Chin J Plan Ecolo ›› 2017, Vol. 41 ›› Issue (12): 1239-1250.doi: 10.17521/cjpe.2017.0208

• Research Articles • Previous Articles     Next Articles

Main factors driving changes in soil respiration under altering precipitation regimes and the controlling processes

YANG Qing-Xiao1,2, TIAN Da-Shuan2, ZENG Hui1,4,*(), NIU Shu-Li2,3   

  1. 1School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen 518055, China

    2Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

    3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
    4Key Laboratory for Earth Surface Processes of the Ministry of Education, Department of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
  • Online:2018-02-23 Published:2017-12-10
  • Contact: ZENG Hui

Abstract: Aims Our objective was to determine the effects of changes in global pattern of precipitation on soil respiration and the controlling factors. Methods Data were collected from literature on precipitation manipulation experiments globally and a meta-analysis was conducted to synthesize the responses of soil respiration to changes in precipitation regimes. Important findings We found that an increased precipitation stimulated soil respiration while a decreased precipitation suppressed it. When changes in rainfall were normalized to the average treatment level (41% of the current annual precipitation), the level of increases in soil respiration with increased precipitation (49%) were higher than that of decreases with decreased precipitation (21%), showing an asymmetric responses of soil respiration to increases and decreases in precipitation. Soil moisture occurred as the most predominant factor driving the changes in soil respiration under altered precipitation. Changes in soil moisture affected soil respiration directly and indiscreetly by changing aboveground/belowground net primary productivity and microbial biomass carbon, which collectively contributed 98% of variations in soil respiration. In addition, the responses of soil respiration to altered precipitation varied with background temperature and precipitation. The sensitivity of soil respiration increased with local mean annual temperature when precipitation was reduced, while remaining unchanged when precipitation was increased. Meanwhile, the sensitivity of soil respiration to either increases or decreases in precipitation decreased with increasing local mean annual precipitation. Under future altered precipitation regimes, the sensitivity of soil respiration to changes in precipitation is likely dependent of local environment conditions.

Key words: soil respiration, carbon cycle, meta-analysis, precipitation change

Fig. 1

Regressional relationships of soil moisture (A) and soil respiration (B) with percentage changes of precipitation. The filled circles represent increased precipitation, and the open circles represent decreased precipitation. p < 0.01, statistically highly significant; p < 0.05, statistically significant."

Fig. 2

Changes of normalized soil respiration in overall and different ecosystems under increased or decreased precipitation (effect size ± 95% confidence interval). The white bars represent the negative effects of decreased precipitation while the black bars represent the positive effects of increased precipitation. The values beside the bars indicate sample sizes used in meta-analysis.* means statistically significant."

Fig. 3

Regressional relationships of soil respiration with soil moisture (A), aboveground net primary productivity (B), belowground net primary productivity (C), and microbial biomass carbon (D). The filled circles represent increased precipitation, and the open circles represent decreased precipitation. p < 0.01, statistically highly significant; p < 0.05, statistically significant."

Fig. 4

A structural equation model of the effects of soil moisture, aboveground net primary productivity, belowground net primary productivity, and microbial biomass carbon on soil respiration. Gray and black arrows represent significant positive and negative pathways, respectively. Values beside the arrows indicate the standard path coefficients. Arrow width is proportional to the strength of the relationship. R2 values represent the proportion of variance explainable by each variable in the model. ***, p < 0.001; **, p < 0.01; *, p < 0.05. χ2 = 0.49, p = 0.48, comparative fit index (CFI) = 1.00, root mean square error of approximation (RMSEA) = 0.00, Akaike information criteria (AIC) = 38.49."

Fig. 5

Regressional relationships between response ratio of soil respiration and response ratio of soil moisture under increased or decreased precipitation (A, D). Different sensitivities of changes in soil respiration to soil moisture under increased or decreased precipitation in different conditional mean annual temperature (℃; B, E) and mean annual precipitation (mm; C, F). Black line, dash line and gray line represent the regression relationships between response ratio of soil respiration and response ratio of soil moisture under three precipitation or three temperature gradients, respectively. S1, S2, and S3 represent slopes of the three regression lines, respectively. A, B, and C, Increased precipitation treatment. D, E, and F, Decreased precipitation treatments. p < 0.01, statistically highly significant; p < 0.05, statistically significant. RR, response ratio."

1 Aanderud ZT, Schoolmaster DR, Lennon JT (2011). Plants mediate the sensitivity of soil respiration to rainfall variability.Ecosystems, 14, 156-167.
doi: 10.1007/s10021-010-9401-y
2 Allan RP, Soden BJ (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481-1484.
doi: 10.1126/science.1160787
3 Bai YF, Han XG, Wu JG, Chen ZZ, Li LH (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland.Nature, 431, 181-184.
doi: 10.1038/nature02850 pmid: 202020202020202020202020
4 Bai W, Wan S, Niu S, Liu W, Chen Q, Wang Q, Zhang W, Han X, Li L (2010). Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling.Global Change Biology, 16, 1306-1316.
doi: 10.1111/gcb.2010.16.issue-4
5 Bao F, Zhou GS (2010). Review of research advances in soil respiration of grassland in China.Chinese Journal of Plant Ecology, 34, 713-726.(in Chinese with English abstract) [鲍芳, 周广胜 (2010). 中国草原土壤呼吸作用研究进展. 植物生态学报, 34, 713-726.]
doi: 10.3773/j.issn.1005-264x.2010.06.011
6 Beier C, Beierkuhnlein C, Wohlgemuth T, Penuelas J, Emmett B, Korner C, de Boeck H, Christensen JH, Leuzinger S, Janssens IA, Hansen K (2012). Precipitation manipulation experiments—Challenges and recommendations for the future.Ecology Letters, 15, 899-911.
doi: 10.1111/j.1461-0248.2012.01793.x
7 Borken W, Xu YJ, Davidson EA, Beese A (2002). Site and temporal variation of soil respiration in European beech, Norway spruce, and Scots pine forests.Global Change Biology, 8, 1205-1216.
doi: 10.1046/j.1365-2486.2002.00547.x
8 Chen SP, Lin GH, Huang JH, He M (2008). Responses of soil respiration to simulated precipitation pulses in semiarid steppe under different grazing regimes.Journal of Plant Ecology, 1, 237-246.
doi: 10.1093/jpe/rtn020
9 Chen SP, Lin GH, Huang JH, Jenerette GD (2009). Dependence of carbon sequestration on the differential responses of ecosystem photosynthesis and respiration to rain pulses in a semiarid steppe.Global Change Biology, 15, 2450-2461.
doi: 10.1111/j.1365-2486.2009.01879.x
10 Chimner RA, Welker JM, Morgan J, Lecain D, Reeder J (2010). Experimental manipulations of winter snow and summer rain influence ecosystem carbon cycling in a mixed-grass prairie, Wyoming, USA.Ecohydrology, 3, 284-293.
doi: 10.1002/eco.106
11 Cleveland CC, Wieder WR, Reed SC, Townsend AR (2010). Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere.Ecology, 91, 2313-2323.
doi: 10.1890/09-1582.1 pmid: 20836453
12 Cox PM, Betts RA, Jones CD, Spall SA, Totterdell IJ (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model.Nature, 408, 184-187.
doi: 10.1038/35041539 pmid: 11089968
13 Dai AG (2013). Increasing drought under global warming in observations and models.Nature Climate Change, 3, 52-58.
doi: 10.1038/nclimate1633
14 Deng Q, Hui DF, Chu GW, Han X, Zhang QF (2017). Rain- induced changes in soil CO2 flux and microbial community composition in a tropical forest of China.Scientific Reports, 7, 5539. doi: 10.1038/s41598-017-06345-2.
doi: 10.1038/s41598-017-06345-2
15 Estiarte M, Vicca S, Penuelas J, Bahn M, Beier C, Emmett BA, Fay PA, Hanson PJ, Hasibeder R, Kigel J, Kroel-Dulay G, Larsen KS, Lellei-Kovacs E, Limousin JM, Ogaya R, Ourcival JM, Reinsch S, Sala OE, Schmidt IK, Sternberg M, Tielborger K, Tietema A, Janssens IA (2016). Few multiyear precipitation-reduction experiments find a shift in the productivity-precipitation relationship.Global Change Biology, 22, 2570-2581.
doi: 10.1111/gcb.13269 pmid: 26946322
16 Fiala K, T?ma I, Holub P (2009). Effect of manipulated rainfall on root production and plant belowground dry mass of different grassland ecosystems.Ecosystems, 12, 906-914.
doi: 10.1007/s10021-009-9264-2
17 Fischer EM, Beyerle U, Knutti R (2013). Robust spatially aggregated projections of climate extremes.Nature Climate Change, 3, 1033-1038.
doi: 10.1038/nclimate2051
18 Flanagan LB, Wever LA, Carlson PJ (2002). Seasonal and interannual variation in carbon dioxide exchange and carbon balance in a northern temperate grassland.Global Change Biology, 8, 599-615.
doi: 10.1051/0004-6361:200810276
19 Guan C, Zhang P, Li XR (2017). Responses of respiration with biocrust cover to water and temperature in the southeastern edge of Tengger Desert, Northwest China.Chinese Journal of Plant Ecology, 41, 301-310.(in Chinese with English abstract) [管超, 张鹏, 李新荣 (2017). 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应. 植物生态学报, 41, 301-310.]
doi: 10.17521/cjpe.2016.0326
20 Gutschick VP, BassiriRad H (2003). Extreme events as shaping physiology, ecology, and evolution of plants: Toward a unified definition and evaluation of their consequences.New Phytologist, 160, 21-42.
doi: 10.1046/j.1469-8137.2003.00866.x
21 Hagedorn F, Joos O (2014). Experimental summer drought reduces soil CO2 effluxes and DOC leaching in Swiss grassland soils along an elevational gradient.Biogeochemistry, 117, 395-412.
doi: 10.1007/s10533-013-9881-x
22 Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000). Separating root and soil microbial contributions to soil respiration: A review of methods and observations.Biogeochemistry, 48, 115-146.
doi: 10.1023/A:1006244819642
23 Harper CW, Blair JM, Fay PA, Knapp AK, Carlisle JD (2005). Increased rainfall variability and reduced rainfall amount decreases soil CO2 flux in a grassland ecosystem. Global Chang Biology, 11, 322-334.
doi: 10.1021/jp0017543
24 Hedges LV, Gurevitch J, Curtis PS (1999). The meta-analysis of response ratios in experimental ecology.Ecology, 80, 1150-1156.
doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
25 Heimann M, Reichstein M (2008). Terrestrial ecosystem carbon dynamics and climate feedbacks.Nature, 451, 289-292.
doi: 10.1038/nature06591
26 Hertel D, Strecker T, Müller-Haubold H, Leuschner C, Guo D (2013). Fine root biomass and dynamics in beech forests across a precipitation gradient — Is optimal resource partitioning theory applicable to water-limited mature trees?Journal of Ecology, 101, 1183-1200.
doi: 10.1111/1365-2745.12124
27 Hungate BA, van Groenigen KJ, Six J, Jastrow JJ, Luo YQ, Graaff MA, Kessel C, Osenberg CW (2009). Assessing the effect of elevated CO2 on soil carbon: A comparison of four meta-analysis.Global Change Biology, 15, 2020-2034.
doi: 10.1016/j.amjcard.2004.01.038
28 Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems.Oecologia, 141, 254-268.
doi: 10.1007/s00442-004-1682-4
29 Inglima I, Alberti G, Bertolini T, Vaccari FP, Gioli B, Miglietta F, Cotrufo MF, Peressotti A (2009). Precipitation pulses enhance respiration of Mediterranean ecosystems: The balance between organic and inorganic components of increased soil CO2 efflux.Global Change Biology, 15, 1289-1301.
doi: 10.1111/gcb.2009.15.issue-5
30 IPCC (Intergovernmental Panel on Climate Change) (2013). Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin DPlattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y eds. Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, UK.
31 Jiang H, Deng Q, Zhou G, Hui D, Zhang D, Liu S, Chu G, Li J (2013). Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China.Biogeosciences, 10, 3963-3982.
doi: 10.5194/bg-10-3963-2013
32 Jiao M, Shen WJ (2014). Effects of seasonal precipitation variation on litter-fall in lower subtropical evergreen broad-leaved forest.Journal of Tropical and Subtropical Botany, 22, 549-557.(in Chinese with English abstract) [焦敏, 申卫军 (2014). 模拟降水分配季节变化对南亚热带常绿阔叶林凋落物的影响. 热带亚热带植物学报, 22, 549-557.]
33 Knapp AK, Beier C, Briske DD, Classen AT, Luo Y, Reichstein M, Smith MD, Smith SD, Bell JE, Fay PA, Heisler JL, Leavitt SW, Sherry R, Smith B, Weng E (2008). Consequences of more extreme precipitation regimes for terrestrial ecosystems.Bioscience ,58, 811-821.
doi: 10.1641/B580908
34 Knapp AK, Ciais P, Smith MD (2017). Reconciling inconsistencies in precipitation-productivity relationships: Implications for climate change.New Phytologist, 214, 41-47.
doi: 10.1111/nph.14381
35 Knapp AK, Hoover DL, Wilcox KR, Avolio ML, Koerner SE, La Pierre KJ, Loik ME, Luo Y, Sala OE, Smith MD (2015). Characterizing differences in precipitation regimes of extreme wet and dry years: Implications for climate change experiments.Global Change Biology, 21, 2624-2633.
doi: 10.1111/gcb.12888 pmid: 25652911
36 Knapp AK, Smith MD (2001). Variation among biomes in temporal dynamics of aboveground primary production.Science, 291, 481-484.
doi: 10.1126/science.291.5503.481
37 Koricheva J, Gurevitch J, Mengersen K (2013). Handbook of Meta-Analysis in Ecology and Evolution. Princeton University Press, Princeton, USA.
38 Li LH, Chen ZZ (1998). Soil respiration in grassland communities in the world.Chinese Journal of Ecology, 17(4), 45-51.(in Chinese with English abstract) [李凌浩, 陈佐忠 (1998). 草地群落的土壤呼吸. 生态学杂志, 17(4), 45-51.]
39 Liu L, Wang X, Lajeunesse MJ, Miao G, Piao S, Wan S, Wu Y, Wang Z, Yang S, Li P, Deng M (2016). A cross-biome synthesis of soil respiration and its determinants under simulated precipitation changes.Global Change Biology, 22, 1394-1405.
doi: 10.1111/gcb.2016.22.issue-4
40 Liu T, Zhang YX, Xu ZZ, Zhou GS, Hou YH, Lin L (2012). Effects of short-term warming and increasing precipitation on soil respiration of desert steppe of Inner Mongolia.Chinese Journal of Plant Ecology, 36, 1043-1053.(in Chinese with English abstract) [刘涛, 张永贤, 许振柱, 周广胜, 侯彦会, 林琳 (2012). 短期增温和增加降水对内蒙古荒漠草原土壤呼吸的影响 . 植物生态学报,36, 1043-1053.]
41 Lu M, Zhou X, Yang Q, Li H, Luo YQ, Fang CM, Chen JK, Yang X, Li B (2013). Responses of ecosystem carbon cycle to experimental warming: A meta-analysis.Ecology, 94, 726-738.
doi: 10.1890/12-0279.1
42 Lü WQ, Wang SJ, Liu XM, Rong L (2011). Influence of rainfall on soil respiration in Karst Urban green space.Earth and Environment, 39(2), 174-180.(in Chinese with English abstract) [吕文强, 王世杰, 刘秀明, 容丽 (2011). 喀斯特地区城市绿地土壤呼吸对降水变化的响应研究. 地球与环境, 39(2), 174-180.]
43 Peng Q, Qi YC, Dong YS, He YT, Liu XC, Sun LJ, Jia JQ, Jin Z (2012). Responses of carbon cycling key processes to precipitation changes in arid and semiarid grassland ecosystems: A review.Process in Geography, 31, 1510-1518.(in Chinese with English abstract) [彭琴, 齐玉春, 董云社, 何亚婷, 刘欣超, 孙良杰, 贾军强, 金钊 (2012). 干旱半干旱地区草地碳循环关键过程对降雨变化的响应. 地理科学进展, 31, 1510-1518.]
44 Poll C, Marhan S, Back F, Niklaus PA, Kandeler E (2013). Field-sacle manipulation of soil temperature and precipitation change soil CO2 flux in a temperate agricultural ecosystem.Agriculture, Ecosystems and Environment, 165, 88-97.
doi: 10.1016/j.agee.2012.12.012
45 Raich JW, Sehlesinger WH (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.Tullus, 44B, 81-99.
46 Reichmann LG, Sala OE, Whitehead D (2014). Differential sensitivities of grassland structural components to changes in precipitation mediate productivity response in a desert ecosystem.Functional Ecology, 28, 1292-1298.
doi: 10.1111/1365-2435.12265
47 Reichstein M, Bahn M, Ciais P, Frank D, Mahecha MD, Seneviratne SI, Zscheischler J, Beer C, Buchmann N, Frank DC, Papale D, Rammig A, Smith P, Thonicke K, van der Velde M, Vicca S, Walz A, Wattenbach M (2013). Climate extremes and the carbon cycle.Nature, 500, 287-295.
doi: 10.1038/nature12350
48 Risch AC, Frank DA (2007). Effects of increased soil water avaulability on grassland ecosystem carbon dioxide fluxes.Biogeochemistry, 86, 91-103.
doi: 10.1007/s10533-007-9148-5
49 Rochette P, Desjardins RL, Pattey E (1991). Spatial and temporal variability of soil respiration in agricultural fields.Canadian Journal of Soil Science, 71, 189-196.
doi: 10.4141/cjss91-018
50 Schuur EAG (2003). Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation.Ecology, 84, 1165-1170.
doi: 10.1890/0012-9658(2003)084[1165:PAGCRT]2.0.CO;2
51 Schuur EAG, Matson PA (2001). Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest.Oecologia, 128, 431-442.
doi: 10.1007/s004420100671 pmid: 24549913
52 Smith NG, Rodgers VL, Brzostek ER, Kulmatiski A, Avolio ML, Hoover DL, Koerner SE, Grant K, Jentsch A, Fatichi S, Niyogi D (2014). Toward a better integration of biological data from precipitation manipulation experiments into Earth system models.Reviews of Geophysics, 52, 412-434.
doi: 10.1002/2014RG000458
53 Sotta ED, Veldkamp E, Schwendenmann L, Guimaraes BR, Paixao RK, Ruivo MDLP, Da Costa ACL, Meir P (2007). Effects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil.Global Change Biology, 13, 2218-2229.
doi: 10.1111/j.1365-2486.2007.01416.x
54 Sponseller RA (2007). Precipitation pulses and soil CO2 flux in a Sonoran Desert ecosystem.Global Change Biology, 13, 426-436.
doi: 10.1111/gcb.2007.13.issue-2
55 Suseela A, Dukes J (2013). The responses of soil and rhizosphere respiration to simulated climatic changes vary by season.Ecology, 94, 403-413.
doi: 10.1890/12-0150.1 pmid: 23691659
56 Thomey ML, Collins SL, Vargas R, Johnson JE, Brown RF, Natvig DO, Friggens MT (2011). Effect of precipitation variability on net primary production and soil respiration in a Chihuahuan Desert grassland.Global Change Biology, 17, 1505-1515.
doi: 10.1111/j.1365-2486.2010.02363.x
57 Vargas R, Collins SL, Thomey M, Johnson JE, Brown RF, Natvig DO, Friggens MT (2012). Precipitation variability and fire influence the temporal dynamics of soil CO2 efflux in an arid grassland. Global Change Biology, 18, 1401-1411.
doi: 10.1111/j.1365-2486.2011.02628.x
58 Vicca S, Bahn M, Estiarte M, van Loon EE, Vargas R, Alberti G, Ambus P, Arain MA, Beier C, Bentley LP, Borken W, Buchmann N, Collins SL, de Dato G, Dukes JS, Escolar C, Fay P, Guidolotti G, Hanson PJ, Kahmen A, Kr?el-Dulay G, Ladreiter-Knauss T, Larsen KS, Lellei-Kovacs E, Lebrija-Trejos E, Maestre FT, Marhan S, Marshall M, Meir P, Miao Y, Muhr J, Niklaus PA, Ogaya R, Pe?uelas J, Poll C, Rustad LE, Savage K, Schindlbacher A, Schmidt IK, Smith AR, Sotta ED, Suseela V, Tietema A, van Gestel N, van Straaten O, Wan S, Weber U, Janssens IA (2014). Can current moisture responses predict soil CO2 efflux under altered precipitation regimes? A synthesis of manipulation experiments.Biogeosciences, 11, 2991-3013.
doi: 10.5194/bg-11-2991-2014
59 Wang X, Liu LL, Piao SL, Janssens IA, Tang JW, Liu WX, Chi YG, Wang J, Xu S (2014). Soil respiration under climate warming: Differential response of heterotrophic and autotrophic respiration.Global Change Biology, 20, 3229-3237.
doi: 10.1111/gcb.2014.20.issue-10
60 Wilcox KR, Blair JM, Smith MD, Knapp AK (2016). Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions?Ecology, 97, 561-568.
61 Wilcox KR, Shi Z, Gherardi LA, Lemoine NP, Koerner SE, Hoover DL, Bork E, Byrne KM, Cahill JJ, Collins SL, Evans S, Gilgen AK, Holub P, Jiang L, Knapp AK, LeCain D, Liang J, Garcia-Palacios P, Penuelas J, Pockman WT, Smith MD, Sun S, White SR, Yahdjian L, Zhu K, Luo YQ (2017). Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.Global Change Biology, 23, 4376-4385.
doi: 10.1111/gcb.13706 pmid: 28370946
62 Wu Z, Dijkstra P, Koch GW, Pe?uelas J, Hungate BA (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation.Global Change Biology, 17, 927-942.
doi: 10.1111/gcb.2010.17.issue-2
63 Xu MJ, Wang HM, Wen XF, Zhang T, Di YB, Wang YD, Wang JL, Cheng CP, Zhang WJ (2017). The full annual carbon balance of a subtropical coniferous plantation is highly sensitive to autumn precipitation.Scientific Reports, 7, 10025. doi: 10.1038/s41598-017-10485-w.
doi: 10.1038/s41598-017-10485-w
64 Xu X, Shi Z, Chen X, Lin Y, Niu S, Jiang L, Luo R, Luo Y (2016). Unchanged carbon balance driven by equivalent responses of production and respiration to climate change in a mixed-grass prairie.Global Change Biology, 22, 1857-1866.
doi: 10.1111/gcb.13192
65 Zhang LH, Chen YN, Zhao RF, Li WH (2009). Impact of temperature and soil water content on soil respiration in temperate deserts, China.Chinese Journal of Plant Ecology, 33, 936-949.(in Chinese with English abstract) [张丽华, 陈亚宁, 赵锐峰, 李卫红 (2009). 温带荒漠中温度和土壤水分对土壤呼吸的影响. 植物生态学报, 33, 936-949.]
doi: 10.3773/j.issn.1005-264x.2009.05.013
66 Zhou GS, Jia BR, Han GX, Zhou L (2008). Toward a general evaluation model for soil respiration (GEMSR).Science in China Series C: Life Sciences, 51, 254-262.
doi: 10.1007/s11427-008-0030-z pmid: 18246313
67 Zhou X, Zhou L, Nie Y, Fu Y, Du Z, Shao J, Zheng Z, Wang X (2016). Similar responses of soil carbon storage to drought and irrigation in terrestrial ecosystems but with contrasting mechanisms: A meta-analysis.Agriculture, Ecosystems & Environment, 228, 70-81.
[1] Chao Yue JInfeng Chang. Developments and applications for terrestrial biosphere model [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[2] Da TiGe Dongdong Wang Zhenke Zhu Liang Wei Xiaomeng Wei. Tracing technology of carbon isotope and its applications to studies of carbon cycling in terrestrial ecosystem [J]. Chin J Plant Ecol, 2020, 44(生态技术与方法专辑): 0-0.
[3] Peng XING Biao Li Yixuan Han Qiujin Gu Hongxiu Wan. Freshwater ecosystems and their response to the global changes-Progress and prospect [J]. Chin J Plant Ecol, 2020, 44(全球变化与生态系统专辑): 0-0.
[4] HU Shu-Ya,DIAO Hua-Jie,WANG Hui-Ling,BO Yuan-Chao,SHEN Yan,SUN Wei,DONG Kuan-Hu,HUANG Jian-Hui,WANG Chang-Hui. Response of soil respiration to addition of different forms of nitrogen and mowing in a saline-alkali grassland in the northern agro-pastoral ecotone [J]. Chin J Plant Ecol, 2020, 44(1): 70-79.
[5] WEN Chao,SHAN Yu-Mei,YE Ru-Han,ZHANG Pu-Jin,MU Lan,CHANG Hong,REN Ting-Ting,CHEN Shi-Ping,BAI Yong-Fei,HUANG Jian-Hui,SUN Hai-Lian. Effects of nitrogen and water addition on soil respiration in a Nei Mongol desert steppe with different intensities of grazing history [J]. Chin J Plant Ecol, 2020, 44(1): 80-92.
[6] HUANG Mei, WANG Na, WANG Zhao-Sheng, GONG He. Modeling phosphorus effects on the carbon cycle in terrestrial ecosystems [J]. Chin J Plant Ecol, 2019, 43(6): 471-479.
[7] Guo Shulei, Zhang Jun, Qi Jianshuang, Yue Runqing, Han Xiaohua, Yan Shufeng, Lu Caixia, Fu Xiaolei, Chen Nana, Ku Lixia, Tie Shuanggui. Analysis of Meta-quantitative Trait Loci and Their Candidate Genes Related to Leaf Shape in Maize [J]. Chin Bull Bot, 2018, 53(4): 487-501.
[8] WANG Xiang, ZHU Ya-Qiong, ZHENG Wei, GUAN Zheng-Xuan, SHENG Jian-Dong. Soil respiration features of mountain meadows under four typical land use types in Zhaosu Basin [J]. Chin J Plan Ecolo, 2018, 42(3): 382-396.
[9] ZHANG Xin, XING Ya-Juan, YAN Guo-Yong, WANG Qing-Gui. Response of fine roots to precipitation change: A meta-analysis [J]. Chin J Plan Ecolo, 2018, 42(2): 164-172.
[10] Kai-Jun YANG, Wan-Qin YANG, Yu TAN, Ruo-Yang HE, Li-Yan ZHUANG, Zhi-Jie LI, Bo TAN, Zhen-Feng XU. Short-term responses of winter soil respiration to snow removal in a Picea asperata forest of western Sichuan [J]. Chin J Plan Ecolo, 2017, 41(9): 964-971.
[11] Chunwang Xiao, Fan Yang, Jingyao Liu, Yong Zhou, Jiaqi Su, Yun Liang, Zhiqin Pei. Advances in Input and Output Processes of Below-ground Carbon of Terrestrial Ecosystems [J]. Chin Bull Bot, 2017, 52(5): 652-668.
[12] Xiao-Gai GE, Ben-Zhi ZHOU, Wen-Fa XIAO, Xiao-Ming WANG, Yong-Hui CAO, Ming YE. Effects of biochar addition on dynamics of soil respiration and temperature sensitivity in a Phyllostachys edulis forest [J]. Chin J Plan Ecolo, 2017, 41(11): 1177-1189.
[13] Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Effects of nitrogen addition on soil respiration in shrublands in Mt. Dongling, Beijing, China [J]. Chin J Plan Ecolo, 2017, 41(1): 81-94.
[14] Jian-Hua ZHANG, Zhi-Yao TANG, Hai-Hua SHEN, Jing-Yun FANG. Responses of growth and litterfall production to nitrogen addition treatments from common shrublands in Mt. Dongling, Beijing, China [J]. Chin J Plan Ecolo, 2017, 41(1): 71-80.
[15] Xiao-Jie LI, Xiao-Fei LIU, De-Cheng XIONG, Wei-Sheng LIN, Ting-Wu LIN, You-Wen SHI, Jin-Sheng XIE, Yu-Sheng YANG. Impact of litterfall addition and exclusion on soil respiration in Cunninghamia lanceolata plantation and secondary Castanopsis carlesii forest in mid-subtropical China [J]. Chin J Plan Ecolo, 2016, 40(5): 447-457.
Full text



[1] Lin liang-qiu;Zhang Qing-qi and Wu Wen-shan. A Study on Pollen Morphology of Rosa laevigata and Its Nutrition Composition[J]. Chin Bull Bot, 1994, 11(04): 43 -44 .
[2] Jie Dong;Fenghui Qi;Yaguang Zhan. Establishment of the Suspension Culture System and Optimization of Biosynthesis of Gallic Acid in Acer ginnala[J]. Chin Bull Bot, 2008, 25(06): 734 -740 .
[3] Li Guo-zhen;Qin Ming-bo;Kang Ning-ling;Xie De-yu;Ye He-chun and Li Guo-feng. Tissue Culture and Chromosome Analysis of Arnebia euchroma[J]. Chin Bull Bot, 1992, 9(01): 37 -41 .
[4] Han Bi-wen. The Synthitic Activities of Roots and their Relation to the Above-grond Parts[J]. Chin Bull Bot, 1984, 2(23): 23 -25 .
[5] Guiling Wang;Zhiwei Qin;Xiuyan Zhou;Zhiyun Zhao. Genetic Analysis and SSR Markers of Tuberculate Trait in Cucumis sativus[J]. Chin Bull Bot, 2007, 24(02): 168 -172 .
[6] Hui Yang;Lizhe An;Zhiye Wang;Jianping Zhou;Xunling Wang. Effects of Enhanced UV-B Radiation on Pollen Activities of 2 Tomato Cultivars in Terms of Endogenous Hormone,Polyamine and Proline Levels in Stamens[J]. Chin Bull Bot, 2007, 24(02): 161 -167 .
[7] Hao Zhao;Zhao Xue-chen;Zheng Shu-jun and Qu Chun-ying. Winter Hardiness of Wheat Seedling at Differant Leaf-Age[J]. Chin Bull Bot, 1985, 3(05): 38 -40 .
[8] Chang Huey-ju;Guan Zhong-tian;Zhou Lin and Hsu Kuo-shih. Comparison of two natural cycad communities in China[J]. Chin Bull Bot, 1995, 12(专辑): 52 -58 .
[9] . Positional Information and Plant Development [J]. Chin Bull Bot, 2005, 22(03): 366 -374 .
[10] Deyong Ren, Guanghua He, Yinghua Ling, Xianchun Sang, Zhenglin Yang, Fangming Zhao. Analysis of Quantitative Trait Loci Additive and Epistasis Effects for Panicle Length with Single Segment Substitution Lines in Rice[J]. Chin Bull Bot, 2010, 45(06): 662 -669 .