植物生态学报 ›› 2016, Vol. 40 ›› Issue (10): 1003-1014.DOI: 10.17521/cjpe.2016.0045
李永强1,2,,A;*, 李治国1,,A;*, 董智3, 王忠武1, 屈志强1, 韩国栋1,,A;,A;*
出版日期:
2016-10-10
发布日期:
2016-11-02
通讯作者:
李永强,李治国,韩国栋
基金资助:
Yong-Qiang LI1,2,*, Zhi-Guo LI1,*, Zhi DONG3, Zhong-Wu WANG1, Zhi-Qiang QU1, Guo-Dong HAN1,**
Online:
2016-10-10
Published:
2016-11-02
Contact:
Yong-Qiang LI,Zhi-Guo LI,Guo-Dong HAN
摘要:
以内蒙古短花针茅(Stipa breviflora)草原为研究对象, 在放牧11年的样地布设BSNE集沙仪, 通过2013年4月到2015年4月4个采样期对短花针茅草原放牧强度与风沙通量的定量关系及风蚀物粒度特征进行了研究。结果表明: (1)放牧强度对风沙通量有显著影响(p < 0.05)。随着放牧强度增强, 风沙通量逐渐增加; 风沙通量对放牧强度的响应存在季节差异, 生长季的日平均风沙通量小于非生长季, 且生长季不同放牧强度间风沙通量差异较大, 其中重度放牧区风沙通量是对照区的5倍, 而非生长季不同放牧强度间风沙通量差异较小, 重度放牧区是对照区的1.7倍; (2)生长季不同高度风沙通量的自然对数和垂直高度之间存在较好的二项式拟合结果, 而非生长季风沙通量的垂直分布没有明显规律; 放牧强度间通量的垂直分布差异主要表现在0-50 cm高度; 在同样高度, 放牧强度大, 垂直通量也大; (3)风蚀沉积物中粒径≤250 μm颗粒富集度随垂直高度变化而变化; 风沙沉积物中, ≤250 μm的颗粒占沉积物总量的85%以上, 沉积物中粒径≤50 μm的颗粒有明显的富集作用, 且随垂直高度增加富集比逐渐增加; 粒径为125-250 μm和50-125 μm的颗粒表现为随垂直高度增加富集比降低的趋势, 且125-250 μm粒径的富集比显著小于50-125 μm颗粒的富集比; 荒漠草原放牧强度对风沙通量有不同程度的影响, 放牧强度越大, 风蚀越重, 风蚀作用强化了重度放牧对草地退化的影响作用。
李永强, 李治国, 董智, 王忠武, 屈志强, 韩国栋. 内蒙古荒漠草原放牧强度对风沙通量和沉积物粒径的影响. 植物生态学报, 2016, 40(10): 1003-1014. DOI: 10.17521/cjpe.2016.0045
Yong-Qiang LI, Zhi-Guo LI, Zhi DONG, Zhong-Wu WANG, Zhi-Qiang QU, Guo-Dong HAN. Effects of grazing intensity on windblown sediment mass flux and particle size distribution in the desert steppe of Nei Mongol, China. Chinese Journal of Plant Ecology, 2016, 40(10): 1003-1014. DOI: 10.17521/cjpe.2016.0045
图1 试验站2013年4月至2015年4月降水量和相对湿度的月变化。
Fig. 1 Monthly variation of precipitation and relative humidity from April 2013 to April 2015 at the experimental site.
图2 不同采样期(2013年4月至2015年4月)风向风速分布。
Fig. 2 Distribution of frequency (%) of wind speed from different directions in different sampling dates (April 2013 to April 2015).
图3 不同放牧强度在生长季和非生长季日平均风沙通量变化(平均值±标准误差, n = 3)。A, 生长季。B, 非生长季。CK, 对照; LG, 轻度放牧; MG, 中度放牧; HG, 重度放牧。不同小写字母表示同一时期不同放牧处理间差异显著(p < 0.05)。
Fig. 3 Mean horizontal mass flux versus different levels of stocking rate in growing-season and non-growing-season in two sampling years (mean ± SE, n = 3). A, Growing-season. B, Non-growing season. CK, control; LG, lightly grazed; MG, moderately grazed; HG, heavily grazed. Different lowercase letters indicate significant differences among the differently stocking rate during the same period (p < 0.05).
图4 不同采样期风沙流水平通量对数随高度的变化。A, 2013-2014年生长季。B, 2014-2015年生长季。C, 2013-2014年非生长季。D, 2014-2015年非生长季。CK, 对照; LG, 轻度放牧; MG 中度放牧; HG, 重度放牧。
Fig. 4 Natural logarithm of sediment flux as a function of height during different sampling seasons. A, 2013-2014 growing-season. B, 2014-2015 growing-season. C, 2013-1014 non-growing-season. D, 2014-2015 non-growing-season. CK, control; LG, lightly grazed; MG, moderately grazed; HG, heavily grazed.
图5 对照(CK)和重度放牧(HG)区生长季(10月采样期)不同集沙高度的风沙沉积物粒径分布曲线。A, 2013年10月CK区。B, 2014年10月CK区。C, 2013年10月HG区。D, 2014年10月HG区。10 cm、30 cm、50 cm、100 cm为集沙高度。
Fig. 5 Particle size distributions for sediment samples of the BSNE different heights on control (CK) and heavily grazed (HG) treatments during growing seasons (October sampling period). A, October 2013 CK. B, October 2014 CK. C, October 2013 HG. D, October 2014 HG. 10 cm, 30 cm, 50 cm, and 100 cm indicate heights of the traps.
图6 不同放牧处理风沙沉积物中直径(D) ≤ 250 μm颗粒富集比随高度的变化(富集比=沉积物中某粒径含量/土壤表土中对应粒径含量)。CK, 对照。LG, 轻度放牧。MG, 中度放牧。HG, 重度放牧。
Fig. 6 Enrichment factor (E) of particle size ≤ 250 μm in sediments versus different heights of different treatments (enrichment factor = content of particle size in the sediments / content of the relative particle size in the surface soil layer). CK, Control. LG, Lightly grazed. MG, Moderately grazed. HG, Heavily grazed. D250, particle size ≤ 250 μm.
[1] | Aubault H, Webb NP, Strong C, Mctainsh GH, Leys JF, Scanlan JC (2015). Grazing impacts on the susceptibility of rangelands to wind erosion: The effects of stocking rate, stocking strategy and land condition.Aeolian Research, 17, 89-99. |
[2] | Basaran M, Erpul G, Uzun O, Gabriels D (2011). Comparative efficiency testing for a newly designed cyclone type sediment trap for wind erosion measurements.Geomorphology, 130, 343-351. |
[3] | Belnap J, Reynolds RL, Reheis MC, Phillips SL, Urban FE, Goldstein HL (2009). Sediment losses and gains across a gradient of livestock grazing and plant invasion in a cool, semi-arid grassland, Colorado Plateau, USA.Aeolian Research, 1, 27-43. |
[4] | Dong Z (2004). Research on Farmland Wind-Sand Disaster of Oasis and Its Control Mechanism in Ulan Buh Desert. PhD dissertation, Beijing Forestry University, Beijing. 59-68.(in Chinese with English abstract).[董智 (2004). 乌兰布和沙漠绿洲农田沙害及其控制机理研究. 博士学位论文, 北京林业大学, 北京. 59-68.] |
[5] | Dong ZB, Qian GQ, Luo WY, Wang HT (2006). Analysis of the mass flux profiles of an aeolian saltating cloud.Journal of Geophysical Research, 111, 1-11. |
[6] | Du PF, Liu XY (2012). A review of measurement of wind erosion rate in China research of soil and water conservation.Research of Soil and Water Conservation, 19, 275-281.(in Chinese with English abstract)[杜鹏飞, 刘孝盈 (2012). 中国土壤风蚀速率实测研究述评. 水土保持研究, 19, 275-281.] |
[7] | Fryrear DW (1986). A field dust sampler.Journal of Soil and Water Conservation, 41, 117-120. |
[8] | Fryrear DW, Saleh A (1993). Field wind erosion: Vertical distribution.Soil Science, 155, 230-294. |
[9] | Garciachevesich P, Alvarado S, Neary DG, Valdes R, Valdes J, Aguirre JJ, Mena M, Pizarro R, Jofre P, Vera M, Olivares C (2014). Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments.Environmental Pollution, 187, 202-205. |
[10] | Han GD, Jiao SY, Biligetu, Aodenggaowa (2007). Effects of plant species diversity and productivity under different stocking rates in the Stipa breviflora Griseb. desert steppe.Acta Ecologica Sinica, 27, 182-188.(in Chinese with English abstract)[韩国栋, 焦树英, 毕力格图, 敖登高娃 (2007). 短花针茅草原不同载畜率对植物多样性和草地生产力的影响. 生态学报,27, 182-188.] |
[11] | Kemp DR, Han GD, Hou XY, Michalk DL, Hou FJ, Wu JP, Zhang YJ (2013). Innovative grassland management systems for environmental and livelihood benefits.Proceedings of the National Academy of Sciences of the United States of America, 110, 8369-8374. |
[12] | Leys J, Mctainsh GH (1996). Sediment fluxes and particle grain-size characteristics of wind-eroded sediments in southeastern Australia.Earth Surface Processes and Landforms, 21, 661-671. |
[13] | Li J, Okin GS, Alvarez L, Epstein HE (2007). Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA.Biogeochemistry, 85, 317-332. |
[14] | Li J, Okin GS, Epstein HE (2009). Effects of enhanced wind erosion on surface soil texture and characteristics of windblown sediments.Journal of Geophysical Research, 114, 1-8. |
[15] | Li J, Okin GS, Tatarko J, Webb NP, Herrick J (2014). Consistency of wind erosion assessments across land use and land cover types: A critical analysis.Aeolian Research, 15, 253-260. |
[16] | Li SK, Lu M, Wang KR, Wang X (2008). Soil erosion of the main ground surface types influences on formation of dust storm in south Xinjiang.Scientia Agricultura Sinica, 41, 3158-3167.(in Chinese with English abstract)[李少昆, 路明, 王克如, 王旭 (2008). 南疆主要地表类型土壤风蚀对形成沙尘暴天气的影响. 中国农业科学,41, 3158-3167.] |
[17] | Li WY, Dong ZB, Lü SH, Wang SG, Ao YH (2012). Spatial distribution and temporal tendency of the dust storm frequency in north and northwest China for the recent nearly half a century.Climate Change Research Letters, (1), 1-12.(in Chinese with English abstract)[李万元, 董治宝, 吕世华, 王式功, 奥银焕 (2012). 近半个世纪中国北方沙尘暴的空间分布和时间变化规律回顾. 气候变化研究快报, (1), 1-12.] |
[18] | Li WY, Sheng ZB, Lü SH, Li YH (2007). Sensitivity tests of factors influencing wind erosion.Journal of Desert Research, 27, 78-87.(in Chinese with English abstract)[李万元, 沈志宝, 吕世华, 李耀辉 (2007). 风蚀影响因子的敏感性试验. 中国沙漠,27, 78-87.] |
[19] | Li XL, Shen XD (2006). Experimental study on the distribution characteristics of the saltation particle of aeolian sediment in bare tillage. Transactions of the CSAE, 22, 74-77.(in Chinese with English abstract)[李晓丽, 申向东 (2006). 裸露耕地土壤风蚀跃移颗粒分布特征的试验研究. 农业工程学报,22, 74-77.] |
[20] | Liu M, Westphal DL (2001). A study of the sensitivity of simulated mineral dust production to model resolution.Journal of Geophysical Research, 106, 18099-18112. |
[21] | Lyles L, Tararko J (1986). Wind erosion effects on soil texture and organic matter.Journal of Soil and Water Conservation, 41, 191-193. |
[22] | Namikas S (2003). Field measurement and numerical modelling of aeolian mass flux distributions on a sandy beach.Sedimentology, 50, 303-326. |
[23] | Ni JR, Li ZS, Mendoza C (2003). Vertical profiles of aeolian sand mass flux.Geomorphology, 49, 205-218. |
[24] | Pimentel D, Kounang N (1998). Ecology of soil erosion in ecosystems.Ecosystems, 1, 416-426. |
[25] | Santini M, Caccamo G, Laurenti A, Noce S, Valentini R (2010). A multi-component GIS framework for desertification risk assessment by an integrated index.Applied Geography, 30, 394-415. |
[26] | Shabani F, Kumar L, Esmaeili A (2014). Improvement to the prediction of the USLE K factor.Geomorphology, 204, 229-234. |
[27] | Shao Y, Raupach M (1992). The overshoot and equilibration of saltation.Journal of Geophysical Research, 97, 20559-20564. |
[28] | Shao Y, Raupach M, Findlater P (1993). Effect of saltation bombardment on the entrainment of dust by wind.Journal of Geophysical Research, 98, 12719-12726. |
[29] | Shao Y, Raupach M, Leys J (1996). A model for predicting aeolian sand drift and dust entrainment on scales from paddock to region.Soil Research, 34, 309-342. |
[30] | Su YZ, Zhao WZ (2005). Soil organic carbon dynamics: Wind erosion effect.Acta Ecologica Sinica, 25, 2049-2054.(in Chinese with English abstract) [苏永中, 赵文智 (2005). 土壤有机碳动态: 风蚀效应. 生态学报, 25, 2049-2054.] |
[31] | Sun YC, Ma SS, Chen Z, Zhao YL, Sun YR (2007). Test and analysis of wind erosion of land surface soil in arid and semi-arid regions in north areas of Yinshan Mountain.Transactions of the CSAE, 23, 1-5.(in Chinese with English abstract)[孙悦超, 麻硕士, 陈智, 赵永来, 孙宇瑞 (2007). 阴山北麓干旱半干旱区地表土壤风蚀测试与分析. 农业工程学报,23, 1-5.] |
[32] | Wagner LE (2013). A history of wind erosion prediction models in the united states department of agriculture: The wind erosion prediction system (WEPS).Aeolian Research, 10, 9-24. |
[33] | Wang ZW (2009).Effect of Stocking Rate on Ecosystem stability of Stipa brevilora Desert Steppe. PhD dissertation, Inner Mongolia Agricultural University, Hohhot. 5-35.(in Chinese)[王忠武 (2009). 载畜率对短花针茅荒漠草原生态系统稳定性的影响. 博士学位论文, 内蒙古农业大学, 呼和浩特. 5-35.] |
[34] | Webb NP, Okin GS, Brown S (2014). The effect of roughness elements on wind erosion: The importance of surface shear stress distribution.Journal of Geophysical Research, 119, 6066-6084. |
[35] | Wiggs GFS, Livingstone I, Thomas DSG, Bullard JE (1994). Effect of vegetation removal on airflow patterns and dune dynamics in the southwest Kalahari desert.Land Degradation and Development, 5, 13-24. |
[36] | Yang XH, He Q, Ali M. Huo W, Liu XC (2013). Observational study on near-surface horizontal san-dust flux of sandstorms in the southeastern fringe of the Taklimakan desert. Journal of Desert Research, 33, 1299-1304.(in Chinese with English abstract)[杨兴华, 何清, 艾力·买买提依明, 霍文, 刘新春 (2013). 塔克拉玛干沙漠东南缘沙尘暴过程中近地表沙尘水平通量观测研究. 中国沙漠, 33, 1299-1304.] |
[37] | Yu GM, Liu Y, Yan Y, Hu YF (2011). Soil wind erosion risk assessment in the middle part of Inner Mongolia Plateau during 2000 to 2008. Scientia Geographica Sinica, 31, 1493-1499.(in Chinese with English abstract) [于国茂, 刘越, 艳燕, 胡云锋 (2011). 2000-2008年内蒙古中部地区土壤风蚀危险度评价. 地理科学,31, 1493-1499.] |
[38] | Zhang XL, Zhou QQ, Chen WW, Wang YY, Tong DQ (2015). Observation and modeling of black soil wind-blown erosion from cropland in northeastern China.Aeolian Research, 19, 153-162. |
[39] | Zhao CX, Zheng DW, He WQ (2005). Vegetation cover changes over time and its effects on resistance to wind erosion.Acta Phytoecologica Sinica, 29, 68-73.(in Chinese with English abstract)[赵彩霞, 郑大玮, 何文清 (2005). 植被覆盖度的时间变化及其防风蚀效应. 植物生态学报,29, 68-73.] |
[40] | Zobeck TM, Stout JE (1996). The wolfforth field experiment: A wind erosion study.Soil Science, 161, 616-632. |
[41] | Zou XY, Zhang CL, Cheng H, Kang LQ, Wu XX, Chang CP, Wang ZL, Zhang F, Li JF, Liu CC, Liu B, Tian JL (2014). Classification and representation of factors affecting soil wind erosion in a model.Advances in Earth Science, 29, 875-889.(in Chinese with English abstract)[邹学勇, 张春来, 程宏, 亢力强, 吴晓旭, 常春平, 王周龙, 张峰, 李继峰, 刘辰琛, 刘博, 田金鹭 (2014). 土壤风蚀模型中的影响因子分类与表达. 地球科学进展,29, 875-889.] |
[1] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[2] | 李冰, 朱湾湾, 韩翠, 余海龙, 黄菊莹. 降水量变化下荒漠草原土壤呼吸及其影响因素[J]. 植物生态学报, 2023, 47(9): 1310-1321. |
[3] | 张雅琪, 庞丹波, 陈林, 曹萌豪, 何文强, 李学斌. 荒漠草原土壤氨氧化细菌群落结构对氮添加和枯落物输入的响应[J]. 植物生态学报, 2023, 47(5): 699-712. |
[4] | 田磊, 朱毅, 李欣, 韩国栋, 任海燕. 不同降水条件下内蒙古荒漠草原主要植物物候对长期增温和氮添加的响应[J]. 植物生态学报, 2022, 46(3): 290-299. |
[5] | 马龙龙, 杜灵通, 丹杨, 王乐, 乔成龙, 吴宏玥. 基于茎流-蒸渗仪法的荒漠草原带人工灌丛群落蒸散特征[J]. 植物生态学报, 2020, 44(8): 807-818. |
[6] | 李颖, 龚吉蕊, 刘敏, 侯向阳, 丁勇, 杨波, 张子荷, 王彪, 朱趁趁. 不同放牧强度下内蒙古温带典型草原优势种植物防御策略[J]. 植物生态学报, 2020, 44(6): 642-653. |
[7] | 温超,单玉梅,晔薷罕,张璞进,木兰,常虹,任婷婷,陈世苹,白永飞,黄建辉,孙海莲. 氮和水分添加对内蒙古荒漠草原放牧生态系统土壤呼吸的影响[J]. 植物生态学报, 2020, 44(1): 80-92. |
[8] | 陈林, 王磊, 杨新国, 宋乃平, 李月飞, 苏莹, 卞莹莹, 祝忠有, 孟文婷. 荒漠草原猪毛蒿种群繁殖特征的土壤驱动因子分析[J]. 植物生态学报, 2019, 43(1): 65-76. |
[9] | 闫宝龙, 王忠武, 屈志强, 王静, 韩国栋. 围封对内蒙古典型草原与荒漠草原植被-土壤系统碳密度的影响[J]. 植物生态学报, 2018, 42(3): 327-336. |
[10] | 靳宇曦, 刘芳, 张军, 韩梦琪, 王忠武, 屈志强, 韩国栋. 不同载畜率处理下短花针茅荒漠草原生态系统净碳交换特征[J]. 植物生态学报, 2018, 42(3): 361-371. |
[11] | 黄菊莹, 余海龙, 王丽丽, 马凯博, 康扬眉, 杜雅仙. 不同氮磷比处理对甘草生长与生态化学计量特征的影响[J]. 植物生态学报, 2017, 41(3): 325-336. |
[12] | 杨丽丽, 龚吉蕊, 王忆慧, 刘敏, 罗亲普, 徐沙, 潘琰, 翟占伟. 内蒙古温带草原不同放牧强度和围栏封育对凋落物分解的影响[J]. 植物生态学报, 2016, 40(8): 748-759. |
[13] | 黄菊莹, 余海龙. 四种荒漠草原植物的生长对不同氮添加水平的响应[J]. 植物生态学报, 2016, 40(2): 165-. |
[14] | 马洋,王雪芹,张波,刘进辉,韩章勇,唐钢梁. 风蚀和沙埋对塔克拉玛干沙漠南缘骆驼刺水分和光合作用的影响[J]. 植物生态学报, 2014, 38(5): 491-498. |
[15] | 杨婧, 褚鹏飞, 陈迪马, 王明玖, 白永飞. 放牧对内蒙古典型草原α、β和γ多样性的影响机制[J]. 植物生态学报, 2014, 38(2): 188-200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19