植物生态学报 ›› 2023, Vol. 47 ›› Issue (2): 262-274.DOI: 10.17521/cjpe.2022.0162
范云翔1, 邸楠2,*(), 刘洋1, 章毓文1, 段劼1, 李新3, 王海红4, 席本野1
收稿日期:
2022-04-25
接受日期:
2022-09-05
出版日期:
2023-02-20
发布日期:
2022-09-20
通讯作者:
*(基金资助:
FAN Yun-Xiang1, DI Nan2,*(), LIU Yang1, ZHANG Yu-Wen1, DUAN Jie1, LI Xin3, WANG Hai-Hong4, XI Ben-Ye1
Received:
2022-04-25
Accepted:
2022-09-05
Online:
2023-02-20
Published:
2022-09-20
Contact:
*(Supported by:
摘要:
为了更深入地理解树木茎干夜间水分活动机制, 该研究针对华北平原典型杨树(Populus spp.)人工林夜间液流和茎干充水的时空动态及其环境影响因子进行探究。该研究以雨养条件下毛白杨(Populus tomentosa)为研究对象, 在不同生长时期, 利用热扩散法对茎干不同高度处液流速率进行连续监测, 对土壤含水率以及气象因子进行同步测定, 对比不同时期各高度夜间液流动态及其与环境因子的相关关系。结果显示: 雨季前, 茎干0.35和1.30 m处夜间液流占日总液流量的比例显著高于雨季后, 而雨季后茎干7.00 m处夜间液流占比提高了49%。雨季前, 茎干各高度处夜间液流速率同步性较高, 且随茎干高度增加逐渐递减。雨季后, 夜间用水主要来源由根系吸水转变为下部茎干储水, 基部夜间液流速率降低66%, 不同高度夜间液流的空间特征也发生变化。雨季前后, 4.00-7.00 m茎段为茎干充水的主要发生部位, 平均日充水量达4.16 L, 而1.30-4.00 m茎段充水量明显低于其他高度茎段, 可能主要发挥输水功能。水汽压亏缺、气温和3 m深土壤含水率对雨季前后各高度处夜间液流均有显著的正向驱动作用, 但这种驱动作用在雨季后明显减弱, 且在不同高度间存在一定差异。
范云翔, 邸楠, 刘洋, 章毓文, 段劼, 李新, 王海红, 席本野. 毛白杨茎干夜间液流时空动态及其环境影响因子. 植物生态学报, 2023, 47(2): 262-274. DOI: 10.17521/cjpe.2022.0162
FAN Yun-Xiang, DI Nan, LIU Yang, ZHANG Yu-Wen, DUAN Jie, LI Xin, WANG Hai-Hong, XI Ben-Ye. Spatiotemporal dynamics of nocturnal sap flow of Populus tomentosa and environmental impact factors. Chinese Journal of Plant Ecology, 2023, 47(2): 262-274. DOI: 10.17521/cjpe.2022.0162
编号 Number | 胸径 Diameter at breast height (cm) | 树高 Height (m) | 最低活枝高 Height of lowest living branch (m) |
---|---|---|---|
T1 | 14.21 | 17.10 | 9.79 |
T2 | 13.52 | 15.95 | 6.56 |
T3 | 13.60 | 16.96 | 9.81 |
表1 旧城林场毛白杨样树生长信息
Table 1 Growth information of sample trees of Populus tomentosa in Jiucheng Forest Farm
编号 Number | 胸径 Diameter at breast height (cm) | 树高 Height (m) | 最低活枝高 Height of lowest living branch (m) |
---|---|---|---|
T1 | 14.21 | 17.10 | 9.79 |
T2 | 13.52 | 15.95 | 6.56 |
T3 | 13.60 | 16.96 | 9.81 |
图1 实验期间气象因子与土壤含水率的动态变化。左图为雨季前(7月), 右图为雨季后(9月)。
Fig. 1 Variations in meteorological factors and soil water content (SWC) during the study period. ARH, air relative humidity; P, precipitation; T, air temperature; VPD, vapor pressure deficit; Ws, wind speed. Left figures show the variation before the rainy season (July), and right figures show the variation after the rainy season (September).
空气相对湿度 Air relative humidity (%) | 空气温度 Air temperature (℃) | 水汽压亏缺 Vapor pressure deficit (kPa) | 风速 Wind speed (m·s-1) | |||||
---|---|---|---|---|---|---|---|---|
日间 Diurnal | 夜间 Nocturnal | 日间 Diurnal | 夜间 Nocturnal | 日间 Diurnal | 夜间 Nocturnal | 日间 Diurnal | 夜间 Nocturnal | |
雨季前-雨季后 Before rainy season-after rainy season | 0.511 | -1.215 | 6.055** | 7.043** | 1.043 | 2.982** | -3.059** | -0.894 |
p | 0.615 | 0.239 | 0.000 | 0.000 | 0.309 | 0.007 | 0.006 | 0.382 |
表2 雨季前后日间和夜间气象因子的差异
Table 2 Differences of diurnal and nocturnal meteorological factors before and after the rainy season
空气相对湿度 Air relative humidity (%) | 空气温度 Air temperature (℃) | 水汽压亏缺 Vapor pressure deficit (kPa) | 风速 Wind speed (m·s-1) | |||||
---|---|---|---|---|---|---|---|---|
日间 Diurnal | 夜间 Nocturnal | 日间 Diurnal | 夜间 Nocturnal | 日间 Diurnal | 夜间 Nocturnal | 日间 Diurnal | 夜间 Nocturnal | |
雨季前-雨季后 Before rainy season-after rainy season | 0.511 | -1.215 | 6.055** | 7.043** | 1.043 | 2.982** | -3.059** | -0.894 |
p | 0.615 | 0.239 | 0.000 | 0.000 | 0.309 | 0.007 | 0.006 | 0.382 |
图2 雨季前后0-6 m土壤含水率差异(平均值±标准误)。*, p < 0.05; **, p < 0.01。
Fig. 2 Differences of soil water content in 0-6 m depth before and after the rainy season (mean ± SE). *, p < 0.05; **, p < 0.01.
图3 茎干不同高度的夜间液流量占日总液流量的比值(平均值±标准误)。不同小写字母表示相同时期不同高度夜间液流占比的差异显著(p < 0.05), *表示同一茎干高度雨季前后夜间液流占比的差异显著(p < 0.05)。
Fig. 3 Ratio of nocturnal sap flow to total daily sap flow at different stem heights (mean ± SE). Different lowercase letters represent significant differences of the ratio between different heights in the same period (p < 0.05), * represent significant differences of the ratio before and after the rainy season at the same height (p < 0.05).
图4 不同茎干高度瞬时液流量日变化(T1样树多天测定结果的平均值±标准误)。A、B为雨季前的变化, C、D为雨季后的变化(B、D分别为A、C夜间部分的放大显示)。
Fig. 4 Daily variations in momentary sap flow at different stem heights (mean ± SE of multi-day measurements of T1 sample tree). A, B show the variations before the rainy season, and C, D show the variations after the rainy season. B and D are the enlarge figures of nocturnal variations of momentary sap flow.
图5 不同高度茎干充水量变化日动态。正值表明茎干充水, 负值表明茎干失水。B为放大的夜间不同高度茎干充水量变化。
Fig. 5 Daily variations in stem water refilling at different heights. Positive values indicate stem water refilling, negative values indicate stem water loss. B is the enlarged figure of nocturnal variations of stem water refilling.
时期 Period | 茎干高度 Stem height (m) | SWC0-1 m | SWC1-2 m | SWC2-3 m | SWC3-4 m | SWC4-5 m | SWC5-6 m |
---|---|---|---|---|---|---|---|
雨季前 Before rainy season | 0.35 | -0.757** | -0.606* | 0.669* | -0.827** | -0.725** | -0.610* |
1.30 | -0.437 | -0.140 | 0.623* | -0.510 | -0.587* | -0.590* | |
7.00 | -0.769** | -0.640* | 0.679* | -0.833** | -0.737** | -0.630* | |
雨季后 After rainy season | 0.35 | -0.084 | -0.007 | -0.030 | -0.136 | 0.210 | 0.280 |
1.30 | -0.122 | 0.052 | 0.294 | 0.294 | -0.154 | -0.274 | |
7.00 | -0.536* | -0.306 | 0.267 | -0.021 | -0.162 | -0.175 |
表3 土壤含水率(SWC)与夜间液流速率的相关性
Table 3 Correlation coefficients between soil water content (SWC) and nocturnal sap flow rate
时期 Period | 茎干高度 Stem height (m) | SWC0-1 m | SWC1-2 m | SWC2-3 m | SWC3-4 m | SWC4-5 m | SWC5-6 m |
---|---|---|---|---|---|---|---|
雨季前 Before rainy season | 0.35 | -0.757** | -0.606* | 0.669* | -0.827** | -0.725** | -0.610* |
1.30 | -0.437 | -0.140 | 0.623* | -0.510 | -0.587* | -0.590* | |
7.00 | -0.769** | -0.640* | 0.679* | -0.833** | -0.737** | -0.630* | |
雨季后 After rainy season | 0.35 | -0.084 | -0.007 | -0.030 | -0.136 | 0.210 | 0.280 |
1.30 | -0.122 | 0.052 | 0.294 | 0.294 | -0.154 | -0.274 | |
7.00 | -0.536* | -0.306 | 0.267 | -0.021 | -0.162 | -0.175 |
图6 不同茎干高度夜间液流速率对夜间水汽压亏缺和空气温度的短期响应。*, p < 0.05; **, p < 0.01。
Fig. 6 Short term responses of nocturnal sap flow rate to nocturnal vapor pressure deficit and air temperature at different stem heights. *, p < 0.05; **, p < 0.01.
图7 不同茎干高度夜间液流速率对风速和日间液流量的长期响应。*, p < 0.05; **, p < 0.01。
Fig. 7 Long term responses of nocturnal sap flow (rate) to wind speed and diurnal sap flow at different stem heights. *, p < 0.05; **, p < 0.01.
[1] |
Benyon RG (1999). Nighttime water use in an irrigated Eucalyptus grandis plantation. Tree Physiology, 19, 853-859.
DOI URL |
[2] |
Bovard BD, Curtis PS, Vogel CS, Su H, Schmid HP (2005). Environmental controls on sap flow in a northern hardwood forest. Tree Physiology, 25, 31-38.
DOI PMID |
[3] |
Burgess SS, Adams MA, Turner NC, Beverly CR, Ong CK, Khan AA, Bleby TM (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21, 589-598.
PMID |
[4] | Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics. 2nd ed. Springer, New York. |
[5] |
Cao QQ, Li JR, Xiao HJ, Cao YB, Xin ZM, Yang BM, Liu T, Yuan MT (2020). Sap flow of Amorpha fruticosa: implications of water use strategy in a semiarid system with secondary salinization. Scientific Reports, 10, 13504. DOI: 10.1038/s41598-020-70511-2.
DOI |
[6] |
Chen ZSN, Zhang ZQ, Sun G, Chen LX, Xu H, Chen SN (2020). Biophysical controls on nocturnal sap flow in plantation forests in a semi-arid region of northern China. Agricultural and Forest Meteorology, 284, 107904. DOI: 10.1016/j.agrformet.2020.107904.
DOI |
[7] |
Cook GD, Dixon JR, Leopold AC (1964). Transpiration: its effects on plant leaf temperature. Science, 144, 546-547.
PMID |
[8] |
Daley MJ, Phillips NG (2006). Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest. Tree Physiology, 26, 411-419.
DOI PMID |
[9] |
Dawson TE, Burgess SSO, Tu K, Oliveira RS, Santiago LS, Fisher JB, Simonin KA, Ambrose AR (2007). Nighttime transpiration in woody plants from contrasting ecosystems. Tree Physiology, 27, 561-575.
PMID |
[10] |
Di N, Xi B, Clothier B, Wang Y, Li G, Jia L (2019). Diurnal and nocturnal transpiration behaviors and their responses to groundwater-table fluctuations and meteorological factors of Populus tomentosa in the North China Plain. Forest Ecology and Management, 448, 445-456.
DOI URL |
[11] |
Even M, Sabo M, Meng DL, Kreszies T, Schreiber L, Fricke W (2018). Night-time transpiration in barley (Hordeum vulgare) facilitates respiratory carbon dioxide release and is regulated during salt stress. Annals of Botany, 122, 569-582.
DOI PMID |
[12] |
Fang WW, Lü N, Zhang Y, Jiao L, Fu BJ (2018). Responses of nighttime sap flow to atmospheric and soil dryness and its potential roles for shrubs on the Loess Plateau of China. Journal of Plant Ecology, 11, 717-729.
DOI URL |
[13] | Fang WW, Lü N, Fu BJ (2018). Research advances in nighttime sap flow density, its physiological implications, and influencing factors in plants. Acta Ecologica Sinica, 38, 7521-7529. |
[方伟伟, 吕楠, 傅伯杰 (2018). 植物夜间液流的发生、生理意义及影响因素研究进展. 生态学报, 38, 7521-7529.] | |
[14] |
Fisher JB, Baldocchi DD, Misson L, Dawson TE, Goldstein AH (2007). What the towers don’t see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California. Tree Physiology, 27, 597-610.
DOI URL |
[15] |
Granier A (1987). Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements. Tree Physiology, 3, 309-320.
DOI PMID |
[16] |
Hayat M, Iqbal S, Zha T, Jia X, Qian D, Bourque CPA, Khan A, Tian Y, Bai Y, Liu P, Yang R (2021). Biophysical control on nighttime sap flow in Salix psammophila in a semiarid shrubland ecosystem. Agricultural and Forest Meteorology, 300, 108329. DOI: 10.1016/j.agrformet. 2021.108329.
DOI |
[17] |
Hogg EH, Hurdle PA (1997). Sap flow in trembling aspen: implications for stomatal responses to vapor pressure deficit. Tree Physiology, 17, 501-509.
PMID |
[18] |
Jasechko S, Sharp ZD, Gibson JJ, Birks SJ, Yi Y, Fawcett PJ (2013). Terrestrial water fluxes dominated by transpiration. Nature, 496, 347-350.
DOI |
[19] | Kang XY, Zhu ZT (2002). Position and function of triploid Populus tomentosa in pulp production in China. Journal of Beijing Forestry University, 24(S1), 51-56. |
[康向阳, 朱之悌 (2002). 三倍体毛白杨在我国纸浆生产中的地位与作用. 北京林业大学学报, 24(S1), 51-56.] | |
[20] |
Kangur O, Tullus A, Sellin A (2020). Night-time transpiration, predawn hydraulic conductance and water potential disequilibrium in hybrid aspen coppice. Trees, 34, 133-141.
DOI |
[21] |
Kumagai T, Aoki S, Nagasawa H, Mabuchi T, Kubota K, Inoue S, Utsumi Y, Otsuki K (2005). Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar. Agricultural and Forest Meteorology, 135, 110-116.
DOI URL |
[22] |
Lin H, Chen YJ, Zhang HL, Fu PL, Fan ZX (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202-2211.
DOI URL |
[23] |
Liu Y, Nadezhdina N, Di N, Ma X, Liu J, Zou S, Xi B, Clothier B (2021). An undiscovered facet of hydraulic redistribution driven by evaporation—A study from a Populus tomentosa plantation. Plant Physiology, 186, 361-372.
DOI URL |
[24] |
Marks CO, Lechowicz MJ (2007). The ecological and functional correlates of nocturnal transpiration. Tree Physiology, 27, 577-584.
PMID |
[25] |
Oren R, Phillips N, Ewers BE, Pataki DE, Megonigal JP (1999). Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a flooded Taxodium distichum forest. Tree Physiology, 19, 337-347.
PMID |
[26] |
Pfautsch S, Aspinwall MJ, Drake JE, Chacon-Doria L, Langelaan RJA, Tissue DT, Tjoelker MG, Lens F (2018). Traits and trade-offs in whole-tree hydraulic architecture along the vertical axis of Eucalyptus grandis. Annals of Botany, 121, 129-141.
DOI PMID |
[27] |
Pfautsch S, Keitel C, Turnbull TL, Braimbridge MJ, Wright TE, Simpson RR, O’Brien JA, Adams MA (2011). Diurnal patterns of water use in Eucalyptus victrix indicate pronounced desiccation-rehydration cycles despite unlimited water supply. Tree Physiology, 31, 1041-1051.
DOI URL |
[28] |
Phillips NG, Lewis JD, Logan BA, Tissue DT (2010). Inter- and intra-specific variation in nocturnal water transport in Eucalyptus. Tree Physiology, 30, 586-596.
DOI PMID |
[29] | Pratt RB, Jacobsen AL (2017). Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40, 897-913. |
[30] |
Pratt RB, Jacobsen AL, Percolla MI, De Guzman ME, Traugh CA, Tobin MF (2021). Trade-offs among transport, support, and storage in xylem from shrubs in a semiarid chaparral environment tested with structural equation modeling. Proceedings of the National Academy of Sciences of the United States of America, 118, e2104336118. DOI: 10.1073/pnas.2104336118.
DOI |
[31] |
Raven JA (2008). Transpiration: How many functions? New Phytologist, 179, 905-907.
DOI PMID |
[32] |
Ritchie JT (1974). Atmospheric and soil water influences on the plant water balance. Agricultural Meteorology, 14, 183-198.
DOI URL |
[33] | Schlesinger WH, Jasechko S (2014). Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189- 190, 115-117. |
[34] |
Scholz FG, Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Miralles Wilhelm F (2007). Removal of nutrient limitations by long-term fertilization decreases nocturnal water loss in savanna trees. Tree Physiology, 27, 551-559.
PMID |
[35] |
Snyder KA, Richards JH, Donovan LA (2003). Night-time conductance in C3 and C4 species: Do plants lose water at night? Journal of Experimental Botany, 54, 861-865.
PMID |
[36] |
Tang JW, Bolstad P, Ewers B, Desai A, Davis K, Carey EV (2006). Sap flux-upscaled canopy transpiration, stomatal conductance, and water use efficiency in an old growth forest in the Great Lakes region of the United States. Journal of Geophysical Research-Biogeosciences, 111, G02009. DOI: 10.1029/2005JG000083.
DOI |
[37] |
Tanner W, Beevers H (2001). Transpiration, a prerequisite for long-distance transport of minerals in plants? Proceedings of the National Academy of Sciences of the United States of America, 98, 9443-9447.
PMID |
[38] |
Wright KE, Barton NL (1955). Transpiration and the absorption and distribution of radioactive phosphorus in plants. Plant Physiology, 30, 386-388.
DOI PMID |
[39] |
Wu J, Liu HX, Zhu JY, Gong L, Xu LJ, Jin GX, Li J, Hauer R, Xu CY (2020). Nocturnal sap flow is mainly caused by stem refilling rather than nocturnal transpiration for Acer truncatum in urban environment. Urban Forestry & Urban Greening, 56, 126800. DOI: 10.1016/j.ufug.2020.126800.
DOI |
[40] |
Yu TF, Feng Q, Si JH, Mitchell PJ, Forster MA, Zhang XY, Zhao CY (2018). Depressed hydraulic redistribution of roots more by stem refilling than by nocturnal transpiration for Populus euphratica Oliv. in situ measurement. Ecology and Evolution, 8, 2607-2616.
DOI URL |
[41] |
Zeppel M, Tissue D, Taylor D, Macinnis Ng C, Eamus D (2010). Rates of nocturnal transpiration in two evergreen temperate woodland species with differing water-use strategies. Tree Physiology, 30, 988-1000.
DOI PMID |
[42] |
Zeppel MJB, Lewis JD, Phillips NG, Tissue DT (2014). Consequences of nocturnal water loss: a synthesis of regulating factors and implications for capacitance, embolism and use in models. Tree Physiology, 34, 1047-1055.
DOI PMID |
[43] |
Zhao CY, Si JH, Feng Q, Yu TF, Li PD (2017). Comparative study of daytime and nighttime sap flow of Populus euphratica. Plant Growth Regulation, 82, 353-362.
DOI URL |
[44] |
Zhao CY, Si JH, Feng Q, Yu TF, Li PD, Forster MA (2019). Nighttime transpiration of Populus euphratica during different phenophases. Journal of Forestry Research, 30, 435-444.
DOI |
[45] | Zou SY, Li DD, Wang JS, Di N, Liu JQ, Wang Y, Li GD, Duan J, Jia LM, Xi BY (2019). Response of fine roots to soil moisture of different gradients in young Populus tomentosa plantation. Scientia Silvae Sinicae, 55(10), 124-137. |
[邹松言, 李豆豆, 汪金松, 邸楠, 刘金强, 王烨, 李广德, 段劼, 贾黎明, 席本野 (2019). 毛白杨幼林细根对梯度土壤水分的响应. 林业科学, 55(10), 124-137.] |
[1] | 杨尚锦, 范云翔, 章毓文, 韩巧玲, 赵玥, 段劼, 邸楠, 席本野. 树木夜间液流组分划分方法对比——以毛白杨为例[J]. 植物生态学报, 2024, 48(4): 496-507. |
[2] | 赵飞飞, 马煦, 邸楠, 王烨, 刘洋, 李广德, 贾黎明, 席本野. 毛白杨茎干不同方位夜间液流变化规律及其主要影响因子[J]. 植物生态学报, 2020, 44(8): 864-874. |
[3] | 赵晓伟, 赵平, 朱丽薇, 倪广艳, 曾小平, 牛俊峰. 木荷树干夜间水分补充的季节动态及其与树形特征和叶片生物量的关系[J]. 植物生态学报, 2013, 37(3): 239-247. |
[4] | 陈立欣, 张志强, 李湛东, 张文娟, 张晓放, 董克宇, 王国玉. 大连4种城市绿化乔木树种夜间液流活动特征[J]. 植物生态学报, 2010, 34(5): 535-546. |
[5] | 刘晨峰, 张志强, 孙阁, 查同刚, 朱金兆, 申李华, 陈军, 方显瑞, 陈吉泉. 基于涡度相关法和树干液流法评价杨树人工林 生态系统蒸发散及其环境响应[J]. 植物生态学报, 2009, 33(4): 706-718. |
[6] | 王华, 赵平, 蔡锡安, 王权, 马玲, 饶兴权, 曾小平. 马占相思夜间树干液流的分配及其对整树蒸腾估算的影响[J]. 植物生态学报, 2007, 31(5): 777-786. |
[7] | 刘世荣. 沙棘对中国亚湿润干旱区的杨树人工林生长与生产力的影响(英文)[J]. 植物生态学报, 2000, 24(2): 169-174. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19