植物生态学报 ›› 2006, Vol. 30 ›› Issue (6): 998-1004.DOI: 10.17521/cjpe.2006.0128
收稿日期:
2005-12-19
接受日期:
2006-03-13
出版日期:
2006-12-19
发布日期:
2006-11-30
作者简介:
E-mail: zygorl@public.hr.hl.cn; en-cn@126.com
基金资助:
ZU Yuan-Gang(), ZHANG Zhong-Hua, WANG Wen-Jie, YANG Feng-Jian, HE Hai-Sheng
Received:
2005-12-19
Accepted:
2006-03-13
Online:
2006-12-19
Published:
2006-11-30
摘要:
薇甘菊(Mikania micranth)是世界性的入侵有害植物,对其入侵特性的理解将有助于我们更进一步揭示入侵机理和开展植物入侵的防治工作。叶片的光合作用是入侵植物薇甘菊入侵特性的研究内容之一,但到目前为止,仍没有开展对薇甘菊非同化器官茎的同化特性的研究。该文采取对比的研究方法,使用LICOR-6400气体交换系统和荧光系统对其幼嫩的绿色茎和成熟叶片的气体交换和叶绿素荧光特性进行测定,并对测定结果进行了对比分析,同时应用激光共聚焦显微镜对薇甘菊茎中叶绿体分布进行观察。使用叶绿素荧光系统测量瞬时叶绿素荧光特性表明,茎和叶的电子传输速率(Electron transport rate, ETR)和光系统Ⅱ实际光化学量子产量(ΦPSⅡ)存在较好的正比例关系,相关系数达到0.97,说明茎中存在和叶中类似的光合结构。但在应用LICOR-6400气体交换系统测量稳定状态下的CO2的气体交换速率时,观察到叶的气体交换速率稳定性较好,而茎的气体交换速率出现较大的波动,这可能是由于茎的气孔因素引起。综合来看,在相同面积和饱合光强下(光通量密度(Photosynthetic photo flux density, PPFD)=2 000 μmol·m -2·s-1),叶的ETR为42.44 μmol·m -2·s-1,茎的ETR为30.32 μmol·m -2·s-1。在相同面积和低光强(PPFD=10 μmol·m -2·s-1)下,叶的ΦPSⅡ为0.69;茎的ΦPSⅡ为0.57。在单位SPAD下,茎中ETR是每单位SPAD 4.24 μmol·m -2·s-1,是叶的2.3倍,实际光化学量子产量是每单位SPAD 0.08,是叶的3倍。在比较茎和叶ETR中观察到茎比叶有更强的强光适应能力。激光共聚焦图像观察到薇甘菊茎的叶绿体主要分布在两个区域:皮层区和维管束周围。对照以往关于茎中叶绿体功能的研究表明,可能分布在两个区域中的叶绿体功能上存在差别。如上,薇甘菊茎中存在一定的光合作用能力,且在叶绿体的光能利用瞬时效率上茎明显强于叶,但在茎中这些光合作用的具体作用仍不清楚。
祖元刚, 张衷华, 王文杰, 杨逢建, 贺海升. 薇甘菊叶和茎的光合特性. 植物生态学报, 2006, 30(6): 998-1004. DOI: 10.17521/cjpe.2006.0128
ZU Yuan-Gang, ZHANG Zhong-Hua, WANG Wen-Jie, YANG Feng-Jian, HE Hai-Sheng. DIFFERENT CHARACTERISTICS OF PHOTOSYNTHESIS IN STEMS AND LEAVES OF MIKANIA MICRANTH. Chinese Journal of Plant Ecology, 2006, 30(6): 998-1004. DOI: 10.17521/cjpe.2006.0128
[1] |
Andrew DR, Shane PD, Graeme PB (2002). An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytologist, 153,185-194.
DOI URL |
[2] |
Aschan G, Pfanz H (2003). Non-foliar photosynthesis—a strategy of additional carbon acquisition. Flora, 198,81-97.
DOI URL |
[3] |
Aschan G, Pfanz Z, Vodnik D, Batic F (2005). Photosynthetic performance of vegetative and reproductive structures of green hellebore (Helleborus viridis L. agg.). Photosynthetica, 43,55-64.
DOI URL |
[4] |
Aschan G, Wittmann C, Pfanz H (2001). Age-dependent bark photosynthesis of aspen twigs. Trees, 15,431-437.
DOI URL |
[5] | Cannon W (1908). The topography of the chlorophyll apparatus in desert plants. Carnegie Institution of Washington Publication, 98,1-423. |
[6] |
Cernusak LA, Marshall JD (2000). Photosynthetic refixation in branches of Western White Pine. Functional Ecology, 14,300-311.
DOI URL |
[7] | Deng X(邓雄), Feng HL(冯惠玲), Ye WH(叶万辉), Yang QH(杨期和), Xu KY(许凯扬), Cao HL(曹洪麟), Fu Q(傅强) (2003). A study on the control of exotic weed Mikania micrantha by using parasitic Cuscuta campestris. Journal of Tropical and Subtropical Botany(热带亚热带植物学报), 11,117-122. (in Chinese with English abstract) |
[8] | Deng X, Ye WH, Feng HL, Yang QH, Cao HL, Xu KY, Zhang Y (2004). Gas exchange characteristics of the invasive species Mikania micrantha and its indigenous congener M. cordata (Asteraceae) in South China. Botanical Bulletin of Academia Sinica, 45,213-220. |
[9] |
Heilmeier H, Whale DM (1987). Carbon dioxide assimilation in the flowerhead of Arctium. Oecologia, 73,109-115.
URL PMID |
[10] |
Julian MH, Quick WP (2002). Characteristics of C4 photosynthesis in stems and petioles of C3 flowering plants. Nature, 415,451-454.
DOI URL PMID |
[11] | Kharouk VI, Middleton EM, Spencer SL, Rock BN, Williams DL (1995). Aspen bark photosynthesis and its significance to remote sensing and carbon budget estimate in the boreal ecosystem. Water, Air, and Soil Pollution, 82,483-497. |
[12] | Kong GH(孔国辉), Wu QG(吴七根), Hu QM(胡启明), Ye WH(叶万辉) (2000). Further supplementary data on Mikania micrantha H.B.K.(Asteraceae). Journal of Tropical and Subtropical Botany (热带亚热带植物学报), 8,128-130. (in Chinese with English abstract) |
[13] | Liao FY(廖飞勇), Xie Y(谢瑛), He P(何平), Fan YM(范亚民) (2003). The effect of different light intensity on the growth and photosystem of Mikania micrantha Kunth. Life Science Research(生命科学研究), 7,254-258. (in Chinese with English abstract) |
[14] |
Markwell J, Osterman JC, Mitchell JL (1995). Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46,467-472.
DOI URL PMID |
[15] |
Nilsen ET, Sharifi MR (1994). Seasonal acclimation of stem photosynthesis in woody legume species from the Mojave and Sonoran deserts of California. Plant Physiology, 105,1385-1391.
DOI URL PMID |
[16] | Pfanz H, Aschan G (2001). The existence of bark and stem photosynthesis and its significance for the overall carbon gain. An eco-pysiological and ecological approach. Progress in Botany, 62,477-510. |
[17] |
Pfundel E, Neubohn B (1999). Assessing photosystemⅠand Ⅱdistribution in leaves from C4 plants using confocal laser scanning microscopy. Plant, Cell and Environment, 22,1569-1577.
DOI URL |
[18] | Schreiber L, Bilger W, Neubauer C (1995). Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. Ecophysiology of Photosynthesis, 100,49-70. |
[19] | Scott DG (1907). On the distribution of chlorophyll in the young shoots of woody plants. Annals of Botany, 21,437-439. |
[20] | Shao H(邵华), Peng SL(彭少麟), Zhang C(张弛), Xiang YC(向言词), Nan P(南蓬) (2003). Allelopathic potential of Mikania micrantha. Chinese Journal of Ecology(生态学杂志), 22(5),62-65. (in Chinese with English abstract) |
[21] |
Smillie RM (1992). Calvin cycle activity in fruit and the effect of heat stress. Scientia Horticulturae, 51,83-95.
DOI URL |
[22] | Wang WJ(王文杰), Zu YG(祖元刚), Meng QH(孟庆焕), Yang FJ(杨逢建), Zhao ZH(赵则海), Cao JG(曹建国) (2005). CO2 exchange characteristics of Eupatorium adenophorum Spreng. Acta Ecologica Sinica(生态学报), 25,1898-1907. (in Chinese with English abstract) |
[23] | Wen DZ(温达志), Ye WH(叶万辉), Feng HL(冯惠玲), Cai CX(蔡楚雄) (2000). Comparison of basic photosynthetic characteristics between exotic invader weed Mikania micrantha and its companion species. Journal of Tropical and Subtropical Botany(热带亚热带植物学报), 8,139-146. (in Chinese with English abstract) |
[24] |
Wittmann C, Aschan G, Pfanz H (2001). Leaf and twig photosynthesis of young beech (Fagus sylvatica) and aspen (Populus tremula) trees grown under different light intensity regimes. Basic and Applied Ecology, 2,145-154.
DOI URL |
[25] |
Xu HL, Gauthier L, Desjardins Y, Gosselin A (1997). Photosynthesis in leaves, fruits, stem and petioles of greenhouse-grown tomato plants. Photosynthetica, 33,113-123.
DOI URL |
[26] | Yang FJ(杨逢建), Zhang ZH(张衷华), Wang WJ(王文杰), Chen HF(陈华峰), Zhang YL(张宇亮), Zu YG(祖元刚) (2005). The effect of water stress on the growth yield of invasion plant of Mikania micrantha H.B.K. seedlings. Chinese Bulletin of Botany(植物学通报), 22,674-680. (in Chinese with English abstract) |
[27] |
Zhang LY, Ye WH, Cao HL, Feng HL (2004). Mikania micrantha H.B.K. in China—An overview. Weed Research, 44,42-49.
DOI URL |
[28] | Zhang MX(张茂新), Ling B(凌冰), Kong CH(孔垂华), Zhao H(赵辉), Pang XF(庞雄飞) (2002). Allelopathic potential of volatile oil from Mikania micrantha. Chinese Journal of Applied Ecology(应用生态学报), 13,1300-1302. (in Chinese with English abstract) |
[29] | Zhang WY(张炜银), Li MG(李鸣光), Wang BS(王伯荪), Zan QJ(昝启杰), Wang YJ(王勇军) (2003). Dynamics of seeds band of Mikania micrantha populations. Journal of Wuhan Botanical Research(武汉植物学研究), 21,143-147. (in Chinese with English abstract) |
[30] | Zhang WY(张炜银), Wang BS(王伯荪), Li MG(李鸣光), Zan QJ(昝启杰), Wang YJ(王勇军) (2002). The effects of light intensity on growth and morphology in Mikania micrnatha seedlings. Sun Yat-Sen University Forum(中山大学学报论丛), 22,222-226. (in Chinese with English abstract) |
[1] | 王复标, 叶子飘. 植物电子传递速率光响应模型的研究进展[J]. 植物生态学报, 2024, 48(3): 287-305. |
[2] | 李伟斌, 张红霞, 张玉书, 陈妮娜. 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023, 47(9): 1225-1233. |
[3] | 蒋海港, 曾云鸿, 唐华欣, 刘伟, 李杰林, 何国华, 秦海燕, 王丽超, 姚银安. 三种藓类植物固碳耗水节律调节作用[J]. 植物生态学报, 2023, 47(7): 988-997. |
[4] | 任培鑫, 李鹏, 彭长辉, 周晓路, 杨铭霞. 洞庭湖流域植被光合物候的时空变化及其对气候变化的响应[J]. 植物生态学报, 2023, 47(3): 319-330. |
[5] | 师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳. 青藏高原高山嵩草光合功能对模拟夜间低温的响应[J]. 植物生态学报, 2023, 47(3): 361-373. |
[6] | 刘海燕, 臧纱纱, 张春霞, 左进城, 阮祚禧, 吴红艳. 磷饥饿下硅藻光系统II光化学反应及其对高光强的响应[J]. 植物生态学报, 2023, 47(12): 1718-1727. |
[7] | 师生波, 师瑞, 周党卫, 张雯. 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023, 47(10): 1441-1452. |
[8] | 薛金儒, 吕肖良. 黄土高原生态工程实施下基于日光诱导叶绿素荧光的植被恢复生产力效益评价[J]. 植物生态学报, 2022, 46(10): 1289-1304. |
[9] | 吴霖升, 张永光, 章钊颖, 张小康, 吴云飞. 日光诱导叶绿素荧光遥感及其在陆地生态系统监测中的应用[J]. 植物生态学报, 2022, 46(10): 1167-1199. |
[10] | 靳川, 李鑫豪, 蒋燕, 徐铭泽, 田赟, 刘鹏, 贾昕, 查天山. 黑沙蒿光合能量分配组分在生长季的相对变化与调控机制[J]. 植物生态学报, 2021, 45(8): 870-879. |
[11] | 武洪敏, 双升普, 张金燕, 寸竹, 孟珍贵, 李龙根, 沙本才, 陈军文. 短期生长环境光强骤增导致典型阴生植物三七光系统受损的机制[J]. 植物生态学报, 2021, 45(4): 404-419. |
[12] | 周稳, 迟永刚, 周蕾. 基于日光诱导叶绿素荧光的北半球森林物候研究[J]. 植物生态学报, 2021, 45(4): 345-354. |
[13] | 叶子飘, 于冯, 安婷, 王复标, 康华靖. 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021, 45(4): 420-428. |
[14] | 丁键浠, 周蕾, 王永琳, 庄杰, 陈集景, 周稳, 赵宁, 宋珺, 迟永刚. 叶绿素荧光主动与被动联合观测应用前景[J]. 植物生态学报, 2021, 45(2): 105-118. |
[15] | 李景, 王欣, 王振华, 王斌, 王成章, 邓美凤, 刘玲莉. 臭氧和气溶胶复合污染对杨树叶片光合作用的影响[J]. 植物生态学报, 2020, 44(8): 854-863. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19