of Sciences of the United States of America, 111, 4916-4921.
DOI URL |
[6] |
Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB ( 2006). Diverse responses of phenology to global changes in a grassland ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 103, 13740-13744.
DOI URL PMID |
[7] | Ding YH, Wang HJ ( 2015). Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China. Chinese Science Bulletin, 61, 1029-1041. |
[ 丁一汇, 王会军 ( 2015). 近百年中国气候变化科学问题的新认识. 科学通报, 61, 1029-1041.] | |
[8] |
Dorji T, Totland ?, Moe SR, Hopping KA, Pan J, Klein JA ( 2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
DOI URL PMID |
[9] |
Dudgeon SR, Steneck RS, Davison IR, Vadas RL ( 1999). Coexistence of similar species in a space-limited intertidal zone. Ecological Monographs, 69, 331-352.
DOI URL |
[10] |
Forrest J, Miller-Rushing AJ ( 2010). Toward a synthetic understanding of the role of phenology in ecology and evolution. The Royal Society, 365, 3101-3112.
DOI URL PMID |
[11] |
Gugger S, Kesselring H, Stocklin J, Hamann E ( 2015). Lower plasticity exhibited by high-versus mid-elevation species in their phenological responses to manipulated temperature and drought. Annals of Botany, 116, 953-962.
DOI URL PMID |
[12] |
Hollister RD, Webber PJ, Bay C ( 2005). Plant response to temperature in northern Alaska: Implications for predicting vegetation change. Ecology, 86, 1562-1570.
DOI URL |
[13] |
Iler AM, H?ye TT, Inouye DW, Schmidt NM ( 2013). Nonlinear flowering responses to climate: Are species approaching their limits of phenological change? Philosophical Transactions of the Royal Society of London B: Biological Sciences, 368, 20120489, doi: 10.1098/rstb.2012.0489.
DOI URL PMID |
[14] |
Inouye DW ( 2008). Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology, 89, 353-362.
DOI URL |
[15] | IPCC (Intergovernmental Panel on Climate Change) ( 2013) : Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on climate change. In: Stocker TF, Qin DH, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Climate Change in 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK. |
[16] | Jonasson S, Havstr?m M, Jensen M, Callaghan TV ( 1993). In situ mineralization of nitrogen and phosphorus of arctic soils after perturbations simulating climate change. Oecologia, 95, 179-186. |
[17] |
Klein JA, Harte J, Zhao XQ ( 2004). Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecology Letters, 7, 1170-1179.
DOI URL |
[18] |
Li ZX, He YQ, Xin HJ, Wang CF, Jia WX, Zhang W, Liu J ( 2010). Spatio-temporal variations of temperature and precipitation in Mts. Hengduan Region during 1960-2008. Acta Geographica Sinica, 65, 563-579.
DOI URL |
[ 李宗省, 何元庆, 辛惠娟, 王春凤, 贾文雄, 张蔚, 刘婧 ( 2010). 我国横断山区1960-2008年气温和降水时空变化特征. 地理学报, 65, 563-579.]
DOI URL |
|
[19] |
Liu YZ, Reich PB, Li GY, Sun SC ( 2011). Shifting phenology and abundance under experimental warming alters trophic relationships and plant reproductive capacity. Ecology, 92, 1201-1207.
DOI URL |
[20] |
Memmott J, Craze PG, Waser NM, Price MV ( 2007). Global warming and the disruption of plant-pollinator interactions. Ecology Letters, 10, 710-717.
DOI URL |
[21] |
Meng FD, Cui SJ, Wang SP, Duan JC, Jiang LL, Zhang ZH, Luo CY, Wang Q, Zhou Y, Li XN, Zhang LR, Dorji T, Li YN, Du MY, Wang GJ ( 2016). Changes in phenological sequences of alpine communities across a natural elevation gradient. Agricultural and Forest Meteorology, 224, 11-16.
DOI URL |
[22] |
Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavská O, Briede A ( 2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12, 1969-1976.
DOI URL |
[23] |
Pe?uelas J, Filella I ( 2001). Responses to a warming world. Science, 294, 793-795.
DOI URL PMID |
[24] |
Pe?uelas J, Filella I ( 2009). Phenology feedbacks on climate change. Science, 324, 887-888.
DOI URL PMID |
[25] |
Pe?uelas J, Filella I, Comas P ( 2002). Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology, 8, 531-544.
DOI URL |
[26] |
Pepin N, Bradley RS, Diaz HF, Baraer M, Caceres EB, Forsythe N, Fowler H, Greenwood G, Hashmi MZ, Liu XD, Miller JR, Ning L, Ohmura A, Palazzi E, Rangwala I, Sch?ner W, Severskiy I, Shahgedanova M, Wang MB, Williamson SN, Yang DQ ( 2015). Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5, 424-430.
DOI URL |
[27] |
Post ES, Pedersen C, Wilmers CC, Forchhammer MC ( 2008). Phenological sequences reveal aggregate life history response to climatic warming. Ecology, 89, 363-370.
DOI URL |
[28] |
Price MV, Waser NM ( 1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology, 79, 1261-1271.
DOI URL |
[29] |
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA ( 2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57-60.
DOI URL PMID |
[30] |
Schwartz MD, Reiter BE ( 2000). Changes in North American spring. International Journal of Climatology, 20, 929-932.
DOI URL |
[31] |
Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BF, de Siqueira MF, Grainger A, Hannah L ( 2004). Extinction risk from climate change. Nature, 427, 145-148.
DOI URL PMID |
[32] |
Tilman D, Lehman CL, Thomson KT ( 1997). Plant diversity and ecosystem productivity: Theoretical considerations. Proceedings of the National Academy of Sciences of the United States of America, 94, 1857-1861.
DOI URL PMID |
[33] | Totland ?, Schulte-Herbrüggen B ( 2003). Breeding system, insect flower visitation, and floral traits of two alpine Cerastium species in Norway. Arctic, Antarctic, and Alpine Research, 35, 242-247. |
[34] |
Wang SP, Meng FD, Duan JC, Wang YF, Cui XY, Piao SL, Niu HS, Xu GP, Luo CY, Zhang ZH ( 2014). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 95, 3387-3398.
DOI URL |
[35] |
Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, Kraft NJ ( 2012). Warming experiments under predict plant phenological responses to climate change. Nature, 485, 494-497.
DOI URL PMID |
[36] |
Yang Y, Wang GX, Klanderud K, Wang JF, Liu GS ( 2015). Plant community responses to five years of simulated climate warming in an alpine fen of the Qinghai-Tibetan Plateau. Plant Ecology & Diversity, 8, 211-218.
DOI URL |
[1] | 陈以恒 玉素甫江·如素力 阿卜杜热合曼·吾斯曼. 2001-2020年天山新疆段草地植被覆盖度时空变化及驱动因素分析[J]. 植物生态学报, 2024, 48(5): 561-576. |
[2] | 张计深, 史新杰, 刘宇诺, 吴阳, 彭守璋. 气候变化下中国潜在自然植被生态系统碳储量动态[J]. 植物生态学报, 2024, 48(4): 428-444. |
[3] | 臧妙涵, 王传宽, 梁逸娴, 刘逸潇, 上官虹玉, 全先奎. 基于纬度移栽的落叶松叶、枝、根生态化学计量特征对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 469-482. |
[4] | 梁逸娴, 王传宽, 臧妙涵, 上官虹玉, 刘逸潇, 全先奎. 落叶松径向生长和生物量分配对气候变暖的响应[J]. 植物生态学报, 2024, 48(4): 459-468. |
[5] | 吴茹茹, 刘美珍, 谷仙, 常馨月, 郭立月, 蒋高明, 祁如意. 气候变化对巨柏适宜生境分布的潜在影响和预测[J]. 植物生态学报, 2024, 48(4): 445-458. |
[6] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[7] | 张启, 程雪寒, 王树芝. 北京西山老龄树记载的森林干扰历史[J]. 植物生态学报, 2024, 48(3): 341-348. |
[8] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[9] | 李杰, 郝珉辉, 范春雨, 张春雨, 赵秀海. 东北温带森林树种和功能多样性对生态系统多功能性的影响[J]. 植物生态学报, 2023, 47(11): 1507-1522. |
[10] | 魏瑶, 马志远, 周佳颖, 张振华. 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022, 46(9): 995-1004. |
[11] | 党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖. 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022, 46(9): 971-983. |
[12] | 李肖, PIALUANG Bounthong, 康文辉, 冀晓东, 张海江, 薛治国, 张志强. 近几十年来冀西北山地白桦次生林径向生长对气候变化的响应[J]. 植物生态学报, 2022, 46(8): 919-931. |
[13] | 苏启陶, 杜志喧, 周兵, 廖永辉, 王呈呈, 肖宜安. 牯岭凤仙花及其传粉昆虫在中国的潜在分布区域分析[J]. 植物生态学报, 2022, 46(7): 785-796. |
[14] | 胡潇飞, 魏临风, 程琦, 吴星麒, 倪健. 青藏高原地区气候图解数据集[J]. 植物生态学报, 2022, 46(4): 484-492. |
[15] | 原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕. 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022, 46(2): 162-175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19