植物生态学报 ›› 2022, Vol. 46 ›› Issue (3): 350-361.DOI: 10.17521/cjpe.2021.0127
张庆1,2, 尹本丰2,*(), 李继文2,3, 陆永兴2,4, 荣晓莹2, 周晓兵2, 张丙昌1,*(
), 张元明2
收稿日期:
2021-04-07
接受日期:
2021-08-08
出版日期:
2022-03-20
发布日期:
2021-09-18
通讯作者:
尹本丰,张丙昌
作者简介:
(Zhang BC, zhangbch@sxnu.edu.cn)基金资助:
ZHANG Qing1,2, YIN Ben-Feng2,*(), LI Ji-Wen2,3, LU Yong-Xing2,4, RONG Xiao-Ying2, ZHOU Xiao-Bing2, ZHANG Bing-Chang1,*(
), ZHANG Yuan-Ming2
Received:
2021-04-07
Accepted:
2021-08-08
Online:
2022-03-20
Published:
2021-09-18
Contact:
YIN Ben-Feng,ZHANG Bing-Chang
Supported by:
摘要:
土壤胞外酶作为土壤生物化学反应的催化剂, 直接驱动了土壤物质循环和能量流动过程。全球气候变化和土地利用类型改变致使维持荒漠地表稳定的生物土壤结皮中的藓类植物出现不同程度的死亡, 然而, 藓类植物的死亡将如何影响荒漠表层土壤养分循环过程仍缺乏研究。该研究选取新疆古尔班通古特沙漠优势藓类结皮为研究对象, 测定了自然存活及自然死亡藓类结皮下不同土层(0-2、2-5、5-10、10-20 cm)碳氮磷循环相关酶活性。结果发现: 除蔗糖酶外, 藓类植物死亡显著影响了β-葡萄糖苷酶、过氧化物酶、多酚氧化酶、脲酶、硝酸还原酶、植酸酶和碱性磷酸酶活性, 并随土壤深度的增加酶活性逐渐递减。同时, 藓类植物死亡显著抑制了植酸酶活性, 促进了与碳氮磷循环相关的土壤酶活性。土壤碳氮循环相关酶活性与土壤有机碳、全氮、NO3--N和NH4+-N含量显著正相关, 与pH显著负相关; 植酸酶、碱性磷酸酶活性与土壤全磷、速效磷含量相关性不显著。荒漠藓类植物的死亡, 在短期内显著改变了土壤酶系统, 加速了土壤养分循环。
张庆, 尹本丰, 李继文, 陆永兴, 荣晓莹, 周晓兵, 张丙昌, 张元明. 荒漠藓类植物死亡对表层土壤酶活性的影响. 植物生态学报, 2022, 46(3): 350-361. DOI: 10.17521/cjpe.2021.0127
ZHANG Qing, YIN Ben-Feng, LI Ji-Wen, LU Yong-Xing, RONG Xiao-Ying, ZHOU Xiao-Bing, ZHANG Bing-Chang, ZHANG Yuan-Ming. Effects of moss mortality on soil enzyme activities in a temperate desert. Chinese Journal of Plant Ecology, 2022, 46(3): 350-361. DOI: 10.17521/cjpe.2021.0127
生物量 Biomass (g·cm-2) | 株高 Plant height (cm) | |
---|---|---|
活藓类结皮 Live moss crust | 0.151 6 | 1.79 |
藓类植物死亡结皮 Dead moss crust | 0.110 5 | 1.14 |
表1 自然状态下古尔班通古特沙漠不同状态藓类结皮生物量及株高
Table 1 Crust biomass and plant height of mosses in Gurbantünggüt Desert under different natural conditions
生物量 Biomass (g·cm-2) | 株高 Plant height (cm) | |
---|---|---|
活藓类结皮 Live moss crust | 0.151 6 | 1.79 |
藓类植物死亡结皮 Dead moss crust | 0.110 5 | 1.14 |
因子 Factor | 碳循环相关酶 Carbon-acquisition enzyme | 氮循环相关酶 Nitrogen-acquisition enzyme | 磷循环相关酶 Phosphorus-acquisition enzyme | |||||
---|---|---|---|---|---|---|---|---|
SR | BG | POD | PPO | UA | NR | Phytase | ALP | |
结皮状态 Crust state | 0.065 | 6.265* | 46.550** | 7.403* | 7.230* | 14.925** | 166.115** | 6.402* |
土层深度 Soil depth | 135.973** | 72.821** | 97.123** | 5.548** | 108.527** | 40.609** | 3.967* | 6.262** |
结皮状态×土层深度 Crust state × soil depth | 0.643 | 1.080 | 2.360 | 12.046** | 2.891* | 14.439** | 2.540 | 0.770 |
表2 古尔班通古特沙漠结皮状态与土层深度对土壤酶活性的双因素方差分析
Table 2 Two-factor variance analysis of soil enzyme activities between crust state and soil depth in Gurbantünggüt Desert
因子 Factor | 碳循环相关酶 Carbon-acquisition enzyme | 氮循环相关酶 Nitrogen-acquisition enzyme | 磷循环相关酶 Phosphorus-acquisition enzyme | |||||
---|---|---|---|---|---|---|---|---|
SR | BG | POD | PPO | UA | NR | Phytase | ALP | |
结皮状态 Crust state | 0.065 | 6.265* | 46.550** | 7.403* | 7.230* | 14.925** | 166.115** | 6.402* |
土层深度 Soil depth | 135.973** | 72.821** | 97.123** | 5.548** | 108.527** | 40.609** | 3.967* | 6.262** |
结皮状态×土层深度 Crust state × soil depth | 0.643 | 1.080 | 2.360 | 12.046** | 2.891* | 14.439** | 2.540 | 0.770 |
图2 古尔班通古特沙漠不同状态藓类结皮土层中与碳循环相关土壤酶活性(平均值±标准误, n = 6)。不同大写字母(活藓类结皮)、小写字母(藓类植物死亡结皮)表示不同土层间酶活性差异显著(p < 0.05); *和**分别表示同一土层不同结皮状态存在显著差异(p < 0.05)和极显著差异(p < 0.01)。
Fig. 2 Soil enzyme activities (mean ± SE, n = 6) related to carbon cycling in different soil layers of moss crust under different conditions in Gurbantünggüt Desert. Different uppercase letters (live moss crust) and lowercase letters (dead moss crust) indicated significant differences in enzyme activities among different soil layers (p < 0.05). * and ** indicated significant (p < 0.05) and extremely significant (p < 0.01) differences in different crust states in the same soil layer.
图3 古尔班通古特沙漠不同状态藓类结皮下与氮循环相关土壤酶活性(平均值±标准误, n = 6)。不同大写字母(活藓类结皮)、小写字母(藓类植物死亡结皮)表示不同土层间酶活性差异显著(p < 0.05); *和**分别表示同一土层不同结皮状态存在显著差异(p < 0.05)和极显著差异(p < 0.01)。
Fig. 3 Soil enzyme activities (mean ± SE, n = 6) related to nitrogen cycling in different soil layers of moss crust under different conditions in Gurbantünggüt Desert. Different uppercase letters (live moss crust) and lowercase letters (dead moss crust) indicated significant differences in enzyme activities among different soil layers (p < 0.05). * and ** indicated significant (p < 0.05) and extremely significant (p < 0.01) differences in different crust states in the same soil layer.
图4 古尔班通古特沙漠不同状态藓类结皮不同土层与磷循环相关土壤酶活性(平均值±标准误, n = 6)。不同大写字母(活藓类结皮)、小写字母(藓类植物死亡结皮)表示不同土层间酶活性差异显著(p < 0.05); *和**分别表示同一土层不同结皮状态存在显著差异(p < 0.05)和极显著差异(p < 0.01)。
Fig. 4 Soil enzyme activities (mean ± SE, n = 6) related to phosphorus cycling in different soil layers of moss crust under different conditions in Gurbantünggüt Desert. Different uppercase letters (live moss crust) and lowercase letters (dead moss crust) indicated significant differences in enzyme activities among different soil layers (p < 0.05). * and ** indicated significant (p < 0.05) and extremely significant (p < 0.01) differences in different crust states in the same soil layer.
图5 古尔班通古特沙漠土壤酶活性与土壤理化性质相关性分析。A, 活藓类结皮。B, 藓类植物死亡结皮。C, 两种状态结皮汇总。ALP, 碱性磷酸酶活性; AP, 速效磷含量; BG, β-葡萄糖苷酶活性; EC, 电导率; NH4+-N, 铵态氮含量; NO3--N, 硝态氮含量; NR, 硝酸还原酶活性; Phytase, 植酸酶活性; POD, 过氧化物酶活性; PPO, 多酚氧化酶活性; SOC, 有机碳含量; SR, 蔗糖酶活性; SWC, 土壤含水量; TC, 全碳含量; TN, 全氮含量; TP, 全磷含量; UA, 脲酶活性。
Fig. 5 Correlation analysis of soil enzyme activities and soil physical and chemical properties under two types of crusts in Gurbantünggüt Desert. A, Live moss crust. B, Dead moss crust. C, A summary of the two types of moss crust. ALP, alkaline phosphatase activity; AP, available phosphorus content; BG, β-glucosidase activity; EC, conductivity; NH4+-N, ammonia nitrogen content; NO3--N, nitrate nitrogen content; NR, nitrate reductase activity; POD, peroxidase activity; PPO, polyphenol oxidase activity; SOC, total organic carbon content; SR, sucrase activity; SWC, soil water content; TC, total carbon content; TN, total nitrogen content; TP, total phosphorus content; UA, urease activity.
[1] | Allison SD, Weintraub MN, Gartner TB, Waldrop MP (2011). Evolutionary-economic principles as regulators of soil enzyme production and ecosystem function//Shukla G, Varma A. Soil Enzymology. Springer, Berlin. 229-243. |
[2] |
Bai X, Dippold MA, An S, Wang B, Zhang H, Loeppmann S (2021). Extracellular enzyme activity and stoichiometry: the effect of soil microbial element limitation during leaf litter decomposition. Ecological Indicators, 121, 107200. DOI: 10.1016/j.ecolind.2020.107200.
DOI URL |
[3] |
Belnap J (1995). Surface disturbances: their role in accelerating desertification. Environmental Monitoring and Assessment, 37, 39-57.
DOI PMID |
[4] |
Bhattacharyya R, Rabbi SMF, Zhang Y, Young IM, Jones AR, Dennis PG, Menzies NW, Kopittke PM, Dalal RC (2021). Soil organic carbon is significantly associated with the pore geometry, microbial diversity and enzyme activity of the macro-aggregates under different land uses. Science of the Total Environment, 788, 146286. DOI: 10.1016/j.scitotenv.2021.146286.
DOI |
[5] |
Calderón FJ, Jackson LE, Scow KM, Rolston DE (2000). Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biology & Biochemistry, 32, 1547-1559.
DOI URL |
[6] |
Chen N, Li XY, Shi HB, Hu Q, Zhang YH, Leng X (2021). Effect of biodegradable film mulching on crop yield, soil microbial and enzymatic activities, and optimal levels of irrigation and nitrogen fertilizer for the Zea mays crops in arid region. Science of the Total Environment, 776, 145970. DOI: 10.1016/j.scitotenv.2021.145970.
DOI URL |
[7] |
Ciarkowska K, Solek-Podwikaa K, Wieczorek J (2014). Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area. Journal of Environmental Management, 132, 250-256.
DOI PMID |
[8] | Ge XG, Xiao WF, Zeng LX, Huang ZL, Zhou BZ (2014). Effect of soil-litter layer enzyme activities on litter decomposition in Pinus massoniana plantation in Three Gorges Reservoir Area. Acta Ecologica Sinica, 34, 2228-2237. |
[葛晓改, 肖文发, 曾立雄, 黄志霖, 周本智 (2014). 三峡库区马尾松林土壤-凋落物层酶活性对凋落物分解的影响. 生态学报, 34, 2228-2237.] | |
[9] |
Ghiloufi W, Seo J, Kim J, Chaieb M, Kang H (2019). Effects of biological soil crusts on enzyme activities and microbial community in soils of an arid ecosystem. Microbial Ecology, 77, 201-216.
DOI PMID |
[10] | Guo W, Dai JL, Wang RQ (2012). Progress in the effect of dissolved organic matter on adsorption of heavy metals by soil. Chinese Journal of Soil Science, 43, 761-768. |
[郭微, 戴九兰, 王仁卿 (2012). 溶解性有机质影响土壤吸附重金属的研究进展. 土壤通报, 43, 761-768.] | |
[11] | Han BH, Niu DC, Yuan XB, Ren YT, Shi MM, Wu R, Fu H (2016). The development of biological soil crusts and its soil nutrients characteristics of microhabitats under fenced and grazed. Acta Agrestia Sinica, 24, 1218-1225. |
[韩炳宏, 牛得草, 袁晓波, 任运涛, 石明明, 吴让, 傅华 (2016). 围封与放牧措施下生物土壤结皮发育及其微生境土壤养分特征. 草地学报, 24, 1218-1225.] | |
[12] |
Hartman WH, Richardson CJ, Vilgalys R, Bruland GL (2008). Environmental and anthropogenic controls over bacterial communities in wetland soils. Proceedings of the National Academy of Sciences of the United States of America, 105, 17842-17847.
DOI PMID |
[13] | He JH (2005). Recent advances in phytate and phytase studies. Acta Zoonutrimenta Sinica, 17(1), 1-6. |
[贺建华 (2005). 植酸磷和植酸酶研究进展. 动物营养学报, 17(1), 1-6.] | |
[14] | Jia LJ, Tang K, Lan HQ, Xu HW, Guo QW, Ding Y, Tan F, Xing LH, Guo YQ, Feng FY (2018). Diversity and structure of hypolithic bacteria community of Zhongyang Gobi. Microbiology China, 45, 2603-2613. |
[贾丽娟, 唐凯, 兰慧青, 徐黄纬, 国情文, 丁悦, 谭芳, 邢丽华, 郭雨晴, 冯福应 (2018). 中央戈壁石下生物土壤结皮中细菌群落结构和多样性. 微生物学通报, 45, 2603-2613.] | |
[15] |
Jia RL, Li XR, Liu LC, Gao YH, Li XJ (2008). Responses of biological soil crusts to sand burial in a revegetated area of the Tengger Desert, northern China. Soil Biology & Biochemistry, 40, 2827-2834.
DOI URL |
[16] | Kandeler E, Gerber H (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6, 68-72. |
[17] | Li HQ, Xu HY, Ma XL, Hu GL, Wu XD, Liu GM (2017). The seasonal dynamics of soil microbial biomass and enzyme activities in permafrost area and seasonally frozen ground area of the Maxian Mountain. Journal of Glaciology and Geocryology, 39, 421-428. |
[李红琴, 徐海燕, 马小亮, 胡广录, 吴晓东, 刘桂民 (2017). 马衔山多年冻土与季节冻土区土壤微生物量及酶活性的季节动态. 冰川冻土, 39, 421-428.] | |
[18] | Li JW, Yin BF, Suo FY, Zhou XB, Tao Y, Zhang J, Li YG, Zhang YM (2021). Effects of moss mortality on soil water evaporation and infiltration of moss-dominated biological soil crusts. Acta Ecologica Sinica, 41, 6533-6541. |
[李继文, 尹本丰, 索菲娅, 周晓兵, 陶冶, 张静, 李永刚, 张元明 (2021). 荒漠结皮层藓类植物死亡对表层土壤水分蒸发和入渗的影响. 生态学报, 41, 6533-6541.] | |
[19] | Li SY, Sun J, Wang Y, Qin XJ, Ye CC (2020). Characteristics of soil enzyme activities in different degraded gradient grasslands on the Tibetan Plateau. Pratacultural Science, 37, 2389-2402. |
[李邵宇, 孙建, 王毅, 秦小静, 叶冲冲 (2020). 青藏高原不同退化梯度草地土壤酶活性特征. 草业科学, 37, 2389-2402.] | |
[20] | Li XR, Tan HJ, Hui R, Zhao Y, Huang L, Jia RL, Song G (2018). Researches in biological soil crust of China: a review. Chinese Science Bulletin, 63, 2320-2334. |
[李新荣, 谭会娟, 回嵘, 赵洋, 黄磊, 贾荣亮, 宋光 (2018). 中国荒漠与沙地生物土壤结皮研究. 科学通报, 63, 2320-2334.] | |
[21] |
Li YG, Zhou XB, Zhang YM (2019). Moss patch size and microhabitats influence stoichiometry of moss crusts in a temperate desert, central Asia. Plant and Soil, 443(4), 55-72.
DOI URL |
[22] |
Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462.
DOI URL |
[23] |
Liu XZ, Liu Y, Zhang L, Yin R, Wu GL (2021). Bacterial contributions of bio-crusts and litter crusts to nutrient cycling in the Mu US Sandy Land. Catena, 199, 105090. DOI: 10.1016/j.catena.2020.105090.
DOI URL |
[24] |
Liu YM, Xing ZS, Yang HY (2017). Effect of biological soil crusts on microbial activity in soils of the Tengger Desert (China). Journal of Arid Environments, 144, 201-211.
DOI URL |
[25] | Liu YM, Yang HY, Jia RL, Li YX (2019). Effects of human trampling biocrusts on soil enzyme activities. Journal of Desert Research, 39, 54-63. |
[刘艳梅, 杨航宇, 贾荣亮, 李宜轩 (2019). 人为踩踏生物土壤结皮对土壤酶活性的影响. 中国沙漠, 39, 54-63.] | |
[26] | Ma WW, Wang LX, Li N, Zheng DH, Xie LL, Liu Q, Yin CY (2019). Dynamic effects of nitrogen deposition on soil enzyme activities in soils with different moisture content. Acta Ecologica Sinica, 39, 7218-7228. |
[马伟伟, 王丽霞, 李娜, 郑东辉, 谢路路, 刘庆, 尹春英 (2019). 不同水氮水平对川西亚高山林地土壤酶活性的影响. 生态学报, 39, 7218-7228.] | |
[27] |
Miralles I, Domingo F, Cantón Y, Trasar-Cepeda C, Leirós MC, Gil-Sotres F (2012). Hydrolase enzyme activities in a successional gradient of biological soil crusts in arid and semi-arid zones. Soil Biology & Biochemistry, 53, 124-132.
DOI URL |
[28] | Niu B, Zhang LF, Ma RR, Liu XQ, Zhang X, Zhao L, Gu S (2016). Study of microbial biomass and enzymatic activity on the alpine meadow. Acta Scientiarum Naturalium Universitatis Nankaiensis, 49(4), 53-60. |
[牛犇, 张立峰, 马荣荣, 刘晓琴, 张翔, 赵亮, 古松 (2016). 高寒草甸土壤微生物量及酶活性的研究. 南开大学学报(自然科学版), 49(4), 53-60.] | |
[29] | Pan RC (2011). Plant Physiology. 7th ed. Higher Education Press, Beijing. 54-58. |
[潘瑞炽 (2011). 植物生理学. 7版. 高等教育出版社, 北京. 54-58.] | |
[30] |
Prăvălie R, Bandoc G, Patriche C, Sternberg T (2019). Recent changes in global drylands: evidences from two major aridity databases. Catena, 178, 209-231.
DOI URL |
[31] | Qin JH, Zhang Y, Zhao YC, Wang ZJ, Li CX, Gao HN (2014). Soil physicochemical properties and variations of nutrients and enzyme activity in the degrading grasslands in the upper reaches of the Heihe River, Qilian Mountains. Journal of Glaciology and Geocryology, 36, 335-346. |
[秦嘉海, 张勇, 赵芸晨, 王治江, 李彩霞, 高海宁 (2014). 祁连山黑河上游不同退化草地土壤理化性质及养分和酶活性的变化规律. 冰川冻土, 36, 335-346.] | |
[32] |
Rao MA, Scelza R, Acevedo F, Diez MC, Gianfreda L (2014). Enzymes as useful tools for environmental purposes. Chemosphere, 107, 145-162.
DOI PMID |
[33] |
Reed SC, Coe KK, Sparks JP, Housman DC, Zelikova TJ, Belnap J (2012). Changes to dryland rainfall result in rapid moss mortality and altered soil fertility. Nature Climate Change, 2, 752-755.
DOI URL |
[34] |
Richardson AE, Hadobas PA, Hayes JE (2001). Extracellular secretion of aspergillus phytase from arabidopsis roots enables plants to obtain phosphorus from phytate. Plant Journal, 25, 641-649.
PMID |
[35] |
Rodriguez-Caballero E, Belnap J, Büdel B, Crutzen PJ, Andreae MO, Pӧschl U, Weber B (2018). Dryland photoautotrophic soil surface communities endangered by global change. Nature Geoscience, 11, 185-189.
DOI URL |
[36] |
Rousk K, Degboe J, Michelsen A, Bradley R, Bellenger JP (2017). Molybdenum and phosphorus limitation of moss-associated nitrogen fixation in boreal ecosystems. New Phytologist, 214, 97-107.
DOI URL |
[37] |
Rousk K, Jones DL, Deluca TH (2013). Moss-cyanobacteria associations as biogenic sources of nitrogen in boreal forest ecosystems. Frontiers in Microbiology, 4, 150. DOI: 10.3389/fmicb.2013.00150.
DOI |
[38] |
Sardans J, Peñuelas J, Estiarte M (2008). Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrubland. Applied Soil Ecology, 39, 223-235.
DOI URL |
[39] |
Singh K, Pandey VC, Singh B, Singh RR (2012). Ecological restoration of degraded sodic lands through afforestation and cropping. Ecological Engineering, 43, 70-80.
DOI URL |
[40] |
Sinsabaugh RL (2010). Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biology & Biochemistry, 42, 391-404.
DOI URL |
[41] |
Stark LR, Brinda JG, McLetchie DN (2011). Effects of increased summer precipitation and N deposition on Mojave Desert populations of the biological crust moss Syntrichia caninervis. Journal of Arid Environments, 75, 457-463.
DOI URL |
[42] | Sun YQ, Feng W, Zhang YQ, Qin SG, Mao HN (2020). Effects of biological soil crusts on soil enzyme activities of Artemisia ordosica community in the Mu Us Desert of northwestern China. Journal of Beijing Forestry University, 42(11), 82-90. |
[孙永琦, 冯薇, 张宇清, 秦树高, 毛赫楠 (2020). 毛乌素沙地生物土壤结皮对油蒿群落土壤酶活性的影响. 北京林业大学学报, 42(11), 82-90.] | |
[43] |
Turner BL, Papházy MJ, Haygarth PM, McKelvie ID (2002). Inositol phosphates in the environment. Philosophical Transactions of the Royal Society B, 357, 449-469.
DOI URL |
[44] | Wang D, Ma FY, Yao XF, Xin H, Song X, Zhang ZX (2012). Properties of soil microbes, nutrients and soil enzyme activities and their relationship in a degraded wetland of Yellow River Delta. Science of Soil and Water Conservation, 10(5), 94-98. |
[王笛, 马风云, 姚秀粉, 辛贺, 宋雪, 张钟心 (2012). 黄河三角洲退化湿地土壤养分、微生物与土壤酶特性及其关系分析. 中国水土保持科学, 10(5), 94-98.] | |
[45] | Wang Y, Liu BY, Liu M, Sun J, Zeng T (2019). Synergistic and inhibitory effects of soil enzymes along desertified gradients of the Zoige alpine meadow. Pratacultural Science, 36, 939-951. |
[王毅, 刘碧颖, 刘苗, 孙建, 曾涛 (2019). 若尔盖地区沙化草地土壤酶协同和抑制效应. 草业科学, 36, 939-951.] | |
[46] | Wu N, Zhang YM (2010). Distribution characters of soil enzymes in longitudinal dune areas of Gurbantunggut Desert covered by biological soil crusts. Journal of Desert Research, 30, 1128-1136. |
[吴楠, 张元明 (2010). 古尔班通古特沙漠生物土壤结皮影响下的土壤酶分布特征. 中国沙漠, 30, 1128-1136.] | |
[47] | Wu YW, Rao BQ, Liu YD, Li GB, Li DH (2013). Effects of different habitats on artificial crust development and surface soil nitrogen, phosphorus contents and enzymes activities. Soils, 45, 52-59. |
[吴易雯, 饶本强, 刘永定, 李根保, 李敦海 (2013). 不同生境对人工结皮发育及表土氮、磷含量及其代谢酶活性的影响. 土壤, 45, 52-59.] | |
[48] |
Xie MY, Feng XX, Ma HF, Hu H, Wang JY, Guo YX, Ren CJ, Wang J, Zhao FZ (2020). Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains. Chinese Journal of Plant Ecology, 44, 885-894.
DOI URL |
[解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠 (2020). 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素. 植物生态学报, 44, 885-894.] | |
[49] | Xie W, Tan XP, Tian HX, Wang ZQ, Yang R, Wei GH, He WX (2016). Effects of soil moisture on available arsenic and alkaline phosphatase activity in paddy soil. China Environmental Science, 36, 2418-2424. |
[谢伟, 谭向平, 田海霞, 王紫泉, 杨瑞, 韦革宏, 和文祥 (2016). 土壤水分对稻田土壤有效砷及碱性磷酸酶活性影响. 中国环境科学, 36, 2418-2424.] | |
[50] | Xu SJ, Chen WH, Chen YW, He M, Wang Y (2007). Effects of thermostress on the plasma membrane permeability of desert moss Tortula desertorum examined by in situ micro- FTIR analysis. Spectroscopy and Spectral Analysis, 27, 2417-2421. |
[许书军, 陈蔚红, 陈颖雯, 何明, 王艳 (2007). 原位显微红外法检测热胁迫对荒漠植物刺叶墙藓质膜透性的影响. 光谱学与光谱分析, 27, 2417-2421.] | |
[51] | Yan DR, Zhang SN, Huang HG, Yan T (2020). Effect of decomposition of desert moss crust plant on soil improvement retraction. Research of Soil and Water Conservation, 27, 225-229. |
[闫德仁, 张胜男, 黄海广, 闫婷 (2020). 沙漠苔藓植物分解的土壤改良效应. 水土保持研究, 27, 225-229.] | |
[52] | Yan ZQ, Qi YC, Peng Q, Dong YS, Guo SF, He YL, Wang LQ, Li ZL (2017). Effects of increased precipitation and nitrogen deposition on soil enzyme activities. Acta Ecologica Sinica, 37, 3019-3027. |
[闫钟清, 齐玉春, 彭琴, 董云社, 郭树芳, 贺云龙, 王丽芹, 李兆林 (2017). 降水和氮沉降增加对草地土壤酶活性的影响. 生态学报, 37, 3019-3027.] | |
[53] |
Yang H, Liu C, Liu Y, Xing Z (2018). Impact of human trampling on biological soil crusts determined by soil microbial biomass, enzyme activities and nematode communities in a desert ecosystem. European Journal of Soil Biology, 87, 61-71.
DOI URL |
[54] |
Zelikova TJ, Housman DC, Grote EE, Neher DA, Belnap J (2012). Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes. Plant and Soil, 355, 265-282.
DOI URL |
[55] | Zhang GX, Zhao YG, Xu MX, Gao LQ (2012). Impacts of biological soil crust on availability of phosphorus and phosphatase activity in hilly regions of the Loess Plateau, China. Plant Nutrition and Fertilizer Science, 18, 621-628. |
[张国秀, 赵允格, 许明祥, 高丽倩 (2012). 黄土丘陵区生物结皮对土壤磷素有效性及碱性磷酸酶活性的影响. 植物营养与肥料学报, 18, 621-628.] | |
[56] | Zhang YM, Cao T, Pan BR (2002). A review on the studies of bryophyte ecology in arid and semi-arid areas. Acta Ecologica Sinica, 22, 1129-1134. |
[张元明, 曹同, 潘伯荣 (2002). 干旱与半干旱地区苔藓植物生态学研究综述. 生态学报, 22, 1129-1134.] | |
[57] |
Zhou B, Zhao LX, Wang YB, Sun Y, Li XJ, Xu HJ, Weng LP, Pan Z, Yang SD, Chang XP, Li YT (2020). Spatial distribution of phthalate esters and the associated response of enzyme activities and microbial community composition in typical plastic-shed vegetable soils in China. Ecotoxicology and Environmental Safety, 195, 110495. DOI: 10.1016/j.ecoenv.2020.110495.
DOI URL |
[58] | Zhou FR, Wang JX, Yang N, Zhang Q (2013). Effects of water and lead stress on soil enzyme activities. Acta Agrestia Sinica, 21, 479-484. |
[周芙蓉, 王进鑫, 杨楠, 张青 (2013). 水分和铅胁迫对土壤酶活性的影响. 草地学报, 21, 479-484.] | |
[59] |
Zhou HF, Li Y, Tang Y, Zhou BJ, Xu HW (2009). The characteristics of the snow-cover and snowmelt water storage in Gurbantunggut desert. Arid Zone Research, 26, 312-317.
DOI URL |
[周宏飞, 李彦, 汤英, 周宝佳, 徐宏伟 (2009). 古尔班通古特沙漠的积雪及雪融水储存特征. 干旱区研究, 26, 312-317.] | |
[60] | Zhou XB, Yin BF, Zhang YM (2016). The effects of simulated nitrogen deposition on growth and photosynthetic physiology of three types of biocrusts. Acta Ecologica Sinica, 36, 3197-3205. |
[周晓兵, 尹本丰, 张元明 (2016). 模拟氮沉降对不同类型生物土壤结皮生长和光合生理的影响. 生态学报, 36, 3197-3205.] | |
[61] | Zhu ML, Gong L, Zhang LL (2015). Soil enzyme activities and their relationships to environmental factors in a typical oasis in the upper reaches of the Tarim River. Environmental Science, 36, 2678-2685. |
[朱美玲, 贡璐, 张龙龙 (2015). 塔里木河上游典型绿洲土壤酶活性与环境因子相关分析. 环境科学, 36, 2678-2685.] | |
[62] |
Zornoza R, Guerrero C, Mataix-Solera J, Arcenegui V, García-Orenes F, Mataix-Beneyto J (2006). Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions. Soil Biology & Biochemistry, 38, 2125-2134.
DOI URL |
[1] | 付粱晨, 丁宗巨, 唐茂, 曾辉, 朱彪. 北京东灵山白桦和蒙古栎的根际效应及其季节动态[J]. 植物生态学报, 2024, 48(4): 508-522. |
[2] | 祖姆热提•于苏甫江, 董正武, 成鹏, 叶茂, 刘隋赟昊, 李生宇, 赵晓英. 多枝柽柳水分利用策略对沙堆堆积过程的响应[J]. 植物生态学报, 2024, 48(1): 113-126. |
[3] | 何茜, 冯秋红, 张佩佩, 杨涵, 邓少军, 孙小平, 尹华军. 基于叶片和土壤酶化学计量的川西亚高山岷江冷杉林养分限制海拔变化规律[J]. 植物生态学报, 2023, 47(12): 1646-1657. |
[4] | 臧永新, 马剑英, 周晓兵, 陶冶, 尹本丰, 沙亚古丽•及格尔, 张元明. 极端干旱和降水对沙垄不同坡向坡位短命植物地上生产力的影响[J]. 植物生态学报, 2022, 46(12): 1537-1550. |
[5] | 侯宝林, 庄伟伟. 古尔班通古特沙漠一年生植物的氮吸收策略[J]. 植物生态学报, 2021, 45(7): 760-770. |
[6] | 赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬. 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020, 44(9): 916-925. |
[7] | 解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠. 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020, 44(8): 885-894. |
[8] | 刘珊杉, 周文君, 况露辉, 刘占锋, 宋清海, 刘运通, 张一平, 鲁志云, 沙丽清. 亚热带常绿阔叶林土壤胞外酶活性对碳输入变化及增温的响应[J]. 植物生态学报, 2020, 44(12): 1262-1272. |
[9] | 陈日升, 康文星, 周玉泉, 田大伦, 项文化. 杉木人工林养分循环随林龄变化的特征[J]. 植物生态学报, 2018, 42(2): 173-184. |
[10] | 赵芸, 贾荣亮, 高艳红, 周媛媛, 滕嘉玲. 腾格里沙漠人工固沙植被演替过程中生物土壤结皮归一化植被指数的变化特征[J]. 植物生态学报, 2017, 41(9): 972-984. |
[11] | 许红梅, 李进, 张元明. 水分条件对人工培养齿肋赤藓光化学效率及生理特性的影响[J]. 植物生态学报, 2017, 41(8): 882-893. |
[12] | 尹本丰, 张元明, 娄安如. 灌丛移除对荒漠齿肋赤藓越冬过程中生理生化特性的影响[J]. 植物生态学报, 2016, 40(7): 723-734. |
[13] | 尹本丰, 张元明. 冻融过程对荒漠区不同微生境下齿肋赤藓渗透调节物含量和抗氧化酶活力的影响[J]. 植物生态学报, 2015, 39(5): 517-529. |
[14] | 尹本丰,张元明. 荒漠区不同微生境下齿肋赤藓对一次降雪的生理生化响应[J]. 植物生态学报, 2014, 38(9): 978-989. |
[15] | 肖遥,陶冶,张元明. 古尔班通古特沙漠4种荒漠草本植物不同生长期的生物量分配与叶片化学计量特征[J]. 植物生态学报, 2014, 38(9): 929-940. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19