Chin J Plan Ecolo ›› 2018, Vol. 42 ›› Issue (6): 692-702.doi: 10.17521/cjpe.2017.0247

• Research Articles • Previous Articles    

Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China

WEI Cui-Cui,LIU Xiao-Fei,LIN Cheng-Fang(),LI Xian-Feng,LI Yan,ZHENG Yu-Xiong   

  1. School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou,350007, China; and Sanming Research Station of Forest Ecosystem and Global Change, Sanming, Fujian 365000, China
  • Received:2017-09-28 Revised:2018-03-15 Online:2018-06-20 Published:2018-06-20
  • Contact: Cheng-Fang LIN E-mail:tonylcf99@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China(31770663);Supported by the National Natural Science Foundation of China(31500407);the Joint Fund for Promotion of Cross-strait Cooperation in Science and Technology(U1505233)

Abstract:

Aims Enzymes play an important role in the decomposition of soil organic matter. Changes in net primary productivity in response to climate change are likely to affect litter inputs to forest soil. However, the effects of altered litter input on soil enzyme activities remain poorly understood in subtropical forests. Thus, this study is designed to find out if litter manipulation has an effect on enzymes in different subtropical Castanopsis carlessii forest.

Methods Three treatments including double litter (DL), no litter (NL) and control (CT) were installed in a secondary C. carlesii forest and a human-assisted naturally regenerated C. carlesii forest, to investigate the responses of 6 soil extracellular enzyme activities.

Important findings The activities of Cellobiohydrolase (CBH), β-1,4-N-acetylglucosaminidase (NAG), Polyphenol oxidase (PhOx) and Peroxidase (PerOx) in the secondary C. carlesii forest were higher than those in the human-assisted naturally regenerated C. carlesii forest, while acid phosphatase (AP) and β-1,4-glucosidase (βG) activities had no significant difference between the two forests. Compared to control, both NL and DL treatments decreased the activities of AP, βG and NAG, but had no effect on the activities of CBH and PerOx, and DL treatment decreased only the activity of PhOx in two forests. Except for NAG activity, the activities of AP, βG and PerOx decreased more in the human-assisted naturally regenerated C. carlesii forest than in the secondary C. carlesii forest after litter manipulaition. Both Pearson correlation analysis and redundancy analysis showed that soil enzyme activities were significantly correlated with soil moisture content, carbon (C), nitrogen (N), microbial biomass carbon (MBC) and nitrogen (MBN) contents. Therefore, changes in litter input (both increase and decrease) could decrease some major soil enzyme activities such as AP, βG and NAG in both secondary and human-assisted naturally regenerated C. carlesii forests by decreasing soil moisture content, C and N, MBC and MBN contents. Based on the responses of soil enzyme activity, we conclude that the C and N cycling in secondary C. carlesii forest could be faster compared to that in the human-assisted forest of the same species in the subtropical forest ecosystems.

Key words: double litter, no litter, soil enzyme activities, secondary Castanopsis carlesii forest, human-assisted naturally regenerated Castanopsis carlesii forest

Table 1

Main characteristics of the experiment site and properties of the topsoil (0-10 cm)"

项目 Item 米槠次生林
Secondary
Castanopsis
carlesii forest
米槠人促更新次生林
Human-assisted naturally
regenerated Castanopsis
carlesii
forest
平均树高
Average tree height (m)
10.80 13.70
平均胸径
Average breast diameter (cm)
12.20 16.80
林分密度
Stand density (株?hm-2)
3788 2158
年凋落物量
Annual litter fall (g?m-2)
698 658
细根生物量
Fine root biomass (kg?m-3)
0.93 0.70
全C含量
Total carbon content (g?kg-1)
20.98 16.68
全N含量
Total nitrogen content (g?kg-1)
1.42 1.14
土壤容重
Soil bulk density (g?cm-3)
0.95 1.10

Table 2

The substrates, abbreviations and types of the examined soil enzymes"

酶 Enzyme 缩写 Abbreviation 编号 Code 底物 Substrate 类型 Type
酸性磷酸酶 Acid phosphatase AP 3.1.3.2 4-甲基伞形酮磷酸酯
4-MUB-phosphate
P获得水解酶
P-targeting hydrolytic
β-葡萄糖苷酶 β-1,4-glucosidase βG 3.2.1.21 4-甲基伞形酮-β-D-葡萄糖苷
4-MUB-β-D-glucoside
C获得水解酶
C-targeting hydrolytic
纤维素水解酶 Cellobiohydrolase CBH 3.2.1.91 4-甲基伞形酮-β-D-纤维素二糖苷
4-MUB-β-D-cellobioside
C获得水解酶
C-targeting hydrolytic
β-N-乙酰氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidase NAG 3.1.6.1 4-甲基伞形酮-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷
4-MUB-N-acetyl-β-D-lucosaminide
N获得水解酶
N-targeting hydrolytic
酚氧化酶 Phenol oxidase PhOx 1.10.3.2 L-二羟基苯 L-DOPA C获得氧化酶
C-targeting oxidase
过氧化物酶 Peroxidase PerOx 1.11.1.7 L-二羟基苯 L-DOPA C获得氧化酶
C-targeting oxidase

Table 3

Soil physical, chemical properties and microbial biomass carbon and nitrogen contents in the litter removal, control, and litter addition treatments plots in the two Castanopsis carlesii forests (mean ± SD, n = 3)"

项目 Item 米槠次生林
Secondary Castanopsis carlesii forest
米槠人促更新次生林
Human-assisted naturally regenerated Castanopsis carlesii forest
对照
Control
凋落物去除
No litter
凋落物添加
Double litter
对照
Control
凋落物去除
No litter
凋落物添加
Double litter
含水量 Moisture content (%) 0.30 ± 0.00aA 0.23 ± 0.01bA 0.29 ± 0.03abA 0.26 ± 0.06aA 0.21 ± 0.01aA 0.25 ± 0.03aA
pH值 pH value 5.11 ± 0.14aA 5.10 ± 0.04aA 4.91 ± 0.16aA 5.25 ± 0.17aA 5.11 ± 0.02aA 5.13 ± 0.10aA
全碳 Total carbon (g·kg-1) 20.98 ± 2.75aA 12.41 ± 1.75bA 16.49 ± 0.47bB 16.68 ± 0.44aB 12.77 ± 0.09bA 14.71 ± 3.00abA
全氮 Total nitrogen (g·kg-1) 1.42 ± 0.09aA 0.93 ± 0.12cA 1.14 ± 0.02bB 1.14 ± 0.09aB 0.88 ± 0.07bA 1.02 ± 0.19abA
可溶性有机碳
Dissolved organic carbon (mg·kg-1)
49.15 ± 8.37aA 29.77 ± 9.46bA 55.58 ± 8.7aA 48.86 ± 6.76aA 47.11 ± 10.09aA 49.52 ± 6.46aA
可溶性有机氮
Dissolved organic nitrogen (mg·kg-1)
2.08 ± 0.02aA 1.85 ± 0.09aA 0.74 ± 0.15bB 2.26 ± 0.36aA 2.18 ± 0.43aA 1.86 ± 0.44aA
NH4+ (mg·kg-1) 37.49 ± 0.69bA 26.5 ± 3.21cA 52.6 ± 0.6aA 26.99 ± 4.01bB 22.04 ± 3.12aA 29.63 ± 4.41aB
矿质氮 Mineral nitrogen (mg·kg-1) 38.08 ± 0.52bA 27.22 ± 3.31cA 53.05 ± 0.82aA 27.96 ± 3.94aB 22.37 ± 3.24bA 30.98 ± 4.41aB
微生物生物量碳
Microbial biomass carbon (mg·kg-1)
315 ± 33abA 225 ± 66bA 371 ± 57aA 258 ± 17aB 171 ± 5cA 221 ± 23bB
微生物生物量氮
Microbial biomass nitrogen (mg·kg-1)
29.33 ± 6.30aA 13.41 ± 2.27bA 26.38 ± 5.36aA 36.56 ± 3.49aA 14.61 ± 2.58cA 23.05 ± 5.07bA

Fig. 1

Soil enzyme activities under litter removal, control, and litter addition treatments in the two Castanopsis carlesii forests (mean ± SD, n = 3). The lowercase letters mean significant differences among treatments in the same forests (p < 0.05), the capital letters mean significant differences between the two forests under the same treatment (p < 0.05)."

Table 4

Correlation between soil enzyme activity and soil physical, chemical properties, microbial biomass carbon, microbial biomass nitrogen"

项目 Item 酸性磷酸酶
Acid
phosphatase
β-葡萄糖苷酶
β-1,4-glucosidase
纤维素水解酶
Cellobiohydrolase
β-N-乙酰氨基葡萄糖苷酶
β-1,4-N-acetylglucosam-
inidase
酚氧化酶
Phenol oxidase
过氧化酶
Peroxidase
含水量 Moisture content (%) 0.545* 0.327 0.344 0.504* 0.221 -0.230
全碳 Total carbon 0.638** 0.312 -0.003 0.751** 0.119 -0.164
全氮 Total nitrogen 0.830** 0.499* 0.248 0.807** 0.245 -0.109
可溶性有机碳 Dissolved organic carbon 0.274 0.225 -0.175 0.195 -0.391 -0.624**
可溶性有机氮 Dissolved organic nitrogen 0.060 -0.140 -0.534* -0.139 -0.205 0.105
NH4+ 0.362 0.296 0.527* 0.411 0.035 -0.279
微生物生物量碳 Microbial biomass carbon 0.523* 0.488* 0.531* 0.524* 0.252 -0.163
微生物生物量碳 Microbial biomass nitrogen 0.648** 0.498* -0.118 0.231 -0.150 -0.608**

Fig. 2

Redundancy analysis on the relationship of soil enzyme activity and soil physical, chemical properties, microbial biomass carbon, microbial biomass nitrogen."

[1] Allison SD, Vitousek PM ( 2005). Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biology & Biochemistry, 37, 937-944.
doi: 10.1016/j.soilbio.2004.09.014
[2] Baldrian P ( 2009). Microbial enzyme-catalyzed processes in soils and their analysis. Plant Soil and Environment, 55, 370-378.
doi: 10.1007/s11104-009-0098-7
[3] Blazier MA, Hennessey TC, Deng S ( 2005). Effects of fertilization and vegetation control on microbial biomass carbon and dehydrogenase activity in a juvenile loblolly pine plantation. Forest Science, 51, 449-459.
[4] Brockett BF, Prescott CE, Grayston SJ ( 2012). Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada. Soil Biology & Biochemistry, 44, 9-20.
[5] Cao FQ, Liu ZH, Liu M, Cui JF ( 2010). Research progress on the forest litterfall and its decomposition process. Guangxi Agricultural Sciences, 41, 693-697.
[ 曹富强, 刘朝晖, 刘敏, 崔俊峰 ( 2010). 森林凋落物及其分解过程的研究进展. 广西农业科学, 41, 693-697.]
[6] Cao H, Sun H, Yang H, Sun B, Zhao QG ( 2003). A review soil enzyme activity and its indication for soil quality. Chinese Journal of Applied and Environmental Biology, 9, 105-109.
[ 曹慧, 孙辉, 杨浩, 孙波, 赵其国 ( 2003). 土壤酶活性及其对土壤质量的指示研究进展. 应用与环境生物学报, 9, 105-109.]
[7] Cernusak LA, Winter K, Dalling JW, Holtum JAM, Jaramillo C, K?rner C, Leakey ADW, Norby RJ, Poulter B, Turner BL, Wright S ( 2013). Tropical forest responses to increasing atmospheric CO2: Current knowledge and opportunities for future research. Functional Plant Biology, 40, 531-551.
doi: 10.1071/FP12309
[8] Chen SS, Chen SR, Ma XQ ( 2001). Effects of different regeneration pattern of secondary broadleaved forest on stand composition and soil fertility. Scientia Silvae Sinicae, 37(6), 113-117.
doi: 10.11707/j.1001-7488.20010621
[ 陈绍栓, 陈淑容, 马祥庆 ( 2001). 次生阔叶林不同更新方式对林分组成及土壤肥力的影响. 林业科学, 37(6), 113-117.]
doi: 10.11707/j.1001-7488.20010621
[9] Ding SY, She JY, Yang QP, Wang SL ( 2015). Effects of thinning and pruning on soil microbial biomass carbon and soilenzyme activities in Chinese fir plantation. Journal of Central South University of Forestry & Technology, 35(6), 75-79.
doi: 10.14067/j.cnki.1673-923x.2015.06.014
[ 丁思一, 佘济云, 杨庆朋, 汪思龙 ( 2015). 间伐和修枝对杉木人工林土壤微生物量碳和酶活性的影响. 中南林业科技大学学报, 35(6), 75-79.]
doi: 10.14067/j.cnki.1673-923x.2015.06.014
[10] Doughty CE, Metcalfe DB, Girardin CA, Girardin F, Amezquita FF, Cabrera DG, Huasco WH, Silva-Espejo JE, Araujo-Murakami A, Costa MC, Rocha W, Feldpausch TR, Mendoza ALM, Costa ACL, Meir P, Phillips OL, Malhi Y ( 2015). Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature, 519, 78-82.
doi: 10.1038/nature14213 pmid: 25739631
[11] Fekete I, Varga C, Kotroczó Z, Tóth JA, Várbiró G ( 2011). The relation between various detritus inputs and soil enzyme activities in a Central European deciduous forest. Geoderma, 167- 168, 15-21.
[12] Gray DB, Mary KT, Julie EJ ( 2002). Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology & Biochemistry, 34, 1073-1082.
[13] Hernandez DL, Hobbie SE ( 2010). The effects of substrate composition, quantity, and diversity on microbial activity. Plant and Soil, 335, 397-411.
doi: 10.1007/s11104-010-0428-9
[14] Huang QL, Zheng QR, Rong JT, Zhuo MX, Guan XH ( 2012). Selective logging techniques of natural broad-leaved timber forest in the mid-subtropical zone of Fujian, China. Journal of Mountain Science, 30(2), 180-185.
[ 黄清麟, 郑群瑞, 戎建涛, 卓鸣秀, 官晓辉 ( 2012). 福建中亚热带天然阔叶用材林择伐技术I. 基于树种特征的目标树种清单. 山地学报, 30(2), 180-185.]
[15] Huang YM, Yang WQ, Zhang J, Lu CT, Liu X, Wang W, Guo W, Zhang DJ ( 2014). Response of soil microorganism and soil enzyme activity to understory plant removal in the subalpine coniferous plantation of western Sichuan. Acta Ecologica Sinica, 34, 4183-4192.
doi: 10.5846/stxb201212131798
[ 黄玉梅, 杨万勤, 张健, 卢昌泰, 刘旭, 王伟, 郭伟, 张丹桔 ( 2014). 川西亚高山针叶林土壤微生物及酶对林下植物去除的响应. 生态学报, 34, 4183-4192.]
doi: 10.5846/stxb201212131798
[16] Jenkinson DS, Brookes PC, Powlson DS ( 2004). Measuring soil microbial biomass. Soil Biology & Biochemistry, 36, 5-7.
[17] Kivlin SN, Treseder KK ( 2014). Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition. Biogeochemistry, 117, 23-37.
doi: 10.1007/s10533-013-9852-2
[18] Kotroczó Z, Veres Z, Fekete I, Krakomperger K, Tóth JA Lajtha K, Tóthmérész B ( 2014). Soil enzyme activity in response to long term organic matter manipulation. Soil Biology & Biochemistry, 70, 237-243.
doi: 10.1016/j.soilbio.2013.12.028
[19] Li XJ, Liu XF, Xiong DC, Lin WS, Lin TW, Shi YW ( 2016). Impact of litterfall addition and exclusion on soil respiration in Cunninghamia lanceolata plantation and secondary Castanopsis carlesii forest in mid-subtropical China. Chinese Journal of Plant Ecology, 40, 447-457.
doi: 10.17521/cjpe.2015.0404
[ 李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文 ( 2016). 中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响. 植物生态学报, 40, 447-457.]
doi: 10.17521/cjpe.2015.0404
[20] Liu XF, Lin TC, Yang Z, Vadeboncoeur MA, Lin CF, Xiong DC, Lin WS, Chen GS, Xie JS, Li YQ, Yang YS ( 2017). Increased litter in subtropical forests boosts soil respiration in natural forests but not plantations of Castanopsis carlesii. Plant and Soil, 418, 141-148.
[21] Liu X, Wang N, Zhao B, Zhang Q, Zhao XH ( 2014). Effects of carbon input changes on soil enzyme activities in a Pinus tabulaeformis forest at the Taiyue Mountain. Chinese Journal of Applied and Environmental Biology, 20, 655-661.
[ 刘星, 王娜, 赵博, 张青, 赵秀海 ( 2014). 改变碳输入对太岳山油松林土壤酶活性的影响. 应用与环境生物学报, 20, 655-661.]
[22] Lu RK 2000). Soil Agrichemistry Analysis Protocols.China Agriculture Science Press, Beijing
[ 鲁如坤 ( 2000). 土壤农业化学分析方法.中国农业科学出版社,北京.]
[23] Olander LP, Vitousek PM ( 2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49, 175-191.
doi: 10.1023/A:1006316117817
[24] Qi G, Wang QL, Wang XC, Yu DP, Zhou L, Zhou WM ( 2013). Soil organic carbon storage in different aged Larix gmelinii plantations in Great Xing’an Mountains of Northeast China. Chinese Journal of Applied Ecology, 24, 10-16.
[ 齐光, 王庆礼, 王新闯, 于大炮, 周莉, 周旺明 ( 2013). 大兴安岭林区兴安落叶松人工林土壤有机碳贮量. 应用生态学报, 24, 10-16.]
[25] Rutigliano FA, Castaldi S, D’Ascoli R, Papa S, Carfora A, Marzaioli R ( 2009). Soil activities related to nitrogen cycle under three plant cover types in Mediterranean environment . Applied Soil Ecology, 43, 40-46.
doi: 10.1016/j.apsoil.2009.05.010
[26] Saiya-Cork KR, Sinsabaugh RL, Zak DR ( 2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
[27] Sayer EJ, Powers JS, Tanner EVJ ( 2007). Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLOS ONE, 2, e1299. DOI: 10. 1371/journal. pone.?0001299.
doi: 10.1371/journal.pone.0001299 pmid: 18074023
[28] Shu YY, Huang JS, Zhao GJ, Bao WK, Pang XY ( 2016). Effects of a forestation with different tree species on soil enzyme activities and nutrient content in eastern Qinghai-?Tibetan Plateau, China. Acta Ecologica Sinica, 36, 394-402.
doi: 10.5846/stxb201409221877
[ 舒媛媛, 黄俊胜, 赵高卷, 包维楷, 李根前, 庞学勇 ( 2016). 青藏高原东缘不同树种人工林对土壤酶活性及养分的影响. 生态学报, 36, 394-402.
doi: 10.5846/stxb201409221877
[29] Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AS, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH ( 2008). Stoichiometry of soil enzyme activity at global scale . Ecology Letters, 11, 1252-1264.
doi: 10.1111/j.1461-0248.2008.01245.x pmid: 18823393
[30] Song XY, Niu SK, Peng B, Ke YQ ( 2006). A study on species diversity of different regeneration patterns in Castanopsis carlesii forest in Sanming, Fujian Province. Subtropical Plant Science, 35(2), 31-34.
[ 宋晓英, 牛树奎, 彭彪, 柯玉琼 ( 2006). 福建三明不同更新方式的米槠林物种多样性研究. 亚热带植物科学, 35(2), 31-34.]
[31] Thomas H, Benjamin S, Icolin P, Kristina M, Paul M, Almut A, Martint S ( 2008). CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Global Change Biology, 14, 1531-1542.
doi: 10.1111/j.1365-2486.2008.01598.x
[32] Vance ED, Brooks PC, Jenkinson DS ( 1987). An extraction method for measuring soil microbial biomass. Soil Biology & Biochemistry, 19, 703-707.
doi: 10.1016/0038-0717(87)90052-6
[33] Veres Z, Kotroczó Z, Fekete I, Tóth JA, Lajtha K, Townsend K, Tóthmérész B ( 2015). Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability. Applied Soil Ecology, 92, 18-23.
doi: 10.1016/j.apsoil.2015.03.006
[34] Wang ZH, Duan CQ, Hou YP, Yang JS ( 2006). The relationship of plant species diversity to ecosystem function in relation to soil conservation in semi-humid evergreen forests, Yunnan Province, China. Journal of Plant Ecology (Chinese Version), 30, 392-403.
[ 王震洪, 段昌群, 侯永平, 杨建松 ( 2006). 植物多样性与生态系统土壤保持功能关系及其生态学意义. 植物生态学报, 30, 392-403.]
[35] Weintraub SR, Wieder WR, Cleveland CC, Townsend AR ( 2013). Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest. Biogeochemistry, 114, 313-326.
doi: 10.1007/s10533-012-9812-2
[36] Xiong YM, Xia HP, Li ZA, Cai XA, Fu SL ( 2008). Impacts of litter and understory removal on soil properties in a subtropical Acacia mangium plantation in China. Plant and Soil, 304, 179-188.
[37] Yang JT, Su ZX, Hu JY, Wu QG, He J ( 2010). Path analysis for soil organic matters and enzyme activities of Davidia involucrate Virgin forest. Chinese Journal of Applied and Environmental Biology, 16, 164-167.
[ 杨敬天, 苏智先, 胡进耀吴庆贵, 贺静 ( 2010). 珙桐林土壤有机质与酶活性的通径分析. 应用与环境生物学报, 16, 164-167.]
[38] Yang WQ, Wang KY ( 2004). Advances in forest soil enzymology. Scientia Silvae Sinicae, 40(2), 152-159.
doi: 10.11707/j.1001-7488.20040227
[ 杨万勤, 王开运 ( 2004). 森林土壤酶的研究进展. 林业科学, 40(2), 152-159.]
doi: 10.11707/j.1001-7488.20040227
[39] Yang WQ, Zhong ZC, Tao JP, He WM ( 2001). Study on relationship between soil enzyme activities and plant species diversity in forest ecosystem of Mt. Jinyun. Scientia Silvae Sinicae, 37(4), 124-128.
doi: 10.11707/j.1001-7488.20010420
[ 杨万勤, 钟章成, 陶建平, 何维明 ( 2001). 缙云山森林土壤酶活性与植物多样性的关系. 林业科学, 37(4), 124-128.]
doi: 10.11707/j.1001-7488.20010420
[40] Yang Y, Wang JF, Zhang XY, Li DD, Wang HM, Chen FS, Sun XM, Wen XF ( 2016). Mechanism of litter and understory vegetation effects on soil carbon and nitrogen hydrolase activities in Chinese fir forests. Acta Ecologica Sinica, 36, 8102-8110.
[ 杨洋, 王继富, 张心昱, 李丹丹, 王辉民, 陈伏生, 孙晓敏, 温学发 ( 2016). 凋落物和林下植被对杉木林土壤碳氮水解酶活性的影响机制. 生态学报, 36, 8102-8110.]
[41] Yin P, Hu X, Wu Y ( 2015). Responses of soil enzyme activity on snow cover and litter input in alpine area. Journal of Jinan University, 36, 115-118.
[ 尹鹏, 胡霞, 吴彦 ( 2015). 川西高原土壤酶活性对雪被覆盖和凋落物添加的响应. 暨南大学学报, 36, 115-118.]
[42] Yuan XC, Lin WS, Pu XT, Yang ZR, Zheng W, Chen YM ( 2016). Effects of forest regeneration patterns on the quantity and chemical structure of soil solution dissolved organic matter in a subtropical forest. Chinese Journal of Applied Ecology, 27, 1845-1852.
[ 元晓春, 林伟盛, 蒲晓婷, 杨智榕, 郑蔚, 陈岳民 ( 2016). 更新方式对亚热带森林土壤溶液可溶性有机质数量及化学结构的影响. 应用生态学报, 27, 1845-1852.]
[43] Zhang P, Tian XJ, He XB, Song FQ, Ren LL ( 2007). Enzyme activities in litter, fragmentation and humus layers of subtropical forests. Ecology and Environment, 16, 1024-1029.
[ 张鹏, 田兴军, 何兴兵, 宋富强, 任利利 ( 2007). 亚热带森林凋落物层土壤酶活性的季节动态. 生态环境学报, 16, 1024-1029.]
[44] Zhao J ( 2016). Effects of Nitrogen Addition and Litter on Soil Microorganism and Enzyme Activities. Master degree dissertation, Beijing Forestry University, Beijing.
[ 赵静 ( 2016). 氮添加与凋落物对土壤微生物和酶活性的影响. 硕士学位论文, 北京林业大学. 北京.]
[45] Zheng WG, Xue L, Xu PB, Liang LL, Feng HF ( 2011). Soil response to litter in a Pinus caribaea woodland. Journal of South China Agricultural University, 32(1), 21-25.
[ 郑卫国, 薛立, 许鹏波, 梁丽丽, 冯慧芳 ( 2011). 加勒比松林地土壤对凋落物的响应. 华南农业大学学报, 32(1), 21-25.]
[46] Zhu TB, Zhuge YP, Liu SJ, Lou YH ( 2008). Effects of different fertilizer treatments and water regimes on soil enzyme activities. Shandong Agricultural Sciences,( 3), 74-78.
[ 朱同彬, 诸葛玉平, 刘少军, 娄燕宏 ( 2008). 不同水肥条件对土壤酶活性的影响. 山东农业科学, ( 3), 74-78.]
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[6] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[7] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[8] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[9] Li Jiandong, Zheng Huiying. ?ber die Anwendung der Braun-Blanquet's Methode in der Steppen-Untersuchung[J]. Chin J Plan Ecolo, 1983, 7(3): 186 -203 .
[10] Cheng Changdu. Proposals on Some Problems to Develop the Agriculture, Forestry, Animal Husbandry and Fishery as well as Sideline Culture from the View-point of Ecological Balance[J]. Chin J Plan Ecolo, 1981, 5(1): 65 -71 .