植物生态学报 ›› 2023, Vol. 47 ›› Issue (1): 65-76.DOI: 10.17521/cjpe.2022.0272
曹珍1, 刘永英2, 宋世凯3, 张莉娜4, 高德3,*()
收稿日期:
2022-06-28
接受日期:
2022-08-22
出版日期:
2023-01-20
发布日期:
2022-09-05
通讯作者:
*高德,ORCID:0000-0002-7055-5285(de.gao@hebtu.edu.cn)
基金资助:
CAO Zhen1, LIU Yong-Ying2, SONG Shi-Kai3, ZHANG Li-Na4, GAO De3,*()
Received:
2022-06-28
Accepted:
2022-08-22
Online:
2023-01-20
Published:
2022-09-05
Contact:
*GAO De,ORCID:0000-0002-7055-5285(de.gao@hebtu.edu.cn)
Supported by:
摘要:
小岛屿效应描述了种-面积关系的一种特殊现象, 是当前生物地理学和生物多样性研究理论框架的重要组成部分。随着气候变暖, 山顶物种的生存受到威胁, 然而以山顶生境岛屿为载体对小岛屿效应的研究还十分缺乏。该研究以太行山脉中段19个面积0.06-801.58 km2的山顶生境岛屿为研究区, 在2019-2021年的夏秋季对藓类进行调查。共记录到藓类131种, 隶属于23科68属。采用6种种-面积关系回归模型, 分别检测了所有藓和6个常见藓科是否存在小岛屿效应。根据小岛屿效应形成机制的生境多样性假说、灭亡假说和营养补给假说, 选择了岛屿高度、温度年变化范围和单位面积净初级生产力作为变量, 对小岛屿效应的驱动因素进行分析。在各类群组中, 使用多元线性回归和变差分解分别评估上述3个变量对物种丰富度变化的线性影响。首先使用5个面积最小的岛屿进行分析, 计算出3个变量对物种丰富度变化的贡献, 然后以迭代的方式逐次加入面积更大的1个岛屿, 并再次进行变差分解分析。最后使用广义线性回归分析了3个变量对物种丰富度变化的贡献在迭代过程中的变化趋势。结果显示, 所有藓和6个常见藓科均存在小岛屿效应, 其面积阈值分布在0.36-106.91 km2间。各组藓类小岛屿效应的驱动因素具有差异性, 其中, 除了紫萼藓科之外, 其他各组均支持生境假说; 除了丛藓科、真藓科、紫萼藓科和灰藓科之外, 其他各组均支持灭亡假说; 而各组在不同程度上普遍支持营养补给假说。整体而言, 面积约为10 km2以上的岛屿维持了大量的藓类物种多样性, 需要重点保护。对于生境要求较为单一的紫萼藓科而言, 保护石生环境是保护其物种多样性的关键; 而对于其他科藓类而言, 生境类型多样性的保护是维持物种多样性的重要保障。营养补给假说的普遍适用性揭示了山顶下方森林生态系统的资源补给作用减缓了由于面积的减小而造成的藓类物种数量下降, 因此保护山顶下方林地内物种多样性和群落稳定性对维持山顶藓类物种多样性具有重要意义。
曹珍, 刘永英, 宋世凯, 张莉娜, 高德. 陆地生境岛屿藓类植物小岛屿效应驱动因素分析——以太行山脉中段山顶为例. 植物生态学报, 2023, 47(1): 65-76. DOI: 10.17521/cjpe.2022.0272
CAO Zhen, LIU Yong-Ying, SONG Shi-Kai, ZHANG Li-Na, GAO De. Drivers of the small-island effect in moss assemblages on terrestrial habitat islands: a case study in mountaintops of the Middle Taihang Mountains, China. Chinese Journal of Plant Ecology, 2023, 47(1): 65-76. DOI: 10.17521/cjpe.2022.0272
序号 No. | 地理坐标 Centroid coordinate | 面积 Area (km2) | 高度 Height (m) | Bio7 (℃) | NPP (g·m-2) | 物种丰富度 Species richness | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
所有藓 All mosses | 丛藓科 Pottiaceae | 真藓科 Bryaceae | 紫萼藓科 Grimmiaceae | 青藓科 Brachythe- ciaceae | 绢藓科 Entodontaceae | 灰藓科 Hypnaceae | ||||||
1 | 39.04° N, 113.58° E | 801.58 | 1 142 | 40.81 | 94.94 | 131 | 38 | 11 | 4 | 26 | 10 | 6 |
2 | 39.22° N, 113.76° E | 1.34 | 120 | 42.53 | 1 443.01 | 16 | 7 | 3 | 0 | 2 | 0 | 2 |
3 | 38.81° N, 113.50° E | 17.88 | 306 | 40.66 | 867.33 | 54 | 20 | 3 | 3 | 9 | 5 | 3 |
4 | 38.80° N, 113.57°E | 0.41 | 82 | 40.59 | 3 432.38 | 8 | 2 | 1 | 1 | 2 | 1 | 0 |
5 | 38.81° N, 113.59° E | 10.66 | 250 | 40.52 | 1 155.76 | 40 | 11 | 3 | 4 | 11 | 6 | 0 |
6 | 38.70° N, 113.66° E | 1.21 | 82 | 40.59 | 1 908.49 | 21 | 5 | 2 | 0 | 4 | 2 | 1 |
7 | 38.72° N, 113.64° E | 0.20 | 54 | 40.75 | 6 041.27 | 4 | 1 | 1 | 1 | 0 | 0 | 0 |
8 | 38.73° N, 113.63° E | 0.10 | 48 | 40.95 | 9 896.47 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 38.65° N, 113.66° E | 0.23 | 24 | 40.09 | 8 341.61 | 4 | 0 | 0 | 0 | 1 | 1 | 0 |
10 | 38.65° N, 113.62° E | 3.40 | 168 | 40.43 | 1 329.31 | 41 | 8 | 2 | 2 | 6 | 4 | 3 |
11 | 38.63° N, 113.60° E | 0.36 | 66 | 40.35 | 3 291.90 | 8 | 0 | 2 | 1 | 1 | 0 | 1 |
12 | 38.61° N, 113.57° E | 0.15 | 49 | 40.50 | 8 675.48 | 3 | 0 | 0 | 0 | 0 | 1 | 1 |
13 | 38.62° N, 113.52° E | 0.80 | 82 | 40.59 | 1 599.43 | 21 | 7 | 2 | 1 | 3 | 1 | 0 |
14 | 38.62° N, 113.50° E | 0.43 | 127 | 40.45 | 4 444.29 | 12 | 3 | 2 | 1 | 2 | 1 | 0 |
15 | 38.58° N, 113.58° E | 0.06 | 40 | 40.00 | 7 605.66 | 2 | 1 | 1 | 1 | 0 | 0 | 0 |
16 | 38.99° N, 113.24° E | 169.19 | 672 | 41.35 | 97.15 | 98 | 22 | 6 | 5 | 20 | 8 | 4 |
17 | 38.87° N, 113.15° E | 17.85 | 305 | 41.22 | 336.98 | 56 | 13 | 3 | 3 | 13 | 6 | 4 |
18 | 38.93° N, 113.15° E | 2.55 | 209 | 41.40 | 1 281.10 | 25 | 11 | 3 | 1 | 3 | 3 | 1 |
19 | 38.97° N, 113.11° E | 2.13 | 215 | 41.30 | 2 323.03 | 32 | 15 | 4 | 1 | 4 | 3 | 2 |
表1 太行山脉中段19个山顶的概况
Table 1 Introduction to the 19 studied mountaintops of the Middle Taihang Mountains
序号 No. | 地理坐标 Centroid coordinate | 面积 Area (km2) | 高度 Height (m) | Bio7 (℃) | NPP (g·m-2) | 物种丰富度 Species richness | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
所有藓 All mosses | 丛藓科 Pottiaceae | 真藓科 Bryaceae | 紫萼藓科 Grimmiaceae | 青藓科 Brachythe- ciaceae | 绢藓科 Entodontaceae | 灰藓科 Hypnaceae | ||||||
1 | 39.04° N, 113.58° E | 801.58 | 1 142 | 40.81 | 94.94 | 131 | 38 | 11 | 4 | 26 | 10 | 6 |
2 | 39.22° N, 113.76° E | 1.34 | 120 | 42.53 | 1 443.01 | 16 | 7 | 3 | 0 | 2 | 0 | 2 |
3 | 38.81° N, 113.50° E | 17.88 | 306 | 40.66 | 867.33 | 54 | 20 | 3 | 3 | 9 | 5 | 3 |
4 | 38.80° N, 113.57°E | 0.41 | 82 | 40.59 | 3 432.38 | 8 | 2 | 1 | 1 | 2 | 1 | 0 |
5 | 38.81° N, 113.59° E | 10.66 | 250 | 40.52 | 1 155.76 | 40 | 11 | 3 | 4 | 11 | 6 | 0 |
6 | 38.70° N, 113.66° E | 1.21 | 82 | 40.59 | 1 908.49 | 21 | 5 | 2 | 0 | 4 | 2 | 1 |
7 | 38.72° N, 113.64° E | 0.20 | 54 | 40.75 | 6 041.27 | 4 | 1 | 1 | 1 | 0 | 0 | 0 |
8 | 38.73° N, 113.63° E | 0.10 | 48 | 40.95 | 9 896.47 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 38.65° N, 113.66° E | 0.23 | 24 | 40.09 | 8 341.61 | 4 | 0 | 0 | 0 | 1 | 1 | 0 |
10 | 38.65° N, 113.62° E | 3.40 | 168 | 40.43 | 1 329.31 | 41 | 8 | 2 | 2 | 6 | 4 | 3 |
11 | 38.63° N, 113.60° E | 0.36 | 66 | 40.35 | 3 291.90 | 8 | 0 | 2 | 1 | 1 | 0 | 1 |
12 | 38.61° N, 113.57° E | 0.15 | 49 | 40.50 | 8 675.48 | 3 | 0 | 0 | 0 | 0 | 1 | 1 |
13 | 38.62° N, 113.52° E | 0.80 | 82 | 40.59 | 1 599.43 | 21 | 7 | 2 | 1 | 3 | 1 | 0 |
14 | 38.62° N, 113.50° E | 0.43 | 127 | 40.45 | 4 444.29 | 12 | 3 | 2 | 1 | 2 | 1 | 0 |
15 | 38.58° N, 113.58° E | 0.06 | 40 | 40.00 | 7 605.66 | 2 | 1 | 1 | 1 | 0 | 0 | 0 |
16 | 38.99° N, 113.24° E | 169.19 | 672 | 41.35 | 97.15 | 98 | 22 | 6 | 5 | 20 | 8 | 4 |
17 | 38.87° N, 113.15° E | 17.85 | 305 | 41.22 | 336.98 | 56 | 13 | 3 | 3 | 13 | 6 | 4 |
18 | 38.93° N, 113.15° E | 2.55 | 209 | 41.40 | 1 281.10 | 25 | 11 | 3 | 1 | 3 | 3 | 1 |
19 | 38.97° N, 113.11° E | 2.13 | 215 | 41.30 | 2 323.03 | 32 | 15 | 4 | 1 | 4 | 3 | 2 |
模型 Model | 方程式 Equation |
---|---|
1 | S = c + (log A ≤ T) × z1 × log A + (log A > T) × (z1 × T + z2 × (log A ? T)) |
2 | S = c + (log A ≤ T) (z1 × log A + (z2 ? z1) × T) + (log A > T) × z2 × log A |
3 | S = c + (log A > T) × z1 × (log A ? T) |
4 | S = c + (log A ≤ T) × z1 × T + (log A > T) × z1 × log A |
5 | S = c + z1 × log A |
6 | S = c |
表2 6种小岛屿效应检测模型的方程式
Table 2 Equations of the six models of for the small-island effect detection
模型 Model | 方程式 Equation |
---|---|
1 | S = c + (log A ≤ T) × z1 × log A + (log A > T) × (z1 × T + z2 × (log A ? T)) |
2 | S = c + (log A ≤ T) (z1 × log A + (z2 ? z1) × T) + (log A > T) × z2 × log A |
3 | S = c + (log A > T) × z1 × (log A ? T) |
4 | S = c + (log A ≤ T) × z1 × T + (log A > T) × z1 × log A |
5 | S = c + z1 × log A |
6 | S = c |
图2 太行山脉中段藓类植物小岛屿效应的分段回归模型中每个片段的计算方式示意图。红线表示通过回归获得的片段, 绿线表示通过斜率迭代获得的片段, 黑线表示通过直接继承获得的片段。模型(Model)见表2。
Fig. 2 Schematic illustration of the derivation of each segment in each piecewise model used for the detection of the small-island effect in moss assemblages in mountaintops of the Middle Taihang Mountains. Red line signifies the segment is obtained by regression, green line signifies the segment is obtained by slope iteration and black line signifies the segment is obtained by direct inheritance. Models see Table 2.
图3 太行山脉中段山顶生境岛屿藓类植物的种-面积关系最佳模型拟合结果。模型(Model)同表2。
Fig. 3 Best-performed species-area models for each taxonomic group of mosses in mountaintops of the Middle Taihang Mountains. Models see Table 2.
类群 Group | 模型 Model | 参数 Parameter | 模型比较 Model comparison | |||||
---|---|---|---|---|---|---|---|---|
c | z1 | z2 | T | K | AICc | ?AICc | ||
所有藓 All mosses | 1 | 20.454 | 20.794 | 46.911 | 0.993 | 5 | 121.141 | 0.000 |
2 | -5.501 | 20.788 | 46.918 | 0.993 | 5 | 121.141 | 0.000 | |
3 | 5.375 | 37.009 | - | -0.256 | 4 | 131.054 | 9.913 | |
4 | 14.847 | 37.007 | - | -0.256 | 4 | 131.054 | 9.913 | |
5 | 23.240 | 30.572 | - | - | 3 | 142.795 | 21.654 | |
6 | 30.421 | - | - | - | 2 | 192.487 | 71.346 | |
丛藓科 Pottiaceae | 1 | 6.381 | 7.149 | 26.343 | 2.338 | 5 | 103.098 | 0.000 |
2 | -30.776 | 7.023 | 23.684 | 2.228 | 5 | 103.140 | 0.042 | |
3 | 0.400 | 9.336 | - | -0.565 | 4 | 104.286 | 1.188 | |
4 | 5.671 | 9.338 | - | -0.565 | 4 | 104.286 | 1.188 | |
5 | 6.638 | 8.486 | - | - | 3 | 105.326 | 2.228 | |
6 | 8.632 | - | - | - | 2 | 144.723 | 41.625 | |
真藓科 Bryaceae | 1 | 1.933 | 1.277 | 7.404 | 2.029 | 5 | 57.149 | 3.556 |
2 | -10.492 | 1.278 | 7.401 | 2.029 | 5 | 53.593 | 0.000 | |
3 | 0.333 | 2.159 | - | -0.766 | 4 | 67.572 | 13.979 | |
4 | 1.986 | 2.160 | - | -0.765 | 4 | 67.572 | 13.979 | |
5 | 2.097 | 2.049 | - | - | 3 | 65.763 | 12.170 | |
6 | 2.578 | - | - | - | 2 | 102.796 | 49.203 | |
紫萼藓科 Grimmiaceae | 1 | 0.655 | 0.099 | 1.697 | 0.083 | 5 | 54.778 | 3.788 |
2 | 0.646 | 0.235 | 1.630 | 0.082 | 5 | 54.353 | 3.363 | |
3 | 0.667 | 1.630 | - | 0.012 | 4 | 50.990 | 0.000 | |
4 | 0.647 | 1.630 | - | 0.012 | 4 | 50.990 | 0.000 | |
5 | 1.243 | 1.206 | - | - | 3 | 51.573 | 0.583 | |
6 | 1.526 | - | - | - | 2 | 74.185 | 23.195 | |
青藓科 Brachytheciaceae | 1 | 2.815 | 2.876 | 8.756 | 0.383 | 5 | 66.383 | 0.000 |
2 | 0.559 | 2.873 | 8.757 | 0.383 | 5 | 66.383 | 0.000 | |
3 | 1.000 | 8.350 | - | -0.040 | 4 | 72.068 | 5.685 | |
4 | 1.332 | 8.350 | - | -0.040 | 4 | 72.068 | 5.685 | |
5 | 4.145 | 6.329 | - | - | 3 | 87.961 | 21.578 | |
6 | 5.632 | - | - | - | 2 | 132.999 | 66.616 | |
绢藓科 Entodontaceae | 1 | 1.111 | 0.875 | 3.039 | -0.221 | 5 | 54.090 | 3.177 |
2 | 1.589 | 0.875 | 3.039 | -0.221 | 5 | 54.090 | 3.177 | |
3 | 0.400 | 2.959 | - | -0.444 | 4 | 50.915 | 0.002 | |
4 | 1.693 | 2.973 | - | -0.444 | 4 | 50.913 | 0.000 | |
5 | 2.122 | 2.619 | - | - | 3 | 54.422 | 3.509 | |
6 | 2.737 | - | - | - | 2 | 99.466 | 48.553 | |
灰藓科 Hypnaceae | 1 | 0.386 | 0.194 | 1.599 | -0.366 | 5 | 61.641 | 3.700 |
2 | 0.908 | 0.213 | 1.594 | -0.366 | 5 | 61.641 | 3.700 | |
3 | 0.286 | 1.614 | - | -0.367 | 4 | 57.941 | 0.000 | |
4 | 0.852 | 1.630 | - | -0.367 | 4 | 57.944 | 0.003 | |
5 | 1.146 | 1.395 | - | - | 3 | 61.576 | 3.635 | |
6 | 1.474 | - | - | - | 2 | 86.151 | 28.210 |
表3 太行山脉中段山顶生境岛屿藓类植物的种-面积关系拟合结果
Table 3 Modeling results of species-area relationships of mosses in mountaintops of the Middle Taihang Mountains
类群 Group | 模型 Model | 参数 Parameter | 模型比较 Model comparison | |||||
---|---|---|---|---|---|---|---|---|
c | z1 | z2 | T | K | AICc | ?AICc | ||
所有藓 All mosses | 1 | 20.454 | 20.794 | 46.911 | 0.993 | 5 | 121.141 | 0.000 |
2 | -5.501 | 20.788 | 46.918 | 0.993 | 5 | 121.141 | 0.000 | |
3 | 5.375 | 37.009 | - | -0.256 | 4 | 131.054 | 9.913 | |
4 | 14.847 | 37.007 | - | -0.256 | 4 | 131.054 | 9.913 | |
5 | 23.240 | 30.572 | - | - | 3 | 142.795 | 21.654 | |
6 | 30.421 | - | - | - | 2 | 192.487 | 71.346 | |
丛藓科 Pottiaceae | 1 | 6.381 | 7.149 | 26.343 | 2.338 | 5 | 103.098 | 0.000 |
2 | -30.776 | 7.023 | 23.684 | 2.228 | 5 | 103.140 | 0.042 | |
3 | 0.400 | 9.336 | - | -0.565 | 4 | 104.286 | 1.188 | |
4 | 5.671 | 9.338 | - | -0.565 | 4 | 104.286 | 1.188 | |
5 | 6.638 | 8.486 | - | - | 3 | 105.326 | 2.228 | |
6 | 8.632 | - | - | - | 2 | 144.723 | 41.625 | |
真藓科 Bryaceae | 1 | 1.933 | 1.277 | 7.404 | 2.029 | 5 | 57.149 | 3.556 |
2 | -10.492 | 1.278 | 7.401 | 2.029 | 5 | 53.593 | 0.000 | |
3 | 0.333 | 2.159 | - | -0.766 | 4 | 67.572 | 13.979 | |
4 | 1.986 | 2.160 | - | -0.765 | 4 | 67.572 | 13.979 | |
5 | 2.097 | 2.049 | - | - | 3 | 65.763 | 12.170 | |
6 | 2.578 | - | - | - | 2 | 102.796 | 49.203 | |
紫萼藓科 Grimmiaceae | 1 | 0.655 | 0.099 | 1.697 | 0.083 | 5 | 54.778 | 3.788 |
2 | 0.646 | 0.235 | 1.630 | 0.082 | 5 | 54.353 | 3.363 | |
3 | 0.667 | 1.630 | - | 0.012 | 4 | 50.990 | 0.000 | |
4 | 0.647 | 1.630 | - | 0.012 | 4 | 50.990 | 0.000 | |
5 | 1.243 | 1.206 | - | - | 3 | 51.573 | 0.583 | |
6 | 1.526 | - | - | - | 2 | 74.185 | 23.195 | |
青藓科 Brachytheciaceae | 1 | 2.815 | 2.876 | 8.756 | 0.383 | 5 | 66.383 | 0.000 |
2 | 0.559 | 2.873 | 8.757 | 0.383 | 5 | 66.383 | 0.000 | |
3 | 1.000 | 8.350 | - | -0.040 | 4 | 72.068 | 5.685 | |
4 | 1.332 | 8.350 | - | -0.040 | 4 | 72.068 | 5.685 | |
5 | 4.145 | 6.329 | - | - | 3 | 87.961 | 21.578 | |
6 | 5.632 | - | - | - | 2 | 132.999 | 66.616 | |
绢藓科 Entodontaceae | 1 | 1.111 | 0.875 | 3.039 | -0.221 | 5 | 54.090 | 3.177 |
2 | 1.589 | 0.875 | 3.039 | -0.221 | 5 | 54.090 | 3.177 | |
3 | 0.400 | 2.959 | - | -0.444 | 4 | 50.915 | 0.002 | |
4 | 1.693 | 2.973 | - | -0.444 | 4 | 50.913 | 0.000 | |
5 | 2.122 | 2.619 | - | - | 3 | 54.422 | 3.509 | |
6 | 2.737 | - | - | - | 2 | 99.466 | 48.553 | |
灰藓科 Hypnaceae | 1 | 0.386 | 0.194 | 1.599 | -0.366 | 5 | 61.641 | 3.700 |
2 | 0.908 | 0.213 | 1.594 | -0.366 | 5 | 61.641 | 3.700 | |
3 | 0.286 | 1.614 | - | -0.367 | 4 | 57.941 | 0.000 | |
4 | 0.852 | 1.630 | - | -0.367 | 4 | 57.944 | 0.003 | |
5 | 1.146 | 1.395 | - | - | 3 | 61.576 | 3.635 | |
6 | 1.474 | - | - | - | 2 | 86.151 | 28.210 |
图4 岛屿高度(h)、温度年变化范围(Bio7)和单位面积净初级生产力(NPP)对藓类物种数量变异的贡献趋势。
Fig. 4 Contribution trend of island height (h), annual temperature range (Bio7) and net primary productivity per unit area (NPP) to moss species richness variance.
[1] |
Anderson WB, Wait DA (2001). Subsidized Island Biogeography Hypothesis: another new twist on an old theory. Ecology Letters, 4, 289-291.
DOI URL |
[2] |
Boyle WA (2008). Can variation in risk of nest predation explain altitudinal migration in tropical birds? Oecologia, 155, 397-403.
DOI PMID |
[3] |
Boyle WA, Norris DR, Guglielmo CG (2010). Storms drive altitudinal migration in a tropical bird. Proceedings of the Royal Society B: Biological Sciences, 277, 2511-2519.
DOI URL |
[4] |
Brown JH (1971). Mammals on mountaintops: nonequilibrium insular biogeography. The American Naturalist, 105, 467-478.
DOI URL |
[5] | Burnham KP, Anderson DR (2002). Model Selection and Multimodel Inference: a Practical Information-theoretic Approach. Springer, New York. |
[6] | Chaves-Campos J (2004). Elevational movements of large frugivorous birds and temporal variation in abundance of fruits along an elevational gradient. Ornitologia Neotropical, 15, 433-445. |
[7] |
Chen CW, Yang XR, Tan XW, Wang YP (2020). The role of habitat diversity in generating the small-island effect. Ecography, 43, 1241-1249.
DOI URL |
[8] | Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026. |
[9] |
Crist TO, Veech JA (2006). Additive partitioning of rarefaction curves and species-area relationships: unifying alpha-, beta- and gamma-diversity with sample size and habitat area. Ecology Letters, 9, 923-932.
PMID |
[10] |
Dengler J (2010). Robust methods for detecting a small island effect. Diversity and Distributions, 16, 256-266.
DOI URL |
[11] |
Ficetola GF, Denoёl M (2009). Ecological thresholds: an assessment of methods to identify abrupt changes in species- habitat relationships. Ecography, 32, 1075-1084.
DOI URL |
[12] |
Fleishman E, Ray C, Sjogren-Gulve P, Boggs CL, Murphy DD (2002). Assessing the roles of patch quality, area, and isolation in predicting metapopulation dynamics. Conservation Biology, 16, 706-716.
DOI URL |
[13] |
Francisco-Ramos V, Arias-González JE (2013). Additive partitioning of coral reef fish diversity across hierarchical spatial scales throughout the Caribbean. PLoS ONE, 8, e78761. DOI: 10.1371/journal.pone.0078761.
DOI |
[14] |
Gao D, Cao Z, Xu P, Perry G (2019). On piecewise models and species-area patterns. Ecology and Evolution, 9, 8351-8361.
DOI |
[15] |
Gao D, Fu LQ, Sun JX, Li Y, Cao Z, Liu YY, Xu P, Zhao JC (2021). The mid-domain effect and habitat complexity applied to elevational gradients: moss species richness in a temperate semihumid monsoon climate mountain of China. Ecology and Evolution, 11, 7448-7460.
DOI PMID |
[16] |
Gao D, Perry G (2016a). Detecting the small island effect and nestedness of herpetofauna of the West Indies. Ecology and Evolution, 6, 5390-5403.
DOI URL |
[17] |
Gao D, Perry G (2016b). Species-area relationships and additive partitioning of diversity of native and nonnative herpetofauna of the West Indies. Ecology and Evolution, 6, 7742-7762.
DOI URL |
[18] |
Gao D, Wang YP (2022). A global synthesis of the small-island effect in amphibians and reptiles. Ecography, 2022, e05957. DOI: 10.1111/ecog.05957.
DOI |
[19] |
Gilpin ME, Diamond JM (1976). Calculation of immigration and extinction curves from the species-area-distance relation. Proceedings of the National Academy of Sciences of the United States of America, 73, 4130-4134.
PMID |
[20] |
He XL, He KS, Hyvönen J (2016). Will bryophytes survive in a warming world? Perspectives in Plant Ecology, Evolution and Systematics, 19, 49-60.
DOI URL |
[21] |
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965-1978.
DOI URL |
[22] | Jarvis A, Reuter HI, Nelson A, Guevara E (2008). Hole-filled seamless SRTM data V4, International Centre for Tropical Agriculture (CIAT).[2022-06-01]http://srtm.csi.cgiar.org. |
[23] |
Jensen DA, Ma KP, Svenning JC (2020). Steep topography buffers threatened gymnosperm species against anthropogenic pressures in China. Ecology and Evolution, 10, 1838-1855.
DOI PMID |
[24] |
Kimura MT (2021). Altitudinal migration of insects. Entomological Science, 24, 35-47.
DOI URL |
[25] | Kürschner H (2004). Life strategies and adaptations in bryophytes from the Near and Middle East. Turkish Journal of Botany, 28, 73-84. |
[26] |
Lenoir J, Svenning JC (2015). Climate-related range shifts—A global multidimensional synthesis and new research directions. Ecography, 38, 15-28.
DOI URL |
[27] |
Lomolino MV (2000). Ecology’s most general, yet protean pattern: the species-area relationship. Journal of Biogeography, 27, 17-26.
DOI URL |
[28] |
Lomolino MV, Weiser MD (2001). Towards a more general species-area relationship: diversity on all islands, great and small. Journal of Biogeography, 28, 431-445.
DOI URL |
[29] | MacArthur RH, Wilson EO (1967). The Theory of Island Biogeography. Princeton University Press, Princeton, USA. |
[30] | Marris E (2007). The escalator effect. Nature Reports Climate Change, 1, 94-96. |
[31] |
Matthews TJ, Rigal F, Kougioumoutzis K, Trigas P, Triantis KA (2020). Unravelling the small-island effect through phylogenetic community ecology. Journal of Biogeography, 47, 2341-2352.
DOI URL |
[32] |
Matthews TJ, Steinbauer MJ, Tzirkalli E, Triantis KA, Whittaker RJ (2014). Thresholds and the species-area relationship: a synthetic analysis of habitat island datasets. Journal of Biogeography, 41, 1018-1028.
DOI URL |
[33] |
Menegotto A, Rangel TF, Schrader J, Weigelt P, Kreft H (2020). A global test of the subsidized island biogeography hypothesis. Global Ecology and Biogeography, 29, 320-330.
DOI |
[34] |
Morrison LW (2014). The small-island effect: empty islands, temporal variability and the importance of species composition. Journal of Biogeography, 41, 1007-1017.
DOI URL |
[35] |
Niering WA (1963). Terrestrial ecology of Kapingamarangi Atoll, Caroline Islands. Ecological Monographs, 33, 131-160.
DOI URL |
[36] |
Pageau C, Vale MM, de Menezes MA, Barçante L, Shaikh M, Alves MAS, Reudink MW (2020). Evolution of altitudinal migration in passerines is linked to diet. Ecology and Evolution, 10, 3338-3345.
DOI PMID |
[37] |
Patiño J, Weigelt P, Guilhaumon F, Kreft H, Triantis KA, Naranjo-Cigala A, Sólymos P, Vanderpoorten A (2014). Differences in species-area relationships among the major lineages of land plants: a macroecological perspective. Global Ecology and Biogeography, 23, 1275-1283.
DOI URL |
[38] |
Prugh LR, Hodges KE, Sinclair ARE, Brashares JS (2008). Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences of the United States of America, 105, 20770-20775.
DOI PMID |
[39] |
Schnabel F, Liu XJ, Kunz M, Barry KE, Bongers FJ, Bruelheide H, Fichtner A, Härdtle W, Li S, Pfaff CT, Schmid B, Schwarz JA, Tang ZY, Yang B, Bauhus J, et al. (2021). Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment. Science Advances, 7, eabk1643. DOI: 10.1126/sciadv.abk1643.
DOI |
[40] |
Schrader J, König C, Triantis KA, Trigas P, Kreft H, Weigelt P (2020). Species-area relationships on small islands differ among plant growth forms. Global Ecology and Biogeography, 29, 814-829.
DOI URL |
[41] |
Sekercioglu CH, Schneider SH, Fay JP, Loarie SR (2008). Climate change, elevational range shifts, and bird extinctions. Conservation Biology, 22, 140-150.
DOI PMID |
[42] |
Sfenthourakis S, Triantis KA (2009). Habitat diversity, ecological requirements of species and the Small Island Effect. Diversity and Distributions, 15, 131-140.
DOI URL |
[43] |
Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR (2012). The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology, 18, 3279-3290.
DOI URL |
[44] | Triantis KA, Vardinoyannis K, Tsolaki EP, Botsaris I, Lika K, Mylonas M (2006). Re-approaching the small island effect. Journal of Biogeography, 33, 914-923. |
[45] | Vanderpoorten A, Goffinet B (2009). Introduction to Bryophytes. Cambridge University Press, London. |
[46] |
Wang YP, Chen CW, Millien V (2018a). A global synthesis of the small-island effect in habitat islands. Proceedings of the Royal Society B: Biological Sciences, 285, 20181868. DOI: 10.1098/rspb.2018.1868.
DOI |
[47] |
Wang YP, Millien V, Ding P (2016). On empty islands and the small-island effect. Global Ecology and Biogeography, 25, 1333-1345.
DOI URL |
[48] |
Wang YP, Wang X, Wu Q, Chen CS, Xu AC, Ding P (2018b). The small-island effect in amphibian assemblages on subtropical land-bridge islands of an inundated lake. Current Zoology, 64, 303-309.
DOI URL |
[49] |
Watson DM (2002). A conceptual framework for studying species composition in fragments, islands and other patchy ecosystems. Journal of Biogeography, 29, 823-834.
DOI URL |
[50] |
Whitehead DR, Jones CE (1969). Small islands and the equilibrium theory of insular biogeography. Evolution, 23, 171-179.
DOI PMID |
[51] |
Yu J, Li DD, Zhang ZY, Guo SL (2020). Species-area relationship and small-island effect of bryophytes on the Zhoushan Archipelago, China. Journal of Biogeography, 47, 978-992.
DOI URL |
[52] |
Yu J, Shen L, Li DD, Guo SL (2019). Determinants of bryophyte species richness on the Zhoushan Archipelago, China. Basic and Applied Ecology, 37, 38-50.
DOI URL |
[53] |
Zajac RN, Vozarik JM, Gibbons BR (2013). Spatial and temporal patterns in macrofaunal diversity components relative to sea floor landscape structure. PLoS ONE, 8, e65823. DOI: 10.1371/journal.pone.0065823.
DOI |
[54] | Zhang YM, Cao T, Pan BR (2002). A review on the studies of bryophyte ecology in arid and semi-arid areas. Acta Ecologica Sinica, 22, 1129-1134. |
[ 张元明, 曹同, 潘伯荣 (2002). 干旱与半干旱地区苔藓植物生态学研究综述. 生态学报, 22, 1129-1134.] | |
[55] | Zhu Y, Sheng S, Zheng JF, Wu S, Zhang K, Xu Y (2022). Small-island effect in bird assemblages on fragmented woodlots in Huaxi university areas, Guizhou, China. Chinese Journal of Zoology, 57, 205-212. |
[ 朱芸, 盛尚, 郑进凤, 伍素, 张凯, 徐雨 (2022). 贵州花溪大学城破碎化林地中鸟类群落的小岛屿效应. 动物学杂志, 57, 205-212.] |
[1] | 谭丽萍, 刘苏峡, 莫兴国, 杨丽虎, 林忠辉. 华北人工林水热碳通量环境影响因子分析[J]. 植物生态学报, 2015, 39(8): 773-784. |
[2] | 姜俊, 张春雨, 赵秀海. 吉林蛟河42 hm2针阔混交林样地植物种-面积关系[J]. 植物生态学报, 2012, 36(1): 30-38. |
[3] | 池秀莲, 唐志尧. 面积、温度及分布区限制对物种丰富度海拔格局的影响: 以秦岭太白山为例[J]. 植物生态学报, 2011, 35(4): 362-370. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19